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Abstract. Many image processing tasks exist and segmentation is one
of them. We are focused on the mean-shift segmentation method. Our
goal is to improve its speed and reduce the over-segmentation problem
that occurs with small spatial bandwidths. We propose new mean-shift
method called Hierarchical Layered Mean Shift. It uses hierarchical pre-
processing stage and stacking hierarchical segmentation outputs together
to minimise the over-segmentation problem.

Keywords: layer, segmentation, image, mean shift, hierarchical.

1 Introduction

Segmentation is one of the constantly developing image processing tasks. The
goal is to improve not only the accuracy and the segmentation quality but also
the speed of algorithms. We are focused on the one of the most popular segmen-
tation methods, the Mean Shift. It was released in 1975 [7], but it started to be
developed more 20 years later, in 1995 [2]. The most important papers about
this method are, for example, [3], [5], and [4].

The main idea of the mean-shift method is in iterative motion of data points
to the position of their highest density. We are segmenting images, therefore,
these data points are image pixels. For each pixel, a kernel density estimate is
computed and it is shifted according to this estimate. It is repeatedly computed
until the point converges to an attractor, the place of the highest density of
pixels. In general MS [7], we need two datasets. The first one is the original
dataset that is used to compute the density estimate of the data points and the
second one holds the shifted values (the actual data points for which the density
estimate is computed). If we use Blurring MS [1], only one dataset is needed.
The source dataset is replaced by the computed values after each iteration. The
BMS method also has the smaller number of iterations per data point.

The hierarchical approaches [11] [10], [6] showed to be a very fast way to
accelerate the algorithms with a very small influence on the segmentation quality.
They use more stages of the algorithm with different bandwidths and they use the
output from the first stage as the input for the following one. A small bandwidth
in the first stage ensures fast computation as well as the smaller input for the
next one.

The layered approaches [9], on the other hand, run several MS computation
and stack them together. If the pair of pixels belongs to the same segment
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in more resultant segmentations (threshold has to be set, for example, in two
segmentations of the three processed), they are merged together.

We present Hierarchical Layered Mean Shift (HLxMS) methods that use
the hierarchical approach and stacking of segmentations to reduce the over-
segmentation problem. In the next two sections, Mean Shift basics and our
HLxMS approach will be discussed. In the Section 4, experiments will be carried
out and the last section is devoted to the conclusion.

We are going to describe hierarchical layered mean-shift method that use the
Blurring Mean Shift (BMS) method as its base. Therefore, we will denote it as
HLBMS (the “B” standing for blurring is replacing the general “x” in HLxMS
notation covering all hierarchical layered versions). We will also describe only
the BMS method deeply, although the experiments will be also carried out with
general MS [2] (HLMS) and Evolving Mean Shift [12] (HLEMS) method too.

(a) 1st stage (b) 2nd stage (c) 3rd stage

Fig. 1. Stages of the HBMS method

(a) 1st iteration (b) 2nd iteration (c) 3rd iteration

Fig. 2. Iterations of the LBMS method

2 Mean Shift Methods

If X = {xi}ni=1 ⊂ Rd is a dataset of n points in the d-dimensional space, the
kernel density estimator for BMS method is given by the following equation

p(x) =
1

nσd

n∑

i=1

K

(
x− xi

σ

)
, (1)

where the first fraction is a normalisation constant and σ is the bandwidth. It
sets the diameter of the searching window (kernel function K(x)). In digital
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images, we use two types of bandwidths. The spatial bandwidth σs is limiting
the neighbourhood of the processed pixel in x and y axis (usually, it has the
same values for both axes). The range bandwidth σr indicates the maximum
possible luminance difference between the processed pixel and the pixels in its
neighbourhood. MS can use broad kernels (for example, the Gaussian) that
cover all the data points and σ parameters change only the shape of kernel as all
pixels are involved in computation. If we use truncated kernels (for example, the
Epanechnikov, uniform), the bandwidth parameters really limit the size of kernel.
In our algorithm, we use only truncated kernels, because it is based on using the
small kernels that improve the speed of the algorithm. The Epanechnikov kernel
is given by the equation

K(x) =

{
1− x2, if ‖x‖ ≤ 1

0, otherwise . (2)

The mean-shift vector that is iteratively needed for each pixel in the processed
image, is given by

mσ,k(x) =

∑n
i−1 xik

(∥∥x−xi

σ

∥∥2
)

∑n
i−1 k

(∥∥x−xi

σ

∥∥2
) − x , (3)

where the function k(x) is a derivative of the kernel K(x). This equation indicates
the difference between the former position of the processed pixel x (on the right-
hand side of the equation) and a new position of the processed pixel x (estimate
of the position with the highest density of data points). In each iteration, the
point is moved to the new computed position until the movement is zero or close
to zero (smaller than a preset threshold). Each iteration consists of moving all
the points according to their mean-shift vectors, then the output of this iteration
is converted to the input for the next one.

3 Hierarchical Layered Mean Shift

Our new method called Hierarchical Layered Mean Shift (HLxMS in general)
combines the hierarchical [11] [10], [6] and layered approach [9]. The hierarchical
approach divides the segmentation of the image into several stages. The first
stage use very small spatial bandwidth and, therefore, it is carried out very fast.
It creates a large number of small segments. We consider the segment as one
data point with the weight proportional to the number of points it contains. This
output is used as the input for the next stage with a larger spatial bandwidth.
Because this input is smaller (due to preprocessing in the first stage), the next
stage can be carried out very fast too even if the larger spatial bandwidth is
used (the dataset is smaller). The number of stages is not limited, mostly two or
three stages are enough (it depends on the size of the processed image). HBMS
results can be seen in Fig. 1.

The layered approach uses a larger number of stages on the same dataset (not
for outputs from the previous stages). We carry out computation with several
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(a) stacked LBMS
segmentation

(b) stacked HLBMS
segmentation

(c) merged HLBMS seg-
mentation

Fig. 3. Stacked LBMS and HLBMS (hierarchical LBMS) image and the result after
merging the HLBMS segments

small, but different bandwidths. Each result has the same boundaries around
the significant objects but it has variously shaped segments in the flat areas of
the image. If we stack the segmentation results, the most significant boundaries
would be clearly seen (Fig. 3(a)). The merging algorithm is straightforward. If
two random pixels are, for example, twice in the same segment in two different
segmentations of three processed segmentations, they are assigned to one bigger
segment. The number of segmentations does not necessarily need to be 3. In
practice, some images could be processed with three segmentations very well,
but mostly four segmentations are better.

We can carry out much more segmentations and we need to set the threshold
t lower than this number to denote the number of segmentations, where two
random pixels need to be in the same segment in order to assign them to the
same final segment. We have to check all the pairs of pixels that are in the
distance equal or lower than the maximal used spatial bandwidth (we do not
need to check all the pairs of pixels in the processed image). It greatly reduces
the computational cost of the algorithm with no influence to the segmentation
result.

This approach needs to compute several very fast segmentations (because
of small σs) and almost completely reduces the problem of over-segmentation.
The flat areas are merged together. It can be used with BMS and EMS, but
the character of MS (general Mean Shift) segments is not very suitable for this
approach - much larger initial bandwidth is necessary.

HLxMS combines both approaches together. It carries out one very fast initial
segmentation with a very small bandwidth. Its output is used as the input for two
or more layered segmentations. That is the difference. General layered approach
uses the original image as an input, whereas the hierarchical layered approach
uses the first preprocessing stage for creating its input as in the hierarchical
versions of mean-shift methods. Simply, the hierarchical approach makes one
over-segmented image and the layered segmentation post-processing will decide
which segments should be grouped and which boundaries should be preserved.
Of course, more hierarchical stages can be executed in order to minimize the
computational time if we process very large images.
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Fig. 4. Rows 1: the original image; 2/3/4: MS/BMS/EMS (spatial bandiwdth σs =
15); 5/6/7: HMS/HBMS/HEMS (σs = 4/16/64); 8/9/10: LMS/LBMS/LEMS (σs = 4,
multiplier of the bandwidth mul = 1.4); 11/12/13: HLMS/HLBMS/HLEMS (σs = 3.5,
mul = 1.35).
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4 Experiments

For comparison, we present the achieved results with various mean-shift meth-
ods, especially general MS, Blurring MS and Evolving MS as our method is
aimed as an improvement to Mean Shift. Therefore, we will compare it only
with several mean-shift methods. All their hierarchical (HxMS) and layered ver-
sions (LxMS) are presented too. Our hierarchical layered versions are denoted by
HLxMS. As it was already said, in all cases, the "x" letter stands for arbitrary
MS method (general, blurring or evolving). Because each type of algorithms has
another properties, they will be used with different spatial bandwidths that will
be mentioned and deeply described later. Testing images are presented in the
first row of Fig. 4, we use the images from Berkeley Image Dataset [8] and our
synthetic image in noise-free and noisy version. All images were downscaled to
the resolution 320× 214 pixels.

Table 1. The comparison of speed depending on algorithm

synthetic syn. noise airplane hills savana bird
MS 1948.3 s 983.6 s 1199.3 s 1923.6 s 1564.7 s 1411.1 s

HMS 127.1 s 37.3 s 37.8 s 36.6 s 39.2 s 42.1 s
LMS 3472.9 s 498.6 s 1139.4 s 2148.9 s 782.4 s 1307.9 s

HLMS 261.8 s 46.5 s 57.1 s 55.5 s 56.6 s 62.7 s
BMS 31.8 s 37.5 s 34.7 s 40.2 s 34.7 s 52.4 s

HBMS 8.7 s 10.1 s 9.6 s 8.9 s 8.2 s 9.9 s
LBMS 42.2 s 43.4 s 46.1 s 44.3 s 41.1 s 45.7 s

HLBMS 6.4 s 5.6 s 6.1 s 6.4 s 6.1 s 6.9 s
EMS 812.2 s 603.8 s 168.3 s 198.9 s 160.9 s 184.9 s

HEMS 29.7 s 33.8 s 18.8 s 17.3 s 20.4 s 20.6 s
LEMS 561.5 s 440.2 s 149.2 s 156.2 s 153.2 s 158.7 s

HLEMS 20.3 s 20.7 s 16.8 s 17.0 s 17.8 s 17.3 s

In Fig. 4, the results of all mentioned methods are clearly visible. The com-
putational times are listed in Table 1. All algorithms used the range bandwidth
σr = 24, the spatial bandwidths are clearly described in the caption of Fig. 4.
We will justify our choice of the bandwidth in the following paragraphs.

Original methods (MS, BMS, and EMS) used the spatial bandwidth of only
σs = 15. It is obvious that the result suffers from a heavy over-segmentation
and the computational times are very long even with such a small bandwidth.
Hierarchical approaches (HMS, HBMS, and HEMS) started with σs1 = 4 and
ended with σs3 = 64, fast three-staged versions of the algorithm was used (2-
staged versions are usually slower). Because of the better speed of the algorithm,
we could afford to enlarge the final spatial bandwidth to 64 in order to lower the
over-segmentation problem.
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Layered algorithms (LMS, LBMS, and LEMS) used the initial bandwidth
σs = 4 and each following stage used enlarged bandwidth by the multiplier of
1.4. All algorithms were run in 4-staged mode, where pixels that were three
times in the same segmentation, were merged. Even though 3-staged type of the
algorithm can be successfully used too, we chose the 4-staged version because of
its lower sensitivity to the parameter settings and greater stability.

Hierarchical layered version (our new presented algorithm) used even smaller
initial bandwidth σs = 3.5 and the slightly smaller multiplier 1.35. This multi-
plier is applied once more for the first layered stage. Therefore, the initial stage
used σs = 3.5, the first layered stage ran with σs = 3.5 × 1.35 × 1.35 = 6.4,
the second layered stage used σs = 6.4 × 1.35 = 8.6 and the last one ran with
the bandwidth σs = 8.6× 1.35 = 11.6 in our tests. Note that only three layered
segmentations are sufficient in the hierarchical layered approach.

General MS is very good algorithm for filtration but its segmentation results
are not great in digital images, especially in the flat areas with a small spatial
bandwidth. Blurring MS and Evolving MS are much faster but suffer from the
over-segmentation problem too. We can enlarge their spatial bandwidth but the
computation time will enlarge too. Hierarchical approaches can use much larger
bandwidths and achieved dramatically better computational times.

Layered MS is unusable with the general MS as its base method when using
small kernel sizes as many variously shaped segments emerge. Layered BMS
and Layered EMS give very nice segmentation results and their computational
times are comparable with the original methods. Note that we used 4-staged
algorithm but we can also use only 3 stages that would lead to much faster time.
The drawback is in the need of careful setting of parameters in order to get
properly segmented results (4 stages are more robust).

Hierarchical methods (HLxMS) are more robust and faster than the layered
versions (LxMS). HLMS is slower than HMS, but it solves its over-segmentation
problem. On the other hand, HLBMS and HLEMS are faster than original hi-
erarchical methods and, moreover, also lower the problem of over-segmentation.
We can say that our new method successfully suppresses the over-segmentation
problem and also improves the speed when using Blurring MS or Evolving MS
as its base method.

5 Conclusion

We have shown that the layered approaches can almost eliminate the over-
segmentation problem in a reasonable time. The general layered versions are
a little bit sensitive to parameter settings and the use of general MS is very
problematic. Both BMS and EMS algorithms are useful in their layered ver-
sions. Hierarchical layered versions that we have presented in this paper do not
suffer from the need of proper setting of parameters and they work very well with
general MS even when the lower number of stages is used. It outperforms the
hierarchical mean-shift methods in both areas of the speed and the segmentation
quality. Even when the hierarchical versions use very large final bandwidth, they
are not able to merge all segments in large flat areas.
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