3D MODEL OF THE DRIVER INSIDE THE VEHICLE COCKPIT

We developed the 3D model of driver's body based on the 3D sensor (MS Kinect) combined with the 3D map analysis for obtaining more complete information about the driver's behavior. In the model, the positions of the main body parts visible in the camera (head, neck, shoulders, elbows, palms) are recorded and tracked. The optical images are used as a supporting tool collaborating with the 3D maps. At this moment, we are experimenting with the new version of MS Kinect that should be used to obtain better results.


RECOGNIZING FATIGUE AND GAZE DIRECTION OF DRIVERS IN IR IMAGES

The first goal of this project is to create the detector of head, eyes and eye parts (lids, iris, pupil). Thereafter these detected parts are used to determine where the driver is looking and to detect the frequency of eye blinking. This frequency is then used to recognize driver's fatigue. The detector processes images obtained from a near-infrared camera that allows detection in dark conditions when the probability of fatigue is higher than during daytime.


RECOGNISING PEOPLE, ANIMALS AND OTHER OBSTACLES IN IR SPECTRA

In July 2013, we started the project for detecting the people (animals and other obstacles) in infrared spectra. Detection is carried out in the cars for the purpose of controlling the headlamps. The results of our research will be used by a big headlamp manufacturer.


COUNTING THE OBJECTS IN TRAFFIC, DETERMINING THE TRAJECTORIES

In this project (2012-13), we have been developing the methods for counting the moving objects, namely the cars, in the streams from cameras. In the intelligent systems for traffic management, this problem is of great practical importance since the traffic load that can be measured in this way, which is an essential input information. The method we have developed runs on GPU in real time. It also determines the vehicle trajectories in the crossings, which is also important since it makes it possible to evaluate the dangerous situations. The project is finished (June 2013) and used as a part of a bigger system whose goal is to inquire about the traffic situation in the city of Ostrava. The streams from 65 cameras placed all around the city are processed on a computer system with 96 cores (Xeon) and approx. 30.000 NVIDIA GPU cores. (you can see some results here in a working version)


DETECTING FREE/OCCUPIED PLACES IN PARKING LOTS

The solution that was carried out in this project (2012) was a part of a bigger project that was done for a recognized car manufacturer (Volkswagen, AG). The goal was to detect optically whether the parking place is free or occupied. Several algorithms have been developed and compared (including, e.g., the algorithm based on three-dimensional stereo reconstruction). All the algorithms were thoroughly tested in various weather conditions. The best algorithms were incorporated into the final solution that also includes a database, a small information system and various statistics. The system is now also running in the university campus.


COMPUTING THE CAR LAMPS LIGHT FLUX

In this project (2009-2013), we create software for computing the light flux from the car lamps (especially headlamps). This project is being solved for a certain big car-parts manufacturer. Computing the light flux accurately and effectively is an important task when designing the head lamps. The accurate results are necessary especially in case that new light emitters and new materials are to be used. Since the computation is time expensive on usual personal computers, also the variants using SMP and GPU computing are being developed. In this project, Tomáš is the person doing the majority of work.


MARKING HOT STEEL BARS BY SPRAYED DOTS

The solution that was carried out in this project (2010-2011) was a part of a bigger device for marking hot steel bars that was realised in Třinecké železárny, a member of the Moravia Steel Group, Czech Republic. As a whole, the solution was designed and realised by the KMC Group company. The camera subsystem and the corresponding software based on image analysis have been developed and manufactured by the VŠB-Technical University of Ostrava in our lab.


READING THE MARKING ON THE STEEL INGOTS

The goal that was followed in this project (2009-2010) was to read, by making use of a camera, the markings that are imprinted on the hot steel ingots. The results of reading are used for production control. The conditions under which the images are captured and the marking should be read are quite difficult. The project was funded by the Ministry of Industry and Trade of the Czech republic.


IMAGE ANONYMISATION

In this project (2009), we created a software for image anonymisation, i.e., for bluring the car license plates and human faces. The project was done for (and funded by) a big European car maker (Volkswagen, AG). For finding the license plates, we have developed our own method. For finding the human faces, we used the AdaBoost method. The goal was to anonymise the images captured from the cars (the project that is descibed below). In the big image that is accessible from the left thumbnail, the plates are not blurred in order to better illustrate the problem.