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Abstract. The geodesic distance is commonly used when solving im-
age processing problems. In noisy images, unfortunately, it often gives
unsatisfactory results. In this paper, we propose a new k-max geodesic
distance. The length of path is defined as the sum of the k maximum
edge weights along the path. The distance is defined as the length of the
path that is the shortest one in this sense. With an appropriate choice of
the value of k, the influence of noise can be reduced substantially. The
positive properties are demonstrated on the problem of seeded image
segmentation. The results are compared with the results of geodesic dis-
tance and with the results of the random walker segmentation algorithm.
The influence of k value is also discussed.

Keywords: Geodesic distance, Shortest path problem, Image segmentation

1 Introduction

Finding the distance between two points is an important task in computer science
with many applications in robotics, data clustering, or in image processing [3, 7].
The geodesic distance [10] is a commonly used distance measure in many tasks
of image processing [4]. It is defined as the shortest path on the surface that is
defined by the image function. In the discrete case, it is the shortest path in the
weighted graph that corresponds to the image (the weights of edges reflect the
brightness differences between the endpoints of edges).

Many image segmentation methods are based on the geodesic distance. A
framework for interactive image segmentation based on the distance computing
from the user-provided seeds is presented in [1]. The geodesic distance is also
used as an unary term in the graph cut method [9], or as a part of the CRF
model that combines the graph cut method and geodesic distance [12]. In [11], the
authors improved the geodesic distance segmentation algorithm by incorporating
the shape priors. In [5], the author introduced a k-shortest path algorithm that
finds k distinct paths between two points. This approach uses the usual geodesic
distance determining the k shortest paths between the points. The k-shortest
paths method is used, for example, in object tracking [2].
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Although the geodesic distance is frequently used, it is also known that it
is sensitive to noise in image, which negatively influences the results. This was
a motivation to find a distance that ignores the noise if possible and takes into
account only the important brightness changes, such as edges. If we assume
that the noise is reflected by the low-weighted edges, while the relevant image
information is in the edges with higher weights, the sensitivity to noise may
decrease by considering only few edges on each path with the highest weights.

In this paper, we propose a new k-max geodesic distance. The length of path
is defined as the sum of the k maximum edge weights along the path. The k-
max geodesic distance is defined as the length of the path that is the shortest
one in this sense. For illustrating the properties of the k-max geodesic distance
and for its comparison with the geodesic distance, the seeded segmentation is
used. The seeded segmentation uses a priori user-provided seeds scribbled into
the particular segment areas. The distance is computed from the seeds to all
image points. In the binary image segmentation, an image point is labeled as an
object, if the distance from the object seed is lower than the distance from the
background seed. Otherwise, the image point is labeled as a background.

We also compare our method with the random walker segmentation method
proposed in [6]. This method was chosen since it has a similar approach as the
distance-based methods; it determines the probabilities that a random walk from
an image point reaches one of the seed points.

The paper is organized as follows. The problems of geodesic distance are
presented in Section 2. In Section 3, the k-max geodesic distance is introduced.
Section 4 contains the description of the algorithm for computing the k-max
geodesic distance. The experimental results and the comparisons are presented
in Section 5. Section 6 is a conclusion. We note that in the rest of the paper, we
will simply say k-max distance instead of the long name k-max geodesic distance.

2 Geodesic Distance and Its Problems

In this section, we focus on the geodesic distance and its behavior in images.
Consider a graph and two nodes in it, denoted by A and B, respectively. Let
P be a path connecting A and B; P = (vp1

, vp2
, vp3

, . . . , vpn), where vpi are the
nodes through which the path is running; vp1

≡ A, vpn ≡ B. The geodesic length

of path is the sum of the weights of all its edges, i.e., lg(P ) =
∑n−1

i=1 w(pi,pi+1). Let
PAB be the set of all existing paths between A and B in the graph. The geodesic
distance between A and B is then defined as dg(A,B) = minP∈PAB lg(P ).

In image processing, the weight of edge is often determined by the equation

wi,j = 1.0− e−
(bi−bj)

2

2σw + β , (1)

where bi, bj are the values of brightness at the vi and vj node, respectively; σw
is a constant. The value of β determines the price for using the edge regardless
how big the brightness difference between its endpoints is. It can also be β = 0,
which reflects the fact that the pixels with the same brightness are regarded
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a a+da
A B C

Fig. 1. The synthetic test image (it is shown without noise here) with the points
depicted between which the distance is to be measured. We would expect that
dg(A,B) > dg(B,C) (especially for da = 0). Due to noise, the opposite incorrect
result is often reported by the geodesic distance (Table 2).

as close to each other; the points may be geometrically distant in the xy plane
but they should create one segment. Although this setting does not satisfy the
identity of indiscernibles condition of the metric, it can be useful to keep small
or even zero distances in the areas with a constant brightness. In the rest of the
paper, we consider β = 0.

We tested the geodesic distance on the synthetic images containing the unit
brightness step (Fig. 1) with Gaussian noise added (σ = 1

3 ) into the image.
The geodesic distances dg(A,B) and dg(B,C) were measured (see Fig. 1). Since
A and B are in different image segments, and B and C are both in the same
segment, we expect that dg(A,B) should always be greater than dg(B,C). The
results in Table 1 show that it is not necessarily true if noise is present. The error
rate stated in the table tells how many times the geodesic distance erroneously
answered that dg(A,B) < dg(B,C). It can be seen that the geodesic distance
has a high error rate even in the cases when B is placed directly into the center
of AC (da = 0).

Table 1. The error rate computed for the geodesic distances from Fig. 1, σ = 1
3

(see
text for further explanation). All the values were computed from 105 samples.

da = 0 da = 2 da = 5 da = 10

a = 10 14.5 % 22.0 % 36.5 % 61.0 %

a = 20 18.0 % 25.5 % 37.5 % 60.0 %

Let us now illustrate how this problem influences image segmentation (Fig.
2). Consider an image with two segments: the object and the background. Let O
and B denote the object and the background seed, respectively. Let x measure
the coordinates of points along the shortest path between O and B; I(x) stands
for brightness at x; dg(O, x) is the distance between the object seed and the point
whose coordinate is x. Similarly, dg(B, x) is the distance from the background
seed. The big change of I(x) shows the place where the edge separates the object
and the background, which is also the place where the diagrams of the functions
dg(O, x) and dg(B, x) should intersect if segmentation is done on the basis of
distance. Fig. 2 shows how the situation may turn out in the real-life (i.e. noisy)
images. The equality of distances may occur at other place than the edge, which
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Fig. 2. The diagram of the distances along a path between the object seed and the
background seed; xmeasures the coordinate along the path (for the object seed, we have
x = 0); dg(O, x) stands for the distance between the object seed and the point whose
coordinate along the path is x. Similarly, dg(B, x) is the distance from the background
seed. I(x) stands for the brightness at x. See text for further explanation.

leads to incorrect segmentation. Informally speaking, this problem is caused by
summing many small and unimportant values, which may overshadow the values
that are important.

3 k-max Geodesic Distance

In this section, we introduce the new k-max distance. Let
∑

topk
(.) stand for

the sum of the k highest values in a collection of nonnegative real numbers (the
edge weights in our case). We define the length of path as a sum of the k highest
weights on it, i.e., lkm(P ) =

∑
topk

(w(p1,p2), w(p2,p3), . . . , w(pn−1,pn)), where P is
a path. Let PAB be the set of all paths between A and B. The k-max distance
between A and B is then defined as dkm(A,B) = minP∈PAB{lkm(P )}.

The behavior of the k-max distance was tested on the same images as in the
case of the geodesic distance in the previous section. Firstly, we have measured
the distances dkm(A,B) and dkm(B,C) between the points in Fig. 1 and evalu-
ated the error rates in the same way as in the previous section. The results for
k ∈ 〈1, 20〉 are visualized in Fig. 3. For clarity, we also show the corresponding
error rates of the geodesic distance from Table 1, which are visualized as the
straight horizontal lines in the diagrams. The results show that, for almost every
k, the error rate is much better than it is in the case of geodesic distance. The
k-max distance performs worse only for k = 1 combined with a low value of da.
For the high values of k, the error rate of the new distance approaches (from the
bottom) to the error rate of the geodesic distance, which is expected since for
k =∞, dg(A,B) ≡ dkm(A,B).

We also tested how the k-max distance behaves along the shortest path be-
tween the object and background seed, similarly as we did for the geodesic
distance in the previous section (Fig. 2). The result is shown in Fig. 4. It can
be seen that the k-max distance is much less sensitive to noise and the edge
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(b) da = 2
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Fig. 3. The error rates of the k-max distance for various values of k, a and da (see
Fig. 1). For a wide range of k values, the k-max distance reaches much better error
rates than the geodesic distance. The explanation of colors presented in (a) is valid also
for all remaining images; km stands for the k-max distance, g stands for the geodesic
distance.

position is detected correctly. (We explain that the range on the x axis is bigger
than in the case of geodesic distance since it happened here that the shortest
k-max path is longer in the xy plane than it was for the geodesic distance in
Fig. 2. This conforms with the expectation since we have β = 0 in Eq. (1)).

4 The Algorithm

In this section, we present how the algorithm for computing the k-max distance
is constructed. Taking into account the fact that the distances in graph are
computed from the shortest to the longest, the algorithm may be regarded as
similar to the well-known Dijkstra algorithm. On the other hand, substantial
modifications are required so that the distance whose definition was presented
in Section 3 could be computed. When computing the geodesic distance, only
one value is stored in each node. During the updates, it is changed into the
distance that has been found to this node. When computing the k-max distance,
a list of vectors containing k maximum weights has to be associated with each
node. The following example shows the need for storing such a list.

Consider three nodes in a graph (Fig. 5), denoted by A, B, and C, respec-
tively. Say that we have k = 2 and that two paths exist from A to B. Let
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Fig. 4. The diagram of the k-max distances along the path between the object seed and
the background seed. In contrast with the geodesic distance (see Fig. 2 for comparison
and further explanation), the position of edge is indicated correctly.

A CB

4 3

51 4

2

Fig. 5. An example of weighted graph on which the k-max distance algorithm is illus-
trated.

mB1
= (4, 3) and mB2

= (5, 1), respectively, be the vectors of maximum values
(max vectors briefly) corresponding to both paths from A to B (Fig. 5). The vec-
tors contain two (since k = 2) maximum weights found along the corresponding
path (for simplicity, we now suppose that the weights are integer numbers). It
follows that the distance between A and B is dkm(A,B) = 5 + 1 = 6. Let us
now say that B and C are connected with an edge whose cost is wB,C = 4. The
first mentioned path from A to B leads to the vector mC1

= (4, 4) at C (the
value of 3 in mB1 is replaced with the value of 4 ), which gives the distance
dkm(A,C) = 4 + 4 = 8. Surprisingly, the second path from A to B with the vec-
tor mB2

= (5, 1) that determined the k-max distance dkm(A,B) gives the vector
mC2

= (5, 4) that does not determine the distance dkm(A,C) since 5+4 > 4+4.
In spite of the fact that the vector mB2

was decisive for determining the distance
between A and B, another vector that was not the best one at B was needed
at B for determining the distance dkm(A,C). It was necessary to have at B not
only the vector mB2 , but also the vector mB1 , i.e. a list of vectors is generally
needed at each node. The algorithm can now be formulated as follows.

Algorithm The k-Max Distance in Graph
Input: The graph and its node S from which the distances should be computed.
Output: The k-max distances to all the nodes in the graph.

1. For all nodes in the graph, clear the list of the attached max vectors.
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2. Attach the max vector mS1
= (0, 0, . . . , 0) to S and mark this vector as

active.

3. while an active vector exists in any node in the graph do

4. Among all active vectors (attached to all nodes of the graph), find
the vector, denoted by m∗T , whose sum of values is minimal. The sum
determines the k-max distance for the node, denoted by T , to which
this vector is attached.

5. Output the distance of T . Mark the vector m∗T as inactive; it will not
be used in searching in the subsequent passes through the while cycle.

6. For each neighbor of T (let U be such a neighbor, let wT,U be the
weight of the edge connecting T and U , and let MU be the list of the
vectors attached to U) update m∗T with wT,U (updating is described
later). If it is possible that, under certain circumstances in future, the
updated vector can lead to a better distance than all other vectors in
MU (the test is described later), add the updated vector into MU .

The operation of updating m∗T with wT,U is carried out as follows. Find the
minimum value in m∗T . If the minimum value is greater then wT,U , m∗T remains
unchanged. Otherwise, the minimum value in m∗T is replaced with wT,U .

Now we focus on the decision whether a new (updated) max vector should be
added into the list of vectors that are associated with the node. Say that we have
two max vectors associated with a certain node in the graph (like the B node in
Fig. 5). It is possible that the shortest paths to some other nodes (like to the node
C in Fig. 5) will run through this node. The key question now is: Are both the
vectors important for generating the possible shortest paths to other nodes? Is it
possible to say, for example, that some of them will never be used in any shortest
path and, therefore, it is not necessary to store it? The answer is given in the
following observation: Consider two max vectors m1 = (m1,1,m1,2, . . . ,m1,k)
and m2 = (m2,1,m2,2, . . . ,m2,k). Suppose that the values in the vectors are
sorted from the biggest to the smallest, i.e. m1,1 ≥ m1,2 ≥ · · · ≥ m1,k and
similarly also for the second vector. If the inequality

∑q
j=1m1,j ≤

∑q
j=1m2,j

holds for all q, 1 ≤ q ≤ k, then the vector m2 will never be used in any shortest
path to some other node, i.e. there is no need for storing it.

In order to show this decision method, say that we measure the length of path
from A through B to C (see Fig. 5, contrary to Fig. 5, the common subpath
from B to C has generally more than one edge). We have two max vectors m1

and m2 at B. Say that r values are replaced in m1 and s values are replaced in
m2 on the way from B to C. For simplicity, we firstly explore the case r = s.
We compare the sums of k− r maximum values in both vectors. If

∑k−r
j=1 m1,j ≤∑k−r

j=1 m2,j , m2 cannot give a shorter path length to C (for the BC subpath that
is being considered). The lengths of the particular whole paths (that are different
between A and B) are given by the above mentioned sums plus the sum of the
newly included costs. These, however, are the same for both paths since they are
the maximum costs on the considered common subpath from B to C. Now we
consider the case r > s (the case r < s may be explained by interchanging the
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vectors). From the fact that r > s, it follows that r − s entries from r smallest
entries in m2 were greater than r − s smallest entries that modified m1 on the
subpath from B to C. Again, if

∑k−r
j=1 m1,j ≤

∑k−r
j=1 m2,j , m2 cannot give a

shorter path length to C. The lengths of the whole paths are obtained by adding
the sum of the weights of s new elements that are the same in both cases (s
maximum weights on the common subpath from B to C) and by adding the
sum of the remaining r − s elements that is greater for m2. This consideration
is valid for all values of r, 0 ≤ r ≤ k, which corresponds to various subpaths
between B and C and various weights of edges along these subpaths.

5 Experiments

The efficiency of the k-max distance is evaluated on the seeded image segmen-
tation. At the beginning of this section, we show how the choice of the value
of k influences the quality of segmentation. Then, we focus on the relationship
between the segmentation results and the positions of seeds. After that, we will
test the methods on the real-life image segmentation. We will compare the re-
sults obtained from the k-max distance, the geodesic distance, and the random
walker segmentation. In the experiments, we set the parameters from Eq. (1) to
σ = 1

3 and β = 0 for the distance-based methods. In the case of random walker,
we experimentally found σ that achieves the best result for each image. The
seeds were defined manually.

k=1 k=6 k=20

k=1 k=6 k=20

Fig. 6. On the influence of the k value on the segmentation result. The input images
with the seeds (the first column), the results of seeded segmentation based on the
geodesic distance (the second column), and the results of seeded segmentation based
on the k-max distance for various values of k (the columns 3-5).

As was demonstrated in Fig. 3, the error rate of the k-max distance varies
with the value of k. In the first experiment, we show that the value of k also
affects the result of segmentation. In Fig. 6, the results of segmentation are
presented for the geodesic distance (column 2) and for the k-max distance for



A k-max Geodesic Distance and its Application in Image Segmentation 9

several k values ( k = 1, k = 6, and k = 20; column 3-5). In the first image (row
1), the goal is to segment only the yellow umbrella into which the object seed
is scribbled. The segmentation based on the geodesic distance is apparently bad
(Fig. 6). In the case of the k-max distance, the segmentation is close to the desired
result if low values of k (even k = 1) are used. For k = 20, the object segment
that is detected ”overflows” from the true object, and the result becomes similar
to the result of the geodesic distance (as was explained before, this behavior
is expected). On the other hand, a good segmentation of the gravestone in the
second image (row 2) is achieved with a relatively high value of k (k = 20); lower
values of k lead to an incomplete object. We can conclude that the choice of the
k value is not universal, but it depends on image properties.

In the next experiment, we explore how the positions of seeds influence the
result of segmentation (Fig. 7). It can be seen that the results of geodesic distance
(row 2) are dependent on the seed positions, which is undesirable. The k-max
distance provides much better results (row 3), which again, simply speaking, is
mainly due to the fact that it does not sum the noise values that are unimportant.
In both cases, the results are as expected; the roots of the behavior that can be
seen in the figure were explained sufficiently in Sections 2 and 3.

Fig. 7. The sensitivity to the seed positions. The input images with the seeds (first
row), the results of segmentation using the geodesic distance (second row), the results
of segmentation using the k-max distance, k = 2 (third row).

Finally, we test and compare the methods on the images obtained from the
Berkeley segmentation dataset [8]. In addition, we compare the distance-based
methods with the random walker segmentation algorithm. The results are shown
in Fig. 8 and Fig. 9 (in the case of k-max distance, the value of k was chosen
to give the visually best segmentation). It can be seen again that the k-max
distance outperforms the geodesic distance, and also outperforms the random
walker method. Naturally, the results could be improved by adding new seeds.
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We did not do so since our goal was to compare the distance measuring methods
under the same and difficult circumstances that can be expected in practice.

From the algorithm description in Section 4, it is obvious that computing the
k-max distance is more complicated than computing the geodesic distance. This
is reflected in a bigger time complexity. Table 2 shows the run times that were
needed for computing the segmentations of particular previously shown images;
various values of k were considered.

In Section 4, we also explained the need for storing more than one max vector
in each graph node, which slows down the algorithm and increases the memory
consumption. Table 3 shows the average number of max vectors per a node for
a set of selected images and for various values of k. It can be seen from the
table that the number of vectors increases with k. Fortunately, according to our
experience, good segmentation results are usually achieved with k < 30; the
number of max vectors remains acceptable for these values of k.

k=4 k=10 k=18 k=20 k=20

Fig. 8. The results of segmentation based on the geodesic distance, the k-max distance
and the random walker technique. The input images with the seeds (first row), the
results for the random walker (second row), the results for the geodesic distance (third
row), the results for the k-max distance (fourth row).
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k=10

k=13

k=14

k=14

Fig. 9. The results of segmentation based on the geodesic distance, the k-max distance
and the random walker technique. The input images with the seeds (first column), the
results for the random walker (second column), the results for the geodesic distance
(third column), the results for the k-max distance (fourth column).

6 Conclusion

In this paper, we introduced a new distance in graphs, called the k-max geodesic
distance. The length of path is defined as the sum of the k maximum edge weights
along the path. The distance is defined as the length of the path that is the
shortest one in this sense. We also presented the algorithm for computing the new
distance. We demonstrated the problems of geodesic distance and we showed that
the k-max distance has a chance to overcome them. The new distance measure
was tested by using it in seeded image segmentation; the geodesic distance was
used for comparison, and also the random walker method, which is a recognized
algorithm in the seeded segmentation area. According to the results, the k-max
geodesic distance achieves the best results. On the other hand, its computation
requires more time and memory than the computation of the geodesic distance,
which is caused by the need for storing (at each graph node) a certain number
of vectors containing k maximum weights along the possible paths to the node.
Therefore, our future goal is to try to further reduce the number of stored vectors
by improving the method that decides about keeping or discarding the vectors.
This should reduce the time and memory requirements of the algorithm.

Acknowledgements. This work was supported by the grant SP2015/141 of
VŠB - TU Ostrava, Faculty of Electrical Engineering and Computer Science.



12 Michael Holuša, Eduard Sojka

Table 2. The run times for computing the selected previously shown segmentations
using the k-max distance (one 2.5 GHz core computer, image size = 450 × 300 ).

image k = 1 k = 10 k = 30 k = 50

penguin (Fig. 9 row 4) 0.29 s 0.48 s 0.97 s 1.90 s
mushroom (Fig. 8 col 2) 0.28 s 0.58 s 1.96 s 5.73 s

horses (Fig. 9 row 1) 0.29 s 0.64 s 2.83 s 15.04 s
totems (Fig. 8 col 3) 0.30 s 0.70 s 3.57 s 17.47 s

Table 3. The average number of max vectors per pixel for selected images (and various
values of k).

image k = 10 k = 20 k = 30 k = 50

penguin (Fig. 9 row 4) 1.22 1.46 1.76 2.29
mushroom (Fig. 8 col 2) 1.47 2.34 3.18 6.23

horses (Fig. 9 row 1) 1.63 2.58 4.00 8.65
totems (Fig. 8 col 3) 1.63 3.02 5.19 12.08
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