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Fundamentals of Computer Graphics

• Lecturer

• Tomas Fabian 

• Office

room EA408, building of FEECS

• Office hours

Tuesday 13:00 – 14:00, Thursday 13:00 – 14:00 (all other office hours are by 
appointment)

• Email

tomas.fabian@vsb.cz

• Web site with additional materials

http://mrl.cs.vsb.cz/people/fabian/zpg_course.html
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Course Targets and Goals

• During the course, students will become familiar with the fundamental principles 
of 3D computer graphics using the C++ programming language and the OpenGL 
graphics API (optionally Vulkan), and will gain practical experience with shader
programming in GLSL. They will progress through the steps from loading a 3D 
model to its visualization, including working with cameras, transforming objects 
and entire scenes, setting up lighting, working with textures, normal maps, 
shadows, skybox creation, and more.

• You will have hands-on experience with implementation of the here described 
methods and algorithms.
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Course Prerequisites

• Basics of programming (C++)

• Previous courses:
• NA

• To be familiar with basic concepts of mathematical analysis, linear 
algebra and vector calculus
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Main Topics

• Introduction Computer Graphics. Raster and vector graphics (point, vector, line, curve, etc.). Interpolation. 

• Graphics hardware. Introduction to standard rendering pipeline (OpenGL).

• 3D Object representation in CG (polygonal, CSG, procedural, etc.), object topology. Model formats (OBJ, 
FBX). 

• Transformations in CG (move, rotation, scale), projective space.

• Projections (perspective vs. orthogonal projection), camera, clipping, rasterization.

• Colors, human eye, light (pointlight, spotlight, directional light, area light). Color mixing (blending).

• Lighting, local lighting models (Lambert, Phong), global lighting models, BRDF, radiosity, ray-tracing, ambient 
occlusion, shading.

• Textures in OpenGL texture units, Texel. UV mapping.

• Visible surface algorithms (z-buffer,  painter's algorithm). Skybox, skydome.

• Bump mapping, normal mapping. Displacement mapping.

• Shadows in CG, shadow algorithm, shadow maps.

• Curves (Bezier curve) .
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Organization of Semester and Grading

• Each lecture will discuss one main topic

• Given topic will be practically realized during the following exercises

• The individual tasks from the exercise will be scored (during the last 
week of the semester)

• You can earn a total of up to 45 points. The minimum number of 
points is 20 

• The final combined (written and oral) exam covers topics from the 
previous slide.

• You can earn up to 55 points from the final exam. The minimum 
number of points is 10
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Chat GPT/Copilot AI Policy

• Feel free to use them to prepare your project

• You are good enough to pass the class if you are good enough to 
verify their outputs. In other words, you need to be able to justify 
your code

• Beware, their outputs are sometimes completely wrong and they 
won't let you know.
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Study Materials

• [1] Segal, M., Akeley, K.: The OpenGL Graphics System, 2022, 850 pages. (online)

• [2] Michael, A.: Graphics Programming Black Book. Coriolis Group, Ames Iowa, 2001. (online)

• [3] Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering, Fourth Edition: From Theory to Implementation, MIT Press, 
2025, 1312 pages, ISBN 978-0262048026. (online)

• [4] Dutre, P., Bala,K., Bekaert, P. Advanced global illumination. AK Peters/CRC Press, 2006.

• [5] Haines, E., Akenine-Möller, T. (ed.): Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs. 
Apress, 2025, 607 pages, ISBN 978-1484244265. (online)

• [6] Marrs, A., Shirley, P., Wald, I (ed.). Ray Tracing Gems II: Next Generation Real-Time Rendering with DXR, Vulkan, and 
OptiX. Faller Nature, 2025, 858 pages, ISBN 978-1484271841. (online)

• [7] Shirley, P., Morley, R. K.: Realistic Ray Tracing, Second Edition, AK Peters, 2003, 235 pages, ISBN 978-1568814612.

• [8] Akenine-Moller, T., Haines, E., Hoffman, N.: Real-Time Rendering, Fourth Edition, AK Peters/CRC Press, 2018, 1178 pages, ISBN 
978-1138627000.

• [9] Dutré, P.: Global Illumination Compendium, 2003, 68 pages. (online)

• [10] Ryer, A. D.: The Light Measurement Handbook, 1997, 64 pages. (online)

• [11] Gregory, J.: Game engine architecture. AK Peters/CRC Press, 2018.
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Study Materials

• Other free and downloadable materials are at https://www.realtimerendering.com

• A large list of graphics books is also at https://www.realtimerendering.com/books.html
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Types of Graphics

• Non-photorealistic graphics/rendering
• Artistic styles

• Scientific and engineering visualization

• Data Visualization course

• Photorealistic graphics/rendering
• Simulate the image formation process as precisely as possible

• Physically plausible light transport through the scene

• Topic of this course
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Photorealistic Image Synthesis

• You will be asked to create an realistically looking image based on a 
mathematical representation of a real or an artificial world
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Real world or 
your 

imagination

Mathematical 
description of light 

behaviour
Artificial image

Mathematical 
representation of the 

scene
(light sources, geometry, materials, 

camers)



Application Areas

• Film industry – special effects or entire scenes/ films

• High quality rendering for commercials, prints, etc. (CG product
images)

• Video game industry – ray tracing has recently entered this area 
(earlier e.g. prebaked lights)

• Architecture and design, virtual prototyping

• VR and AR (remote assistance and collaboration, conferencing)

• Various kind of simulations (lighting, sound propagation, collision 
detection, creating artificial datasets, etc.)
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Knowledge Base

• Physics
• Radiometry and photometry
• Models of light interaction with various materials
• Theory of light transport (mainly laws of geometrical optics)

• Mathematics
• Linear algebra

• Informatics
• Software engineering
• Programming

• Visual perception and Art
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Levels of Realism
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Surface color

Diffuse shading, point 
light, no shadows

Diffuse shading, point 
light, hard shadows

Diffuse shading, area light 
source, soft shadows

Diffuse inter-reflections, 
area light source



Direct vs. Global Illumination

• Direct illumination
• A surface point illumination is computed directly from all light sources by the 

direct illumination model

• Global illumination
• A surface point illumination is given by the complex light rays interaction with 

the entire scene
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Basic Math Operations

• L2 norm 𝒂 = 𝒂𝑥
2 + 𝒂𝑦

2 + 𝒂𝑧
2 = 𝒂 ∙ 𝒂

Unit vector ෝ𝒂 =
𝒂

𝒂
and it holds that ෝ𝒂 = 1
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Basic Operators

• Dot product

𝒂 ∙ 𝒃 = 𝒂𝑇𝒃 =෍

𝑖

𝑎𝑖𝑏𝑖 = 𝒂 𝒃 cos 𝛼

where 𝛼 is an angle clamped between both vectors

• Cross product

𝒂 × 𝒃 =

𝒊 𝒋 𝒌
𝑎𝑥 𝑎𝑦 𝑎𝑧
𝑏𝑥 𝑏𝑦 𝑏𝑧

=

0 −𝑎𝑧 𝑎𝑦
𝑎𝑧 0 −𝑎𝑥
−𝑎𝑦 𝑎𝑥 0

𝑏𝑥
𝑏𝑦
𝑏𝑧

=

𝑎𝑦𝑏𝑧 − 𝑎𝑧𝑏𝑦
𝑎𝑧𝑏𝑥 − 𝑎𝑥𝑏𝑧
𝑎𝑥𝑏𝑦 − 𝑎𝑦𝑏𝑥

Not commutative, follows the right hand rule, it also holds that

𝒂 × 𝒃 = 𝒂 𝒃 ෝ𝒏 sin𝛼 and 𝒂 × 𝒃 = 𝒂 𝒃 sin 𝛼
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𝒂 × 𝒃

𝒂

𝒃

𝛼
ෝ𝒏

𝒂

𝒃

𝛼



Basic Operators

• (Vector) projection of 𝒑 on 𝒒

proj𝒒𝒑 = 𝒑𝒒 =
𝒑∙𝒒

𝒒 𝟐 𝒒 = 𝒑 ∙ ෝ𝒒 ෝ𝒒 =
1

𝒒 𝟐

𝑞𝑥
2 𝑞𝑥𝑞𝑦 𝑞𝑥𝑞𝑧

𝑞𝑦𝑞𝑥 𝑞𝑦
2 𝑞𝑦𝑞𝑧

𝑞𝑧𝑞𝑥 𝑞𝑧𝑞𝑦 𝑞𝑧
2

=𝒒𝒒𝑇

𝑝𝑥
𝑝𝑦
𝑝𝑧

Matrix notation may be useful for repeated projections

• Scalar projection of 𝒑 on 𝒒

s.proj𝒒𝒑 = 𝒑𝒒 = 𝒑
𝒑∙𝒒

𝒑 𝒒
=

𝒑∙𝒒

𝒒
= 𝒑 ∙ ෝ𝒒
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Basic Operators

• (Vector) projection of 𝒑 on 𝒒
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𝒑

ෝ𝒒

𝒑 sin(𝜃) = 𝒑 × ෝ𝒒

𝒑 cos(𝜃) = 𝒑 ∙ ෝ𝒒

𝜃



Basic Math Operations

• Other useful formulas

• 𝒂 − 𝒃 𝟐 = 𝒂 ∙ 𝒂 − 𝟐 𝒂 ∙ 𝒃 + 𝒃 ∙ 𝒃

• Lagrange's identity 𝒂 × 𝒃 2 = 𝒂 2 𝒃 2 − 𝒂 ∙ 𝒃 2
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Rotations

• Counterclockwise rotation in 2D about the origin by angle 𝛼

𝒂′ =
cos 𝛼 − sin 𝛼
sin 𝛼 cos 𝛼

𝒂

• Elementary counterclockwise rotations in 3D

𝑅𝑥 =
1 0 0
0 cos 𝛼 − sin𝛼
0 sin𝛼 cos 𝛼

, 𝑅𝑦 =
cos 𝛼 0 sin𝛼
0 1 0

−sin𝛼 0 cos 𝛼
, 𝑅𝑧 =

cos𝛼 − sin𝛼 0
sin𝛼 cos 𝛼 0
0 0 1

Arbitrary rotation may be decomposed into three components (3 Euler angles), non 
commutative – order of rotations matters (complicated interpolation, gimbal lock)
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Rotations

• Counterclockwise rotation of point 𝒂 around arbitrary unit axis ො𝒓 by angle 𝛼
(Rodrigues' rotation formula)

𝒂′ = 1 − cos 𝛼 𝒂 ∙ ො𝒓 ො𝒓 + cos 𝛼 𝒂 + sin 𝛼 ො𝒓 × 𝒂
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Vertices

• A point (corner or node) where two edges (lines) meet

• The connectedness between the vertices defines a mesh's topology

• Beside the position, vertices may have other attributes: color, normal (tangent, 
bitangent), texture coordinates, etc.
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Geometry
Position of vertices

Topology
Connectivity/neighborhood 

Topology is the mathematical study of the properties that 
are preserved through deformations, twistings, and 
stretchings of objects. Tearing, however, is not allowed.

Topological equivalence
(homeomorphism, homotopy)

=
=

Torus

Mug

Graph embedding



Edges

• Connection of two vertices

• Boundary (1 incident face)

• Regular (2 incident faces)

• Singular (3 or more incident faces)
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edge
vertex vertex



Faces

• The flat surface on a shape or a solid is known as its face
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face



Manifold
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• A 𝑛-dimensional manifold is a topological space that locally resembles 
(homeomorphic) 𝑛-dimensional Euclidean space near each point

• 1-manifolds include lines and circles (not a lemniscate or ∞)

• 2-manifold (surface) include plane, sphere (genus 0), torus (genus 1), Klein bottle
(not orientable), Möbius strip (closed and not orientable), real projective plane 
(closed, non-orientable), triangle (smooth manifold with boundary)

• Theorem:
• Every orientable and closed surface is homeomorphic to a connected sum of tori

• Every surface is homeomorphic to a connected sum of tori and/or projective planes



Smoothness

• Reminder: a function is called 𝐶𝑛 continuous if itˈs 𝑛-th order derivative is
continuous everywhere

• Parametric continuity examples:
• Not continuous

• Position continuity = 𝐶0

• Position and tangent continuity  = 𝐶1

• Position, tangent, and curvature continuity  = 𝐶2
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\\

Geometric continuity examples, source: Autodesk Alias Workbench

Geometric continuity requires that 
the parametric derivatives of the two 
segments be proportional to each 
other, not equal

𝐺0 𝐺1 𝐺2



Manifold Meshes (with Boundaries)

• No singular edges

• No singular vertices

• Simples data structure

• Polygon soup – list of faces formed by n-tuple of vertices

• No (explicit) information about adjacency (can be stored in adjacency list)

• Possible extension with indexing (lower memoty req.)

(note that shared vertices must have same atributes)
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𝐹1 𝒗1, 𝒗3, 𝒗2 𝐹2

𝐹2 𝒗2, 𝒗3, 𝒗4 𝐹1, 𝐹2

𝐹3 𝒗3, 𝒗5, 𝒗4 𝐹2

𝒗1

𝒗2

𝒗3 𝒗5

𝒗4

𝐹1

𝐹2
𝐹3

Singular edge

Face orientation (CW or CCW) 
is given by the order in which 
the vertices are listed



OBJ Format

v  14.363998 -19.782551 78.445435

v  14.106861 -19.928997 78.699089

v  13.828163 -19.789648 78.457726

v  14.051285 -19.662575 78.237625

v  14.953951 -19.069986 77.211243

v  14.877973 -19.261126 77.542297

vn -0.111118 0.910786 0.397570

vn 0.132542 0.566302 -0.813439

vn 0.192175 0.622958 -0.758245

f 1//1 2//2 3//3 

f 4//1 5//2 6//3
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Winged-Edge

• Structure is also valid for non-orientable manifolds
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𝒗1

𝒗2

e1 e2

e3 e4

𝐹1 𝐹2e



Half-edge Data Structure (DCEL)

• Structure is valid only for orientable manifolds
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vertex

(previous)

next

face e twin



Euler Characteristic 𝜒

• Simplified Euler's formula for any convex polyhedron's surface

𝑉 − 𝐸 + 𝐹 = 2 𝑆 = 𝜒

• Generalized formula allowing holes

𝑉 − 𝐸 + 𝐹 − 𝐿 = 2(𝑆 − 𝐻)

𝐿 … number of holes in faces (inner loops)

𝐻… number of holes passing through the whole solid (genus)

𝑆 … number of disjont components (shells, solids) 
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8 − 12 + 6 = 2(1)

22 − 33 + 14 − 3 = 2(1 − 1)

The Euler-Poincaré formula describes the 
relationship of the number of vertices, the 
number of edges and the number of faces of 
a manifold. It has been generalized to include 
potholes and holes that penetrate the solid.

A homeomorphism is a 
bijection that is continuous 
and its inverse is also 
continuous.



Pinhole Camera Model

• Idealized model for the optics of a camera defining the geometry of 
perspective projection

𝑥𝑖

𝑓𝑥
=

𝑥𝑜

𝑧𝑜
,   

𝑦𝑖

𝑓𝑥
=

𝑦𝑜

𝑧𝑜
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𝑖 … image point coordinates
𝑜 … object point coordinates

•

•

•

𝑥𝑖

𝑥𝑜

𝑧𝑜

𝑓𝑥

focal point (center of projection)

optical axis

object planeimage plane

Similar triangles: All the corresponding 
sides have lengths in the same ratio.
𝑎

𝑎′
=

𝑏

𝑏′
=

𝑐

𝑐′



Primary Ray Generation in Camera Space
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•

•
𝑂

෡𝒅𝑪 =?
(𝑥, 𝑦)

•

•

(0.5, 0.5)

(𝑤 − 0.5, ℎ − 0.5)

0 1 2 3

1

2

3

0.5

1.5

2.5

•

1.50.5 2.5
0

𝑥

𝑦

Image/sensor plane

Known camera parameters:
𝑂, 𝑇, width 𝑤, height ℎ, 𝑓𝑜𝑣𝑦

𝑓𝑦 = 𝑓𝑥 = ? (px)

𝒅𝑪 = (𝑥 − Τ𝑤 2 , Τℎ 2 − 𝑦 ,−𝑓𝑦)

What would we deal with in 
the case of a real camera

What will we deal with in the 
case of an imaginary camera



Result of First Exercise
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Representation of Direction in 3D

• Cartesian coordinates

෡𝒅 = 𝑑𝑥, 𝑑𝑦, 𝑑𝑧 , ෡𝒅 = 1

• Spherical coordinates (physics and ISO convention)

• 𝜔 = 𝜃,𝜑

• Polar angle (theta) 𝜃 = cos−1 𝑑𝑧 ∈ ,0ۦ ۧ𝜋

• Azimuthal angle (phi) 𝜑 = tan−1
𝑑𝑦

𝑑𝑥
∈ ,0ۦ )2𝜋

Fall 2025 Fundamentals of Computer Graphics 36

𝑑𝑥 = sin 𝜃 cos𝜑
𝑑𝑦 = sin 𝜃 sin𝜑

𝑑𝑧 = cos 𝜃

In C/C++, we can compute the azimuthal angle as 𝜑 = atan2f 𝑑𝑦, 𝑑𝑥 + ቊ
2𝜋 𝑑𝑦 < 0

0 otherwise



Affine and Projective Spaces

• Affine space
• Set 𝑉 of vectors and set 𝑃 of points

• Affine transformations can be represented by 3×3 matrix

• Projective space
• Homogeneous coordinates (𝑥, 𝑦, 𝑧, 𝑤)

• All lines intersect (space contains infinity 𝑥, 𝑦, 𝑧, 0 )

• Projective transformations can be represented by 4×4 matrix (inc. translation 
and perspective projection)

• Cartesian to homogeneous coordinates: 𝑥, 𝑦, 𝑧 → 𝑥, 𝑦, 𝑧, 1

• Homogeneous to Cartesian coordinates: 𝑥, 𝑦, 𝑧, 𝑤 ≠ 0 → 𝑥/𝑤, 𝑦/𝑤, 𝑧/𝑤
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Combination of Points

• Let have an affine space 𝐴 modeled on a vector space 𝑉, points 𝑃, 𝑄 ∈ 𝐴, and vectors 𝑣, 𝑤 ∈ 𝑉
and axioms 𝑄 − 𝑃 ∈ 𝑉 and 𝑃 + 𝑣 ∈ 𝐴

• Suppose we want to define a combination of points like this
𝛼1𝑃1 + 𝛼2𝑃2 +⋯+ 𝛼𝑛𝑃𝑛

• At first glance, that doesn't make sense – points cant be added directly. So we can fix one point 
(say P) as a reference. Then, each point can be expressed as

𝑃𝑖 = 𝑃0 + (𝑃𝑖 − 𝑃0), where (𝑃𝑖 − 𝑃0) ∈ 𝑉

• Plugging this into the combination above yields
𝛼1𝑃1 +⋯+ 𝛼𝑛𝑃𝑛 = 𝛼1 𝑃0 + 𝑃1 − 𝑃0 +⋯+ 𝛼𝑛 𝑃0 + 𝑃𝑛 − 𝑃0

• After simplification we get
𝛼1 +⋯+ 𝛼𝑛 𝑃0 + (𝛼1 𝑃1 − 𝑃0 +⋯+ 𝛼𝑛 𝑃𝑛 − 𝑃0 )

• Iff σ𝛼𝑖 = 1 ⇒ 𝑃0 + 𝛼1 𝑃1 − 𝑃0 +⋯+ 𝛼𝑛 𝑃𝑛 − 𝑃0 is ok as 𝑃𝑖 − 𝑃0 ∈ 𝑉 and 𝑃0 + 𝑣 ∈ 𝐴
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See mrl.cs.vsb.cz/people/fabian/zpg/rcs.pdf for examples



(Model) Transformation Matrix

• With homogeneous coordinates

𝑀𝒑 = 𝑅 𝒕

0 0 0 1

𝑝𝑥
𝑝𝑦
𝑝𝑧
𝑝𝑤

• Vector 𝒕 represents translation 

• Matrix 𝑅 represents rotation or scaling or shear or their combinations

𝑅𝑠𝑐𝑎𝑙𝑖𝑛𝑔 =

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 𝑠𝑧

, 𝑅𝑠ℎ𝑒𝑎𝑟 =
1 0 𝑠
0 1 0
0 0 1
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where
𝑅 ∈ 𝑆𝑂 3 group
𝑀 ∈ 𝑆𝐸(3) Lie group
(differentable manifold)
𝒕 ∈ ℝ3



View Matrix

• We can simply setup the view matrix as follows

ො𝒛𝑒 =
𝒆−𝒕

𝒆−𝒕
, ෝ𝒙𝑒 =

𝑢𝑝×ො𝒛𝑒

𝑢𝑝×ො𝒛𝑒
, and ෝ𝒚𝑒 = ො𝒛𝑒 × ෝ𝒙𝑒,

where the vector 𝒆 represents position of the camera (eye), 𝒕 is the target position and 𝑢𝑝
is an auxiliary vector marking „up“ direction (a unit vector not parallel to the optical axis)

We can arrange the final transformation matrix 

𝑉−1 =

⋮ ⋮ ⋮ ⋮
ෝ𝒙𝑒 ෝ𝒚𝑒 ො𝒛𝑒 𝒆
⋮ ⋮ ⋮ ⋮
0 0 0 1

(transforms vectors from eye space to world space)

• 𝑉 transforms vectors from world space to eye space (and that's what we need now)
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𝑢𝑝 =
0
0
1



Different Coordinate Systems
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OpenCV

OpenGL

Unity

Unreal

ROS

3ds max

𝑇 =

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1



Projection Matrix 1/4

• From similar triangles we get
𝑣𝑥
′

𝑣𝑧
′
=
𝑣𝑥
𝑣𝑧

⇒ 𝑣𝑥
′ = 𝑣𝑧

′
𝑣𝑥
𝑣𝑧

= −𝑛
𝑣𝑥
𝑣𝑧

where 𝑛 is a (positive) distance of (near) projection plane

This transformation can be performed by the following homogenous 
matrix

𝐷 =

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑛 0
0 0 −1 0

; 𝐷
𝒗
1

=

𝑛𝑣𝑥
𝑛𝑣𝑦
𝑛𝑣𝑧
−𝑣𝑧

⇒ 𝒗′ =

𝑛
𝑣𝑥

−𝑣𝑧

𝑛
𝑣𝑦

−𝑣𝑧
−𝑛

Note that this perspective transformation discards information about 
vertex depth and we will not be able to remove hidden surfaces later
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𝒗′

eye

𝒗

(near) plane

𝑛

𝑥𝑒
𝑦𝑒

𝑧𝑒

After perspective 
division we get

All vertices have 
the same depth



Projection Matrix 2/4

• To fix the depth loss we may incorporate pseudodepth such that 
points on the near plane will be given a depth of −1 and points on 
the far plane will be at +1

• We just need to solve 𝑣𝑧
′ =

𝑎𝑣𝑧+𝑏

−𝑣𝑧
for 𝑎 and 𝑏 what gives us a set of 

two equations as follows

−1 =
𝑎(−𝑛)+𝑏

−(−𝑛)
, 1 =

𝑎(−𝑓)+𝑏

−(−𝑓)

Solution 𝑎 =
𝑛+𝑓

𝑛−𝑓
, 𝑏 =

2𝑛𝑓

𝑛−𝑓
for 𝑓 ≠ 𝑛 and 𝑓𝑛 ≠ 0 yields the new form 

of projective transformation matrix

𝐷 =

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑎 𝑏
0 0 −1 0

; 𝐷
𝒗
1

=

𝑛𝑣𝑥
𝑛𝑣𝑦

𝑎𝑣𝑧 + 𝑏
−𝑣𝑧

⇒ 𝒗′ =

𝑛
𝑣𝑥
−𝑣𝑧

𝑛
𝑣𝑦

−𝑣𝑧
𝑎𝑣𝑧+𝑏

−𝑣𝑧
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𝒗′

eye

𝒗

far plane

near plane

𝑓

𝑛

𝑥𝑒
𝑦𝑒

𝑧𝑒

+1

−1

pseudodepth

𝒖
𝒖′

𝒘 = 𝒘′

Note that projected points are in LHS (compare 
the orientation of 𝑧𝑒 and pseudodepth)Instead of a linear transformation of 𝑣𝑧 (i.e. 𝑛𝑣𝑧) 

we can use a more general affine transformation 
(i.e. 𝑎𝑣𝑧 + 𝑏) to solve the problem with the 
same depth of vertices in a single line of sight.



Projection Matrix 3/4

• Normalization transformation to NDC

𝑁 =

2/𝑤 0 0 0
0 ±2/ℎ 0 0
0 0 1 0
0 0 0 1

where 𝑤 = 2𝑛 tan 𝑓𝑜𝑣𝑥/2 and ℎ = 2𝑛 tan 𝑓𝑜𝑣𝑦/2 = 𝑤/𝑎𝑠𝑝𝑒𝑐𝑡
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Note that the pseudo depth is 
already normalized

𝑤

𝑛

1-1

𝑓𝑜𝑣𝑥

We need to normalize the actual width of
the near plane 𝑤 into the range of −1, 1

𝑓𝑜𝑣𝑦

𝑓𝑜𝑣𝑥
𝑓𝑜𝑣𝑑



Projection Matrix 4/4

• 𝑃 = 𝑁𝐷 =

2/𝑤 0 0 0
0 ±2/ℎ 0 0
0 0 1 0
0 0 0 1

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑎 𝑏
0 0 −1 0

=

=

1/tan(𝑓𝑜𝑣𝑥/2) 0 0 0
0 ±1/tan(𝑓𝑜𝑣𝑦/2) 0 0

0 0 𝑎 𝑏
0 0 −1 0

where 𝑎 =
𝑛+𝑓

𝑛−𝑓
and 𝑏 =

2𝑛𝑓

𝑛−𝑓
. Also note that 1/tan(𝑓𝑜𝑣𝑦/2) = 𝑎𝑠𝑝𝑒𝑐𝑡/tan(𝑓𝑜𝑣𝑥/2) or 

1/tan(𝑓𝑜𝑣𝑥/2) = 1/(𝑎𝑠𝑝𝑒𝑐𝑡 tan 𝑓𝑜𝑣𝑦/2 )
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Use + when the clip control origin 
is lower left and – when upper left



Perspective Projection
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eye 𝑥𝑒

𝑦𝑒

𝑧𝑒

+1

−1

𝒗
𝒗′

𝑓

𝑛

𝑤

ℎ

𝑓𝑜𝑣𝑦

𝑓𝑜𝑣𝑥

𝑥𝑐

𝑦𝑐

𝑧𝑐

Note that the near plane is the projection plane
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Orthographic Projection Matrix

• 𝑃 = 𝑁𝐷ortho =

2/𝑤 0 0 0
0 ±2/ℎ 0 0
0 0 1 0
0 0 0 1

1 0 0 0
0 1 0 0
0 0 𝑎 𝑏
0 0 0 1

=

=

2/𝑤 0 0 0
0 ±2/ℎ 0 0
0 0 𝑎 𝑏
0 0 0 1

where 𝑎 =
2

𝑛−𝑓
and 𝑏 =

𝑛+𝑓

𝑛−𝑓
.

Solve the set of two equations
−1 = 𝑎(−𝑛) + 𝑏, 1 = 𝑎(−𝑓) + 𝑏
for 𝑎 and 𝑏

Also note that 𝑤 and ℎ are just the physical
dimensions of both near and far planes



Example
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M should be D matrix here



Review of Coordinate Systems

Model (local, object) space

Model matrix 𝑀

World space

View matrix 𝑉

View (eye, camera) space

Projection matrix 𝑃

Clip space

Perspective division

Normalized device coordinates

Viewport transform

Screen space
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Normal Vectors Transformation

• We cannot multiply MV matrix and normals as we do with vertices

• MV matrix contains translation part which will clearly affect (damage) the normal

• Normal vector 𝒏𝑚𝑠 has to be transformed in a different way, by MV𝑛 matrix

Model-View matrix MV = 𝑉𝑖𝑒𝑤 𝑀𝑜𝑑𝑒𝑙

e.g. 𝒗𝑒𝑠 = MV 𝒗𝑚𝑠

Model-View normal matrix MV𝑛 = 𝑉𝑖𝑒𝑤 𝑀𝑜𝑑𝑒𝑙 −1 𝑇

e.g. 𝒏𝑒𝑠 = MV𝑛𝒏𝑚𝑠
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Camera Movement

• In case of our camera model, all we know are vectors view from and view at 
(other parameters like field of view or resolution are unimportant here)

• We may use two angles (yaw and pitch) to describe the rotation of our camera 
around the point view from (our eye). We will not allow camera roll
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𝑥

𝑦

𝑧

pitch (sklon/stoupání)

yaw (kurs/zatočení)

roll (natočení)

To avoid gimbal lock and 
unwanted view flipping, we 
should restrict the range of pitch 
angle, e.g. ±80°



Camera Movement

• The question is how to initialize these two angles from known view from and 
view at vectors

• If we assume our "zero" rotation position heading toward y-axis, we may 
compute yaw and pitch angle as follows

yaw = atan2f( view_dir.y, view_dir.x ) – M_PI_2;

pitch = acosf( -view_dir.z ) – M_PI_2;

• Note that the view_dir is normalized viewing direction vector. 
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Camera Movement

• After change of any angle, we need to update view at vector.

• To do so, we pitch our initial "zero" rotation vector around x-axis and then we 
apply yaw around z-axis

• Updating the view at vector is straightforward and the whole process can be 
summarized as follows

Vector3 new_view_dir = Rz( yaw ) * Rx( pitch ) * Vector3( 0, 1, 0 );

new_view_dir.Normalize();

view_at = view_from + new_view_dir;
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Mouse and Keyboard Inputs in GLFW

• GLFW provides many kinds of input.

• All input callbacks receive a window handle allowing us to reference user pointer 
(e.g. our class Rasterizer) from callbacks

glfwSetWindowUserPointer/ glfwGetWindowUserPointer

• Note that the key press event is reported only once and the repeat event occurs 
after a while what induces a delay.

• Use raw mouse motion (as well as hidden cursor) for better control of the camera 
rotation

• For further reference, see https://www.glfw.org/docs/3.3/input_guide.html

Fall 2025 Fundamentals of Computer Graphics 54



OpenGL

• Open Graphics Library for rendering 2D and 3D vector graphics

• Modern GPUs accelerate almost all OpenGL operations to achieve real-time 
framerates

• API released by SGI (OpenGL Architecture Review Board ARB) in 1992

• Since 2006 managed by the consortium Khronos Group

• Multiplatform, cross-language, client-server (same or different address space or 
computer)

• HW vendor extensions are possible

• Current version is 4.6 (core profile, compatibility profile, shading language GLSL 
4.60)

• https://www.khronos.org/registry/OpenGL/index_gl.php
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OpenGL

• 1.0 (1992) – first release

• 1.1 (1997) – texture objects

• 1.2 (1998) – 3D textures, BGRA

• 1.2.1 (1998) – ARB extension concept

• 1.3 (2001) – multitexturing

• 1.4 (2002) – depth textures

• 1.5 (2003) – vertex buffer objects

• 2.0 (2004) – shader objects (GLSL)

• 2.1 (2006) – pixel buffer objects, sRGB

• 3.0 (2008) – frame buffer objects

• 3.1 (2009) – instancing, TBO, UBO

• 3.2 (2009) – geometry shader

• 3.3 (2010)

• 4.0 (2010) – tessellation

• 4.1 (2010)

• 4.2 (2011) – atomic counters

• 4.3 (2012) – debug output*

• 4.4 (2013) – bindless textures

• 4.5 (2014) – additional clip control

• 4.6 (2017) – SPIR-V language
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For further reference see https://www.khronos.org/opengl/wiki/History_of_OpenGL
(*) https://www.khronos.org/opengl/wiki/Debug_Output



Other Graphics APIs

• SGI IRIS GL, 3dfx Glide, Microsoft DirectX 12, Apple Metal 3, AMD 
Mantle, Vulkan 1.2 (initially released in 2016)
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OpenGL vs Vulkan
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OpenGL vs Vulkan
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OpenGL

• OpenGL is a pipeline concerned with processing data in GPU memory

• programmable stages

• state driven fixed-function stages

• OpenGL ES (subsets of OpenGL + some specific functionality) is a royalty-free, 
cross-platform API for full-function 2D and 3D graphics on embedded systems 
such as mobile phones, game consoles, and vehicles

• WebGL is a cross-platform, royalty-free web standard for a low-level 3D graphics 
API based on OpenGL ES

• SPIR-V is a binary intermediate language for representing graphical-shader stages 
and compute kernels for multiple Khronos APIs, such as OpenCL, OpenGL, and 
Vulkan
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OpenGL

• OpenCL is an open, royalty-free standard for cross-platform, general purpose 
parallel programming of processors found in personal computers, servers, and 
mobile devices, including GPUs.

• interop methods to share OpenCL memory and image objects with 
corresponding OpenGL buffer and texture objects
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Position, color, normal, 
texture coords. etc.

OpenGL Context
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interaction

Command
draw

Vertices

Primitives

Shaders
Context 

state

API calls change current context

Processed independently, in 
order, and in the same way

Framebuffers

Window system provided (default framebuffer) or 
application created (framebuffer objects – FBOs)

Internal global state owning OpenGL 
objects (textures, buffers, shaders)



OpenGL Context

• OpenGL is a state machine (collection of variables)

• It‘s current state is referred to as the OpenGL context

• C-library API consist of state-changing functions

struct Object {
int option_1;
float option_2;

};

struct OpenGLContext {
ObjectName * object_Target = 0;

} opengl_context;

GLuint object_id = 0;
glGenObject( 1, &object_id );
glBindObject( GL_TARGET, object_id ); // bind before usage
// set the properties of object currently bound to the given target
glSetObjectOption( GL_TARGET, GL_OPTION_1, 123 );
glSetObjectOption( GL_TARGET, GL_OPTION_2, 3.14 );
glBindObject( GL_TARGET, 0 ); // set context target back to default
glDelete( 1, &object_id );
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OpenGL allows binding to several buffers at once 
as long as they have a different type/target



Phong Reflection Model
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Illustration of the components of the Phong reflection model (Ambient, Diffuse and Specular reflection)
Source: Brad Smith

• Designed by Bui Tuong Phong in 1975

• Baseline shading method for many rendering applications



Phong Reflection Model
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• Original definition

𝑪 = 𝑰𝑎𝒎𝑎 + σ𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑙𝑖𝑔ℎ𝑡𝑠(𝑰𝑑𝒎𝑑 ෝ𝒏 ∙ መ𝒍 + 𝑰𝑠𝒎𝑠 ෝ𝒗 ∙ መ𝒍𝑟
𝛾
) where

መ𝒍𝑟 = 2 ෝ𝒏 ∙ መ𝒍 ෝ𝒏 − መ𝒍

For a white source set 𝑰𝑎 = 𝑰𝑑 = 𝑰𝑠 = 1, 1, 1 . You can also extend the model with attenuation based on 
distance from the source.
The material definition includes ambient, diffuse, and specular colors, and a real value 𝛾 called shininess

ෝ𝒏

ෝ𝒗
෡𝒅

መ𝒍መ𝒍𝑟

𝒙



Reflection
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ෝ𝒏

𝒗 𝒓 = 𝟐 𝒗 ∙ ෝ𝒏 ෝ𝒏 − 𝒗

𝒗 ∙ ෝ𝒏

𝟐(𝒗 ∙ ෝ𝒏)ෝ𝒏

−𝒗



Result of Second Exercise
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• We can easily see that normal cannot be represented in RGB space directly

Normal Shader
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Note that the z-axis, resp. the blue color axis, 
are omitted for the sake of brevity

ෝ𝒏 𝑅𝐺𝐵 =
ෝ𝒏 + 1,1,1 𝑇

2

−1

−1

1

1

𝑥, 𝑅

𝑦, 𝐺

0

ෝ𝒏 = (−1,0,0)𝑇

ෝ𝒏 𝑅𝐺𝐵

RGB color space
(unit cube)

Space of possible normals
(unit sphere)

Space of possible 
„colorized“ normals

(sphere with unit 
diameter and centered 

at (0.5, 0.5, 0.5))



RGB vs sRGB Color Spaces

• RGB color space is any additive color space based on RGB color model that 
employs RGB primaries (i.e. red, green, and blue chromacities)

• Primary colors are defined by their CIE 1931 color space chromacity coordinates 
(𝑥, 𝑦)

• Specification of any RGB color space also includes definition of white point and 
transfer function

• sRGB is one of many (but by far the most commonly used) color spaces for 
computer displays

• Our renderer will produce sRGB images
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Specifications of RGB color spaces
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Source: https://en.wikipedia.org/wiki/RGB_color_space

D65 0.64 0.33 0.15 0.06

0.30 0.60



Color Gamut

• A color gamut is defined as a range of colors that a 
particular device is capable of displaying or recording

• It usually appears as a closed area of ​​primary colors in 
a chromaticity diagram. The missing dimension is the 
brightness, which is perpendicular to the screen or 
paper

• Color gamut is displayed as a triangular area enclosed 
by color coordinates corresponding to the red, green, 
and blue color
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CIE 1931 XYZ color space



Color Gamut

• sRGB - by far the most commonly used color space for computer displays

• NTSC – standard for analog television

• Adobe RGB (1998) - encompass most of the colors achievable on CMYK color 
printers, but by using RGB primary colors on a device such as a computer display

• DCI-P3 – space for digital movie projection from the American film industry

• EBU – European color space surpassing the PAL standard

• Rec. 709 - shares the sRGB primaries, used in HDTVs

• Rec. 2025 – 4K or 8K resolution at 10 or 12 bits per channel

• Remember that 72% NTSC is not sRGB (which is often claimed). Matching the 
ratios of the color gamut areas does not necessarily guarantee the ability to 
achieve the same image (the degree of overlap of the triangles is important and 
not the ratio of their areas).
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Linear sRGB and Gamma Compressed sRGB

• Images displayed on monitors are encoded in nonlinear sRGB color space to 
compensate the transformation of brightness the monitor does

• Our render has to work in linear space as we are using linear operations with 
colors

• Every texel and material color have to be processed in linear sRGB color model

• Only the final color values stored in framebuffer are converted back to gamma 
compensated sRGB values

• Issue with blending two sRGB colors in non-linear color space:

𝑪𝑠𝑟𝑔𝑏 = 𝛼𝑨𝑠𝑟𝑔𝑏 + (1 − 𝛼)𝑩𝑠𝑟𝑔𝑏 doesn work well

𝑪𝑟𝑔𝑏 = 𝛼𝑨𝑟𝑔𝑏 + (1 − 𝛼)𝑩𝑟𝑔𝑏 correct

𝑪𝑠𝑟𝑔𝑏 = 𝑇𝑜𝑆𝑅𝐺𝐵 𝛼 𝑇𝑜𝑅𝐺𝐵 𝑨𝑠𝑟𝑔𝑏 + 1 − 𝛼 𝑇𝑜𝑅𝐺𝐵 𝑩𝑠𝑟𝑔𝑏 correct
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Note the undesirable dark 
silhouettes when mixing two 
colors directly in sRGB space 
(created in paint.net)



Gamma Correction

• The human visual system response is logarithmic, not linear, resulting in the 
ability to perceive an incredible brightness range of over 10 decades

• Gamma characterizes the reproduction of tone scale in an imaging system. 
Gamma summarizes, in a single numerical parameter, the nonlinear relationship 
between code value (in an 8-bit system, from 0 through 255) and luminance. 
Nearly all image coding systems are nonlinear, and so involve values of gamma 
different from unity

• The main purpose of gamma correction is to code luminance into a perceptually-
uniform domain, so as optimize perceptual performance of a limited number of 
bits in each channel
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Source: POYNTON, Charles A. The rehabilitation of gamma, 2000.



sRGB Transfer Functions

• Function returns gamma-expanded (or linear) 
sRGB values from gamma-compressed (or non-
linear) sRGB values

float c_linear( float c_srgb, float gamma = 2.4f )
{

if ( c_srgb <= 0.0f ) return 0.0f;
else if ( c_srgb >= 1.0f ) return 1.0f;

assert( ( c_srgb >= 0.0f ) && ( c_srgb <= 1.0f ) );

if ( c_srgb <= 0.04045f )
{
return c_srgb / 12.92f;

}
else
{
const float a = 0.055f;
return powf( ( c_srgb + a ) / ( 1.0f + a ), gamma );

}
}

• Function returns gamma-compressed (or non-
linear) sRGB values from gamma-expanded (or 
linear) sRGB values

float c_srgb( float c_linear, float gamma = 2.4f )
{

if ( c_linear <= 0.0f ) return 0.0f;
else if ( c_linear >= 1.0f ) return 1.0f;

assert( ( c_linear >= 0.0f ) && ( c_linear <= 1.0f ) );

if ( c_linear <= 0.0031308f )
{
return 12.92f * c_linear;

}
else
{
const float a = 0.055f;
return ( 1.0f + a )*powf( c_linear, 1.0f / gamma ) - a;

}
}
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Tone-mapping

• A process which maps an input image of high dynamic range (HDR) to a limited 
low dynamic range (LDR)

• Typical output devices such as LCD monitors have LDR (i.e. accept values with a 
very narrow range of 0, 1 )

• A ray tracer produces linear HDR outputs with a potentially unlimited range of 
ۦ )0,∞

• We need to scale down these HDR values into LDR somehow

• We can use various (tone)-mapping operators (or functions) to do so
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Background (Environment) Images

• Cube map – six square textures ±𝑥,±𝑦,±𝑧

• Firstly, select the one of the six maps

• Secondly, compute 𝑢 and 𝑣 coordinates
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Source: http://www.humus.name

From similar triangles we can easily see that 
𝑢′

1
=

𝑑.𝑦

𝑑.𝑥
and after the 

normalization of 𝑢′ we get 𝑢 =
𝑢′+1

2
. The same holds for 𝑣

coordinate.

Based on the index of largest component 

in absolute value of directional vector ෡𝒅
select the one of the six square maps.



Textures Bilinear Interpolation

• Colors (or other values) obtained from textures should be interpolated using 
bilinear interpolation at least
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Nearest neighbor interpolation Bilinear interpolation

1 spp at pixel center 1 random spp 1 spp at pixel center

× ×



Bilinear Interpolation
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Source: https://en.wikipedia.org/wiki/Bilinear_interpolation

• Number of required samples

• Nearest neighbor: 1 sample

• 2D bilinear interpolation: 2×2=4 samples

• 2D bicubic interpolation: 4×4=16 samples

Nearest neighbor Bilinear Bicubic



Bilinear Interpolation
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• For more detailed explanation refer to the link below

Source: https://en.wikipedia.org/wiki/Bilinear_interpolation

This is the resulting value of interpolated quantity at the point 𝑃



Composition

• In the case of the image from the previous slide, the color 𝑪𝑖 from 𝑖-th hit point 
on opaque dielectric surface is computed as follows

𝑪𝑖 = 𝑪𝑃ℎ𝑜𝑛𝑔 + 𝑪𝑟𝑒𝑓𝑙 𝑅 𝜃𝑖

where 

𝑪𝑃ℎ𝑜𝑛𝑔 = 𝒍𝑐 𝒎𝑎 + 𝜗 𝒑, 𝒍𝑝 𝒎𝑑
መ𝒍𝑑 ∙ ෝ𝒏 +𝒎𝑠

መ𝒍𝑟 ∙ ෝ𝒗
𝛾

,

𝑪𝑟𝑒𝑓𝑙 is color returned by the reflected ray, and 𝑅 is Schlick's approximation of hit 
point reflectivity
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Visibility function between the hit point 
𝒑 and the position 𝒍𝑝 of an omni light

Color of the light source, e.g. 1, 1, 1



Composition

newmtl white_phong 6887_allied_avenger.mtl
Ns 20
Ni 1.460
Ka 0.01 0.01 0.01
Kd 0.95 0.95 0.95
Ks 0.8 0.8 0.8  
shader 3

newmtl black_phong
Ns 20
Ni 1.460
Ka 0.01 0.01 0.01
Kd 0.1 0.1 0.1
Ks 0.8 0.8 0.8
shader 3

newmtl white_phong_4150p04
Ns 20
Ni 1.460
Ka 0.01 0.01 0.01
Kd 0.95 0.95 0.95
Ks 0.8 0.8 0.8
map_Kd 4150p04.jpg
shader 3

newmtl white_phong_3069bp13
Ns 20
Ni 1.460
Ka 0.01 0.01 0.01
Kd 0.95 0.95 0.95
Ks 0.8 0.8 0.8
map_Kd 3069bp13.jpg
shader 3

newmtl green_glass
Tf 0.4 0.001 0.4   
Ni 1.5
shader 4
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Notes:

Ka, Kd, and Ks are treated as RGB 
values stored in sRGB gamma 
compressed space to match values 
stored in texture files

Tf (in case of shader 4 - glass) is 
treated as RGB value representing 
attenuation coefficient

Recursion depth is set to 10



Diffuse Material

• Incident ray is scattered at many angles

• Ideal diffuse material is said to be Lambertian = equal luminance (radiance) when 
viewed from all directions lying in „upper“ hemisphere

• Good examples of solid diffuse reflectors are plaster, paper, or polycrystalline 
materials (exhibit subsurface scattering mechanism caused by internal 
subdivisions)

• Few materials do not cause diffuse reflection: metals (do not allow light to enter), 
gases, liquids, glass, and transparent plastics
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Local Reference Frame

• Hemisphere samples generated in RS must be (at some point in the ray tracing 
pipeline) transformed to WS
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ෝ𝒏

ෝ𝒏

ෝ𝒏

𝜔𝑖

𝜔𝑖

𝜔𝑖

𝒐2 𝒐1

𝒐2 𝒐1

𝒐2

𝒐1

𝒙

𝒙

𝒙

In the case of isotropic BRDFs, the rotation of vectors 
𝒐1 and 𝒐2 around the normal ෝ𝒏 does not matter

𝜔𝑖
𝑊𝑆 = 𝑇𝑅𝑆→𝑊𝑆𝜔𝑖

𝑅𝑆



Local Reference Frame

• Derive transformation matrix (RS → WS) from surface normal ෝ𝒏

• Vector ෝ𝒏 and any non-parallel vector 𝒂 define a plane (we assume that the plane is 
passing through the origin)

• This plane has normal ෝ𝒐2 such that ෝ𝒐2 = ෝ𝒏 × 𝒂 and by definition, the vector ෝ𝒐2 is 
perpendicular to ෝ𝒏. The remaining question is how to construct such a vector 𝒂?

inline Vector3 orthogonal( const Vector3 & n )

{

return ( abs( n.x ) > abs( n.z ) ) ? Vector3( n.y, -n.x, 0.0f ) : Vector3( 0.0f, n.z, -n.y );

}

• The remaining third axis can be computed as ෝ𝒐1 = ෝ𝒐2 × ෝ𝒏 yelding vector 
perpendicular to both ෝ𝒐2 and ෝ𝒏

• Now we can construct a change-of-basis matrix 𝑇𝑅𝑆→𝑊𝑆 that transforms vector in the 
reference (local) space (RS) to the world space (WS)
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ෝ𝒐2 where 𝒂 = (0,0,1) ෝ𝒐2 where 𝒂 = (1,0,0)



Local Reference Frame

𝑇𝑅𝑆→𝑊𝑆 =
⋮ ⋮ ⋮
ෝ𝒐1 ෝ𝒐2 ෝ𝒏
⋮ ⋮ ⋮

• Inverse transformation can be computed as follows
𝑇𝑊𝑆→𝑅𝑆 = 𝑇𝑅𝑆→𝑊𝑆

−1

• Moreover, the matrix 𝑇𝑅𝑆→𝑊𝑆 belongs to a special orthogonal group 𝑆𝑂(3), also 
called the 3D rotation group (matrices of orthonormal basis) for which holds that 
𝑄𝑄𝑇 = 𝐼 for every 𝑄 ∈ 𝑆𝑂(𝑛). Also note that for any nonsingular 𝐴: 𝐴𝐴−1 = 𝐼

• This property allows us to calculate the inversion of the transformation matrix 
using simpler (and faster) transposition

𝑇𝑊𝑆→𝑅𝑆 = 𝑇𝑅𝑆→𝑊𝑆
−1 = 𝑇𝑅𝑆→𝑊𝑆

𝑇
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Tangent-Bitangent-Normal

• 𝑃1 − 𝑃0 = 𝒆1 = ∆𝑢1𝒕 + ∆𝑣1𝒃

• 𝑃2 − 𝑃0 = 𝒆2 = ∆𝑢2𝒕 + ∆𝑣2𝒃 𝒆1,2 and 𝒕, 𝒃 are 3D row vectors

• ∆𝑢1 = 𝑃1
𝑢 − 𝑃0

𝑢, ∆𝑣1 = 𝑃1
𝑣 − 𝑃0

𝑣

• ∆𝑢2 = 𝑃2
𝑢 − 𝑃0

𝑢, ∆𝑣2 = 𝑃2
𝑣 − 𝑃0

𝑣
𝑃𝑖
{𝑢,𝑣}

are 𝑢, resp. 𝑣, texture coordinates of 𝑖-th vertex

… and we want to solve for 𝒕 and 𝒃…

•
𝒆1
𝒆2

=
∆𝑢1 ∆𝑣1
∆𝑢2 ∆𝑣2

𝒕
𝒃

•
𝒕
𝒃

=
∆𝑢1 ∆𝑣1
∆𝑢2 ∆𝑣2

−1 𝒆1
𝒆2

=
1

∆𝑢1∆𝑣2−∆𝑢2∆𝑣1

∆𝑣2 −∆𝑣1
−∆𝑢2 ∆𝑢1

𝒆1
𝒆2
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Side note: Texture coordinates are interpolated linearly 
(barycentric interpolation) across the triangle. Hence, 
the derivatives are all constant and we can calculate 
tangents/bitangents per triangle.

Transformation matrix 𝑇𝐵𝑁𝑇𝑆→𝑊𝑆 =
⋮ ⋮ ⋮
ො𝒕 ෡𝒃 ෝ𝒏
⋮ ⋮ ⋮



Tangent-Bitangent-Normal

• It is not necessarily true that the tangent vectors ො𝒕 and ෡𝒃 are 
perpendicular to each other or to the normal vector ෝ𝒏

• We may assume that these three vectors will be nearly orthogonal. 
Use Gram-Schmidt orthogonalization proces to fix that

• To find the tangent vectors for a single vertex, we average the 
tangents for all triangles sharing that vertex in a manner similar to the 
way in which vertex normals are commonly calculated. In the case 
that the neighboring triangles have discontinuous texture mapping, 
vertices along the border are generally already duplicated since they 
have different mapping coordinates anyway. 
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The Gram–Schmidt Process

• The Gram–Schmidt process works as follows

where projෝ𝒖 𝒗 = 𝒗 ∙ ෝ𝒖 ෝ𝒖
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Source: https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process



Tangent-Bitangent-Normal

• Using this process, orthogonal (but still unnormalized) tangent 
vectors 𝒕′ and 𝒃′ are given by

𝒕′ = 𝒕 − 𝒕 ∙ ෝ𝒏 ෝ𝒏

𝒃′ = 𝒃 − 𝒃 ∙ ෝ𝒏 ෝ𝒏 − Τ𝒃 ∙ 𝒕′ 𝒕′ 𝒕′
2

and the new 𝑇𝐵𝑁 matrix takes the form

𝑇𝐵𝑁𝑇𝑆→𝑊𝑆 =
⋮ ⋮ ⋮
෡𝒕′ ෡𝒃′ ෝ𝒏
⋮ ⋮ ⋮
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Unified Normals
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ො𝑛

− መ𝑑

face

Incorrect flip condition
ො𝑛 ∙ (0, 0, 1) = ො𝑛𝑧 < 0

Correct flip condition

ො𝑛 ∙ − መ𝑑 < 0

where መ𝑑 = ℎ𝑖𝑡 − 𝟎

Vertex shader file

layout ( location = 0 ) in vec4 in_position_ms; // ( x, y, z, 1.0f )
layout ( location = 1 ) in vec3 in_normal_ms;
uniform mat4 mvn; // Model View 
uniform mat4 mvn; // Model View Normal
out vec3 unified_normal_es;
…
void main( void )
{
…
unified_normal_es = normalize(( mvn * vec4( in_normal_ms.xyz, 0.0f ) ).xyz);
vec4 hit_es = mv * in_position_ms; // mv * vec4( in_position_ms.xyz, 1.0f )
vec3 omega_i_es = normalize( hit_es.xyz / hit_es.w );
if ( dot( unified_normal_es, omega_i_es ) > 0.0f )
{
unified_normal_es *= -1.0f;

}
…

}

ො𝑥

Ƹ𝑧

𝟎

ℎ𝑖𝑡



Vertex Buffer

glGenVertexArrays( 1, &vao_ );

glBindVertexArray( vao_ );

glGenBuffers( 1, &vbo_ ); // generate vertex buffer object (one of OpenGL objects) and get the unique ID corresponding to that buffer

glBindBuffer( GL_ARRAY_BUFFER, vbo_ ); // bind the newly created buffer to the GL_ARRAY_BUFFER target

glBufferData( GL_ARRAY_BUFFER, sizeof( Vertex )*no_vertices, vertices, GL_STATIC_DRAW ); // copies the previously defined vertex data 
into the buffer's memory

// vertex position

glVertexAttribPointer( 0, 3, GL_FLOAT, GL_FALSE, vertex_stride, ( void* )( offsetof( Vertex, position ) ) );

glEnableVertexAttribArray( 0 );

// vertex normal

glVertexAttribPointer( 1, 3, GL_FLOAT, GL_FALSE, vertex_stride, ( void* )( offsetof( Vertex, normal ) ) );

glEnableVertexAttribArray( 1 );

…

// material index

glVertexAttribIPointer( 5, 1, GL_INT, vertex_stride, ( void* )( offsetof( Vertex, material_index ) ) );

glEnableVertexAttribArray( 5 );
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#pragma pack(push, 1)
struct Vertex
{
Vector3 position;
Vector3 normal;
Vector3 color;
Coord2f texture_coords;
Vector3 tangent;
int material_index{ 0 };
char pad[4]; // fill up to 64 B

};
#pragma pack (pop)



Bindless Textures

• Classical approach: bound texture to a texture unit (represented as an 
uniform variable, e.g. sampler2D, in shaders)
• The number of textures is limited to the number of texture units supported by 

the OpenGL driver (at least 16)

• Spending time binding and unbinding textures between draw calls

• If OpenGL reports support for GL_ARB_bindless_texture, we can get 
around these problems (Intel HD 630 with driver 23.20.16.4944+ )

• This ext. allows us to get a handle for a texture and use that handle 
directly in shaders to refer the underlying texture
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Source: OpenGL SuperBible (7th edition)



Adding Extensions to OpenGL
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1. Visit https://glad.dav1d.de and fill it accroding the 
left image

2. Download the generated glad.zip
3. Replace all files in libs/glad directory
4. Rename glad.c to glad.cpp in libs/glad/src
5. Replace all includes in glad.cpp

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <glad/glad.h>

with the following single line

#include "pch.h"



Bindless Textures

void CreateBindlessTexture( GLuint & texture, GLuint64 & handle, const int width, const int height, const GLvoid * data ) 
{

glGenTextures( 1, &texture );

glBindTexture( GL_TEXTURE_2D, texture ); // bind empty texture object to the target 

// set the texture wrapping/filtering options 

glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT );

glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT );

glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR );

glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR );

// copy data from the host buffer

glTexImage2D( GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_BGR, GL_UNSIGNED_BYTE, data );

glGenerateMipmap( GL_TEXTURE_2D );

glBindTexture( GL_TEXTURE_2D, 0 ); // unbind the newly created texture from the target

handle = glGetTextureHandleARB( texture ); // produces a handle representing the texture in a shader function

glMakeTextureHandleResidentARB( handle );

}
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Details on https://www.khronos.org/registry/OpenGL/extensions/NV/NV_bindless_texture.txt



Materials as SSBO with Bindless Textures

GLMaterial * gl_materials = new GLMaterial[materials_.size()];

int m = 0;
for ( const auto & material : materials_ )
{
auto tex_diffuse = material.second->texture( Map::kDiffuse );
if ( tex_diffuse )
{
GLuint id = 0;
CreateBindlessTexture( id, gl_materials[m].tex_diffuse_handle, tex_diffuse->width(), tex_diffuse->height(), tex_diffuse->data() );
gl_materials[m].diffuse = Color3f( { 1.0f, 1.0f, 1.0f } ); // white diffuse color

}
else
{
GLuint id = 0;
GLubyte data[] = { 255, 255, 255, 255 }; // opaque white
CreateBindlessTexture( id, gl_materials[m].tex_diffuse_handle, 1, 1, data );
gl_materials[m].diffuse = material->value( Map::kDiffuse );

}
m++;

}

GLuint ssbo_materials = 0;
glGenBuffers( 1, &ssbo_materials );
glBindBuffer( GL_SHADER_STORAGE_BUFFER, ssbo_materials );
const GLsizeiptr gl_materials_size = sizeof( GLMaterial ) * materials_.size();
glBufferData( GL_SHADER_STORAGE_BUFFER, gl_materials_size, gl_materials, GL_STATIC_DRAW );
glBindBufferBase( GL_SHADER_STORAGE_BUFFER, 0, ssbo_materials );
glBindBuffer( GL_SHADER_STORAGE_BUFFER, 0 );
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#pragma pack( push, 1 ) // 1 B alignment
struct GLMaterial
{
Color3f diffuse; // 3 * 4B
GLbyte pad0[4]; // + 4 B = 16 B
GLuint64 tex_diffuse_handle{ 0 }; // 1 * 8 B
GLbyte pad1[8]; // + 8 B = 16 B

};
#pragma pack( pop )

see http://www.catb.org/esr/structure-packing/

MTL file:

newmtl white_plastic
Pr 0.5
Kd 1.0 1.0 1.0
map_Kd scuffed-plastic6-alb.png
map_RMA plastic_02_rma.png
norm scuffed-plastic-normal.png



Materials as SSBO with Bindless Textures

Vertex Shader
#version 450 core
// vertex attributes
layout ( location = 0 ) in vec4 in_position_ms;
layout ( location = 1 ) in vec3 in_normal_ms;
layout ( location = 2 ) in vec3 in_color;
layout ( location = 3 ) in vec2 in_texcoord;
layout ( location = 4 ) in vec3 in_tangent;
layout ( location = 5 ) in int in_material_index;
// uniform variables
uniform mat4 mvp; // Model View Projection
uniform mat4 mvn; // Model View Normal (must be orthonormal)
// output variables
out vec3 unified_normal_es;
out vec2 texcoord;
flat out int material_index;
void main( void )
{
// model-space -> clip-space
gl_Position = mvp * in_position_ms;
// normal vector transformations
vec4 tmp = mvn * vec4( in_normal_ms.xyz, 1.0f );
unified_normal_es = normalize( tmp.xyz / tmp.w );
// 3ds max related fix of texture coordinates
texcoord = vec2( in_texcoord.x, 1.0f - in_texcoord.y );
material_index = in_material_index;

}

Fragment Shader
#version 460 core
#extension GL_ARB_bindless_texture : require
#extension GL_ARB_gpu_shader_int64 : require // uint64_t
// inputs from previous stage
in vec3 unified_normal_es;
in vec2 texcoord;
flat in int material_index;
struct Material
{
vec3 diffuse;
uint64_t tex_diffuse;

};
layout ( std430, binding = 0 ) readonly buffer Materials
{
Material materials[]; // only the last member can be unsized

array
};
// outputs
out vec4 FragColor;
void main( void )
{
FragColor = vec4( materials[material_index].diffuse.rgb *
texture( sampler2D( materials[material_index].tex_diffuse ), 

texcoord ).rgb, 1.0f );
}
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From the previous slide
…
glBindBufferBase( GL_SHADER_STORAGE_BUFFER, 
0, ssbo_materials );
…



PBR Materials as SSBO with Bindless Textures

Rasterizer::InitMaterials

#pragma pack( push, 1 ) // 1 B alignment
struct GLMaterial
{

Color3f diffuse; // 3 * 4 B
GLbyte pad0[4]; // + 4 B = 16 B
GLuint64 tex_diffuse_handle{ 0 }; // 1 * 8 B
GLbyte pad1[8]; // + 8 B = 16 B

Color3f rma; // 3 * 4 B
GLbyte pad2[4]; // + 4 B = 16 B
GLuint64 tex_rma_handle{ 0 }; // 1 * 8 B
GLbyte pad3[8]; // + 8 B = 16 B

Color3f normal; // 3 * 4 B
GLbyte pad4[4]; // + 4 B = 16 B
GLuint64 tex_normal_handle{ 0 }; // 1 * 8 B
GLbyte pad5[8]; // + 8 B = 16 B

};

#pragma pack( pop )

Structure packing really matters here. More datails on the 
std430 layout rules can be found in OpenGL specification.

Fragment Shader

struct Material
{

vec3 diffuse; // (1,1,1) or albedo
uint64_t tex_diffuse; // albedo texture

vec3 rma; // (1,1,1) or (roughness, metalness, 1)
uint64_t tex_rma; // rma texture

vec3 normal; // (1,1,1) or (0,0,1)
uint64_t tex_normal; // bump texture

};

layout ( std430, binding = 0 ) readonly buffer Materials
{

Material materials[];
};
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Note that the second 
option is chosen when 
the corresponding 
texture is not available



Bindless Textures on Intel IGPs

• According the GLSL spec, opaque types like 
sampler2D cannot be used in structures (although 
some drivers allow that – e.g. NVidia)

• The GL_ARB_gpu_shader_int64 extension is not 
available on Intel IGPs like HD 630 or Iris 645 thus 
we cannot simply replace sampler2D with uint64_t 
in Material structure

• As a consequence, we have to use different 64-bit 
data type for our bindless texture handles

• Fortunately, we can use uvec2 data type instead

1. remove GL_ARB_gpu_shader_int64 extension
2. replace uint64_t with uvec2
3. cast uvec2 texture handle to sampler2D in texture 

function calls
4. C++ part of our code remains the same

Fragment Shader
#version 460 core
#extension GL_ARB_bindless_texture : require

…

struct Material
{
vec3 diffuse;
//sampler2D tex_diffuse; // not allowed by GLSL spec in structs
//uint64_t tex_diffuse;    // not available on Intel IGPs
uvec2 tex_diffuse;
…

};

…

vec3 diffuse = texture( sampler2D( 
materials[material_index].tex_diffuse ), texcoord ).rgb;

…
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Provoking Vertex

• In case of flat shaded interpolants (e.g. material index), we have to 
specify from which vertex of a single primitive will be taken

• Call glProvokingVertex to set the desired mode which vertex is to be 
used as the provoking vertex
• GL_FIRST_VERTEX_CONVENTION

• GL_LAST_VERTEX_CONVENTION (default)
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Entity Component System (ECS) – EnTT

• EnTT uses sparse-set-based component storage, which means components of the same type are 
stored contiguously in memory. This makes iteration over entities with certain components 
extremely fast — critical for game loops and real-time systems like physics, rendering, and AI

• It also allows operations without the overhead of virtual function calls or inheritance 
hierarchies

• Entities are just IDs, decoupled from data

• Components are plain structs or classes

• Systems operate on views of entities that have specific components — no rigid inheritance tree 
needed

• Uses C++11/14/17 features like variadic templates, constexpr, and type-safe identifiers

• No need for macros or code generation — everything is compile-time type-checked

• Supports move semantics, so components can be moved efficiently without unnecessary copies
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https://github.com/skypjack/entt



Entity Component System (ECS) – EnTT

• EnTT provides on_construct, on_destroy, and on_update signals for components. This allows easy 
event-driven programming:

• Trigger initialization when a component is added

• Clean up when an entity is destroyed

• React to component changes efficiently

• While ECS is naturally flat, EnTT supports parent-child relationships, custom tags, and metadata

• You can implement scene graphs, transform hierarchies, or grouped entities without breaking 
the ECS paradigm

• Coupled with views, this makes it easy to traverse complex entity relationships efficiently

• Lightweight and header-only — easy to integrate into any engine

• Well-maintained and widely used, with a strong community
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https://github.com/skypjack/entt



Constructors

struct Mesh {

Mesh() // explicit constructor with no parameters, e.g. Mesh a; calls this constructor

Mesh( const Mesh & mesh ) // explicit copy constructor, e.g. Mesh b = a; calls this constructor

Mesh( Mesh && ) noexcept = default; // forces implicit move constructor (because a copy constructor, a copy 
assignment operator, a destructor (even if default but user - provided), or a move constructor / assignment
operator prevent the implicit move constructor),
e.g. Mesh a = make_mesh(); or Mesh b = std::move( a ); calls this constructor

Mesh & operator=( const Mesh & ) = delete; // removes implicit copy assignment operator,
e.g. b = a; calls this operator

Mesh & operator=( const Mesh & a ) // re-enable implicit copy assignment operator

Mesh & operator=( Mesh && ) = delete; // delete copy assignment operator

Mesh & operator=( Mesh && a ) // re-enable implicit move assignment operator,
e.g. b = std::move( a ) calls this operator

~Mesh() // explicit destructor

};
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PBR Workflow

• Physically-based material workflows:
• Metallic-Roughness workflow

• Base color (albedo) ≠ diffuse is represented as a color map without any lighting in the 
range 30-240 sRGB (for dielectrics) or pure black color (for conductors)

• Metalicity is typically a binary (or linearly interpolated grayscale) texture containing 0‘s 
(dielectrics) and 1‘s (metals)

• Roughness – a grayscale linear texture in the range 0 (smooth) and 1 (rough)

• Specular-Glossines workflow
• Diffuse (Albedo) – RGB map

• Specular – RGB map

• Glossines – a grayscale linear texture that describes the surface irregularities that cause 
light diffusion. It is the inverse of the roughness map
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Filament PBR Materials
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Unity PBR Materials
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PBR Textures and Materials

• On-line sources of free seamless PBR textures with Diffuse, Normal, 
Displacement, Occlusion, Specularity and Roughness maps:
• https://cc0textures.com

• https://texturehaven.com

• https://www.poliigon.com

• https://freepbr.com

• https://3dtextures.me
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