VSB TECHNICAL
| || UNIVERSITY
| OF OSTRAVA

Fundamentals of Computer
Graphics

460-2021

Fall 2025
Last update 14. 10. 2025

Fundamentals of Computer Graphics

* Lecturer
* Tomas Fabian
* Office
room EA408, building of FEECS
* Office hours

Tuesday 13:00 — 14:00, Thursday 13:00 — 14:00 (all other office hours are by
appointment)

e Email
tomas.fabian@vsb.cz

* Web site with additional materials
http://mrl.cs.vsb.cz/people/fabian/zpg_course.html

Course Targets and Goals

e During the course, students will become familiar with the fundamental principles
of 3D computer graphics using the C++ programming language and the OpenGL
graphics API (optionally Vulkan), and will gain practical experience with shader
programming in GLSL. They will progress through the steps from loading a 3D
model to its visualization, including working with cameras, transforming objects
and entire scenes, setting up lighting, working with textures, normal maps,
shadows, skybox creation, and more.

* You will have hands-on experience with implementation of the here described
methods and algorithms.

Course Prerequisites

* Basics of programming (C++)

* Previous courses:
* NA

* To be familiar with basic concepts of mathematical analysis, linear
algebra and vector calculus

Main Topics

* Introduction Computer Graphics. Raster and vector graphics (point, vector, line, curve, etc.). Interpolation.
» Graphics hardware. Introduction to standard rendering pipeline (OpenGL).

. E;,Ilé)x())bject representation in CG (polygonal, CSG, procedural, etc.), object topology. Model formats (OBJ,

* Transformations in CG (move, rotation, scale), projective space.
* Projections (perspective vs. orthogonal projection), camera, clipping, rasterization.
e Colors, human eye, light (pointlight, spotlight, directional light, area light). Color mixing (blending).

* Lighting, local lighting models (Lambert, Phong), global lighting models, BRDF, radiosity, ray-tracing, ambient
occlusion, shading.

e Textures in OpenGL texture units, Texel. UV mapping.

* Visible surface algorithms (z-buffer, painter's algorithm). Skybox, skydome.
* Bump mapping, normal mapping. Displacement mapping.

e Shadows in CG, shadow algorithm, shadow maps.

* Curves (Bezier curve) .

Organization of Semester and Grading

* Each lecture will discuss one main topic
* Given topic will be practically realized during the following exercises

* The individual tasks from the exercise will be scored (during the last
week of the semester)

* You can earn a total of up to 45 points. The minimum number of
points is 20

* The final combined (written and oral) exam covers topics from the
previous slide.

* You can earn up to 55 points from the final exam. The minimum
number of points is 10

Chat GPT/Copilot Al Policy

* Feel free to use them to prepare your project

* You are good enough to pass the class if you are good enough to
verify their outputs. In other words, you need to be able to justify

your code

* Beware, their outputs are sometimes completely wrong and they
won't let you know.

Study Materials

* [1] Segal, M., Akeley, K.: The OpenGL Graphics System, 2022, 850 pages.
* [2] Michael, A.: Graphics Programming Black Book. Coriolis Group, Ames lowa, 2001.

* [3] Pharr, M., Jakob, W., Humphreys, G.: Physically Based Rendering, Fourth Edition: From Theory to Implementation, MIT Press,
2025, 1312 pages, ISBN 978-0262048026.

* [4] Dutre, P, Bala,K., Bekaert, P. Advanced global illumination. AK Peters/CRC Press, 2006.

* [5] Haines, E., Akenine-Mdller, T. (ed.): Ray Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs.
Apress, 2025, 607 pages, ISBN 978-1484244265.

* [6] Marrs, A., Shirley, P., Wald, | (ed.). Ray Tracing Gems II: Next Generation Real-Time Rendering with DXR, Vulkan, and
OptiX. Faller Nature, 2025, 858 pages, ISBN 978-1484271841.

* [7] Shirley, P., Morley, R. K.: Realistic Ray Tracing, Second Edition, AK Peters, 2003, 235 pages, ISBN 978-1568814612.

* [8] Akenine-Moller, T., Haines, E., Hoffman, N.: Real-Time Rendering, Fourth Edition, AK Peters/CRC Press, 2018, 1178 pages, ISBN
978-1138627000.

* [9] Dutré, P.: Global lllumination Compendium, 2003, 68 pages.
* [10] Ryer, A. D.: The Light Measurement Handbook, 1997, 64 pages.
* [11] Gregory, J.: Game engine architecture. AK Peters/CRC Press, 2018.

Study Materials

* Other free and downloadable materials are at https://www.realtimerendering.com

These are books that are FREE ONLINE, ordered by publication date. Do not be fooled by the price; all but one were published as physical books and each has valuable information.

Download
for free

Download
for free

Download
for free

Download
for free

Read
for free

Download
for free

Download
for free

Download
for free

>

Fall 2025

Ray Tracing Gems II: Next Generation Real-Time Rendering with DXR, Vulkan, and OptiX, edited by Adam Marrs, Peter Shirley, and Ingo Wald, Apress, August 4, 2021 (Book's website).

Developing Graphics Frameworks with Python and OpenGL, by Lee Stemkoski and Michael Pascale, CRC Press, July 7, 2021 (Publisher's website).

Learn OpenGL - Graphics Programming: Learn modern OpenGL graphics programming in a step-by-step fashion, by Joey de Vries, Kendall & Welling, June 2020 (Book's website, with fr

Ray Tracing Gems, edited by Eric Haines and Tomas Akenine-Mdller, Apress, March 2019 (Book's website, publisher's page, Amazon), download for free.

Physically Based Rendering, Third Edition: from Theory to Implementation, by Matt Pharr, Wenzel Jakob, and Greg Humphreys, Morgan Kaufmann, November 2016 (more information), Pat

Ray Tracing in One Weekend, by Peter Shirley, January 2016 (Code, tweet, blog), download for free, read (corrected version) for free.

Ray Tracing: the Next Week, by Peter Shirley, March 2016 (Code, tweet, blog), download for free, read (corrected version) for free.

Ray Tracing: The Rest Of Your Life, by Peter Shirley, March 2016 (Code, tweet, blog), download for free, read (corrected version) for free.

large list of graphics books is also at https://www.realtimerendering.com/books.html

Fundamentals of Computer Graphics

Types of Graphics

* Non-photorealistic graphics/rendering = -.. . .-
* Artistic styles Sk
* Scientific and engineering visualization
e Data Visualization course

* Photorealistic graphics/rendering

* Simulate the image formation process as precisely as possible
* Physically plausible light transport through the scene
 Topic of this course

Fall 2025 Fundamentals of Computer Graphics

10

Photorealistic Image Synthesis

* You will be asked to create an realistically looking image based on a
mathematical representation of a real or an artificial world

Real world or Mathematical Mathematical
your) representation of the po) description of light m) Artificial image
imagination scene behaviour

(light sources, geometry, materials,
camers)
®

Fall 2025 Fundamentals of Computer Graphics 11

Application Areas

 Film industry — special effects or entire scenes/ films

* High quality rendering for commercials, prints, etc. (CG product
images)

* Video game industry — ray tracing has recently entered this area
(earlier e.g. prebaked lights)

* Architecture and design, virtual prototyping
* VR and AR (remote assistance and collaboration, conferencing)

e Various kind of simulations (lighting, sound propagation, collision
detection, creating artificial datasets, etc.)

Knowledge Base

* Physics
* Radiometry and photometry
* Models of light interaction with various materials
* Theory of light transport (mainly laws of geometrical optics)

* Mathematics
* Linear algebra

* Informatics
* Software engineering
* Programming

* Visual perception and Art

Levels of Realism

Surface color

Diffuse shading, point
light, no shadows

Fall 2025

Diffuse shading, point
light, hard shadows

Diffuse shading, area light
source, soft shadows

Fundamentals of Computer Graphics

=

Diffuse inter-reflections,
area light source

14

Direct vs. Global lllumination

* Direct illumination

* A surface point illumination is computed directly from all light sources by the
direct illumination model

e Global illumination

* A surface point illumination is given by the complex light rays interaction with
the entire scene

Basic Math Operations

* L2 norm ||al| = \/apzc + af, +a:=+a-a

Unit vector a = ﬁ and it holds that ||al| = 1

lall

Basic Operators

* Dot product

where a is an angle clamped between both vectors

* Cross product

axXb=

i
ax
by

j k
a, a,
b, b,

0

Az

|~ A4y

— az
0
a’x

Ay

0

a-b=a’b= z a;b; = ||al|||b]| cos
[

axb

\

a,b, —ab,
a,b, —a,b,

axby — ayby

Not commutative, follows the right hand rule, it also holds that
a X b = ||al|||b||nsina and ||a x b|| = ||a||||b]||sin]

Basic Operators

* (Vector) projection of pon g

projqp = Pq =

4F Gxy Gx4] D,
AN\ A 1
|2q— P DI=1z|D% & l
429 929y 95 | . Pz

Matrix notation may be useful for repeated projections

4l

* Scalar projection of p on q Pq

_ p-q P AN
SProjgP = Pq = ”p”npnuqn lqn P4 p

Basic Operators

* (Vector) projection of p on q

Ipllcos(6) =p-q

Ipll sin(@) = |lp x ||

)

Basic Math Operations

e Other useful formulas
lla—bll=a-a—2(a-b)+b-b

e Lagrange's identity ||a X b||* = ||a||?||b||* — (a - b)?

Rotations

* Counterclockwise rotation in 2D about the origin by angle «

p cosa —Sina =15 deg
— . a R:z[cos(a) —sin(a)
Sin cos a

sin(a) cos(a) a=

1 _[o.707
0] R'G_[o.m?]

* Elementary counterclockwise rotations in 3D

1 0 0 cosa 0 sina cosa —sina O
Ry =10 cosa -—sinal, R, = 0 1 0 |[,R,=|sina cosa O
0 sina cosa —sina 0 cosa 0 0 1

Arbitrary rotation may be decomposed into three components (3 Euler angles), non
commutative — order of rotations matters (complicated interpolation, gimbal lock)

Rotations

* Counterclockwise rotation of point @ around arbitrary unit axis 7 by angle a
(Rodrigues' rotation formula)

a' = (1—-cos(a))(a-7r)r + cos(a)a+sina (& X a)

0

1 0.707
] a::{gl (l—cos(a))-(a-r)-r+cos(a)-a+sin(a) ('r'xa):l(].ﬂ}?]

For further reference see http://ksuweb.kennesaw.edu/~plaval/math4490/rotgen.pdf

Topology is the mathematical study of the properties that
are preserved through deformations, twistings, and
stretchings of objects. Tearing, however, is not allowed.

Vertices

e A point (corner or node) where two edges (lines) meet

* The connectedness between the vertices defines a mesh's topology

— Y

Graph embedding .

S T L O

Topology Geometry Topological equivalence
Connectivity/neighborhood Position of vertices (homeomorphism, homotopy)

* Beside the position, vertices may have other attributes: color, normal (tangent,
bitangent), texture coordinates, etc.

Fall 2025 Fundamentals of Computer Graphics 23

Edges

Connection of two vertices

Boundary (1 incident face)

Regular (2 incident faces)

Singular (3 or more incident faces)

vertex

edge

vertex

Faces

* The flat surface on a shape or a solid is known as its face

Fall 2025 Fundamentals of Computer Graphics

25

Manifold

* A n-dimensional manifold is a topological space that locally resembles
(homeomorphic) n-dimensional Euclidean space near each point

e 1-manifolds include lines and circles (not a lemniscate or o)

« 2-manifold (surface) include plane, sphere (genus 0), torus (genus 1), Klein bottle
(not orientable), Mdbius strip (closed and not orientable), real projective plane
(closed, non-orientable), triangle (smooth manifold with boundary)

e Theorem:

* Every orientable and closed surface is homeomorphic to a connected sum of tori
* Every surface is homeomorphic to a connected sum of tori and/or projective planes

Smoothness

Geometric continuity requires that G° “‘ G! “ Gz“‘

the parametric derivatives of the two ren a0 Tangent : G
segments be proportional to each |
other, not equal e o S N
d - Q\ : —
- 7

Geometric continuity examples, source: Autodesk Alias Workbench

* Reminder: a function is called C™ continuous if it's n-th order derivative is

continuous everywhere

e Parametric continuity examples:

e Not continuous

* Position continuity = CY

W
— __6. /S

e Position and tangent continuity = c?! \[\ /3/
N\ o/

* Position, tangent, and curvature continuity = C? w

Manifold Meshes (with Boundaries)

* No singular edges

* No singular vertices ’ Singular edge

* Simples data structure
* Polygon soup — list of faces formed by n-tuple of vertices
* No (explicit) information about adjacency (can be stored in adjacency list)

Uy Uy
F V1, V3, V3 F Face orientation (CW or CCW)
F; Uy, V3,V | Fi, F) is given by the order in which
F, Vs, Vs, Vs F, the vertices are listed

* Possible extension with indexing (lower memoty req.) o,
(note that shared vertices must have same atributes)

Fall 2025 Fundamentals of Computer Graphics 28

OBJ Format

14.363998 -19.782551 78.445435
14.106861 -19.928997 78.699089
13.828163 -19.789648 78.457726
14.051285 -19.662575 78.237625
14.953951 -19.069986 77.211243
14.877973 -19.261126 77.542297

< < < < < <

vh -0.111118 0.910786 0.397570
vh 0.132542 0.566302 -0.813439
vh 0.192175 0.622958 -0.758245

f 1//1 2//2 3//3
f 4//1 5//2 6//3

Winged-Edge

e Structure is also valid for non-orientable manifolds

€3 €4
U
i e F;
€1 €2

Half-edge Data Structure (DCEL)

e Structure is valid only for orientable manifolds

vertex
next

face e twin

(previous)

The Euler-Poincaré formula describes the
relationship of the number of vertices, the
number of edges and the number of faces of

E u | e r C h a ra Cte r| Stl C X a manifold. It has been generalized to include

potholes and holes that penetrate the solid.

* Simplified Euler's formula for any convex polyhedron's surface

V—E+F=2(5)=y 8—12+6=2(1)

* Generalized formula allowing holes

V—E+F—-L=2(S—H) 1\ . 22-33+14-3=2(1-1)

r
[

N\
NN

L ... number of holes in faces (inner loops) %

H... number of holes passing through the whole solid (genus) A homeomorphism is a

bijection that is continuous
and its inverse is also
continuous.

S ... number of disjont components (shells, solids)

Pinhole Camera Model

Similar triangles: All the corresponding

sides have lengths in the same ratio.
a b c

a’ b’ c’

* |dealized model for the optics of a camera defining the geometry of

perspective projection

image plane

focal point (center of projection)

Zo

object plane

optical axis

[... image point coordinates
0 ... object point coordinates

Primary Ray Generation in Camera Space

(0.5,0.5)
ﬁf
_EE

R A
S\i\/\

X

0051152253

y | 05 ferfdo b

2 = Image/sensor plane

Fall 2025

ray (d = 0,3304; 0,9439)

sensor height = 18 mm / |

| sensor element height = 1,5 mm ‘
\
| 2 1 0

\ image heig /
A\ £
\ —1 E
A o
[}
c
B R 5 Known camera parameters:
= [} . .
\ fov_y =/61,92 S 5 0, T, width w, height h, fov,
< g f
>

fy = fx =7 (px)
de=x—-w/2,h/2-y,—f))

camera origin
\L yc [mm]
zc [mm]

Fundamentals of Computer Graphics 34

Result of First Exercise

8 PG1 Raytracer -

¥ Image

float

Application average 97,759 ms/frame (10,2 FPS)

Fall 2025 Fundamentals of Computer Graphics

35

Representation of Direction in 3D

* Cartesian coordinates x(1, 0,)

= (dody), 2] = 1

=

3 ~
s
7/

'

» Spherical coordinates (physics and ISO convention)

cw=(0,p)
X
. . —1 d, = sin6 cos ¢
Polar angle (theta) 8 = cos™" d, € (0, m) 4, = sin 6sin ¢
d, = cosf

e Azimuthal angle (phi) ¢ = tan™?! ? € (0, 2m)

In C/C++, we can compute the azimuthal angle as ¢ = atan2f(dy, dx) + 2T dy < 0
0 otherwise

Affine and Projective Spaces

» Affine space
* Set VV of vectors and set P of points
» Affine transformations can be represented by 3x3 matrix

* Projective space

* Homogeneous coordinates (x, y, z, w)
All lines intersect (space contains infinity (x,y, z,0))
Projective transformations can be represented by 4x4 matrix (inc. translation
and perspective projection)
Cartesian to homogeneous coordinates: (x,y,z) — (x,y,z,1)
Homogeneous to Cartesian coordinates: (x,y,z,w # 0) —» (x/w,y/w, z/w)

Combination of Points

Let have an affine space A modeled on a vector space I/, points P,Q € A, and vectors v,w € I/
andaxiomsQ —PelVandP+veEA

Suppose we want to define a combination of points like this
C{1P1 + azpz + ce + anPn

At first glance, that doesn't make sense — points cant be added directly. So we can fix one point
(say P) as a reference. Then, each point can be expressed as

Pl':Po‘l'(Pi_Po),WherE(Pi_Po)EV

Plugging this into the combination above yields
a1 Py + -+ apP, = ay(Py+ (Py — Py)) + -+ + an(Py + (B, — Py))

After simplification we get
(a; + -+ ay)Py + (a1 (Py — Py) + -+ + an (P, — Py))

ffYa;,=1=>Py+a;(P, —Py) +-+a,(B, —Py)isokas P, —Py€Vand P+ v EA

See mrl.cs.vsb.cz/people/fabian/zpg/rcs.pdf for examples

(Model) Transformation Matrix

* With homogeneous coordinates

[Dx | where
R € SO(3) group
Mp = R LBy M € SE(3) Lie group
Pz (differentable manifold)
0 0 O | 11Pwl ter®

* Vector t represents translation
* Matrix R represents rotation or scaling or shear or their combinations
s, 0 O

1 0 s
Rscaling =10 Sy 0 ’ Rshear =10 1 O
0 0 s, 0 0 1

View Matrix

* We can simply setup the view matrix as follows

0

A up = |0

= =—————,andy, =2, XX 1
¢ T lle—tl e T Tupxzl? OC Ve T Ze % e

where the vector e represents position of the camera (eye), t is the target position and up
is an auxiliary vector marking ,,up” direction (a unit vector not parallel to the optical axis)

We can arrange the final transformation matrix

V—l — xe

0

ye Ze €

0

0

1

(transforms vectors from eye space to world space)

* I/ transforms vectors from world space to eye space (and that's what we need now)

|

Different Coordinate Systems

COORDINATE_SYSTEM_RIGHT_HANDED_Z_LP_X_FWD

T~— COORDINATE_SYSTEM_LEFT_HANDED_Z_|P U n rea |

[&
‘\»::-\ 4 A7
\ ¥ 4
G
8

[

Fall 2025 Fundamentals of Computer Graphics

ROS

S O O

o = OO

o O O

41

Projection Matrix 1/4

* From similar triangles we get

where n is a (positive) distance of (near) projection plane

Ux

= :)’U;C

!

Ux Ux

=v,—=-n

Uy Uy

(near) plane

This transformation can be performed by the following homogenous

matrix

0
n
D =
0

oo o=

0

S © O

-1

0
0
0

0]

o[1]-

|~V

NV,

nv,,
nv,

After perspective

division we get [

= v =

n

All vertices have ye
the same depth

Note that this perspective transformation discards information about
vertex depth and we will not be able to remove hidden surfaces later

eye

Ze

Projection Matrix 2/4

pseudodepth
* To fix the depth loss we may incorporate pseudodepth such that far plane +1
points on the near plane will be given a depth of —1 and points on Ay
the far plane will be at +1 Ve v
. Z b . - ,
* We just need to solve v, = % for a and b what gives us a set of "€2" plane wW=WwW_ 4
two equations as follows ‘ u'
_{ = aCmEb o a(-f)+b f u
-(-n) ’ (= n
. +f 2nf
Solution a = — , b= . for f #nand fn # 0 yields the new form
of projective transformatlon matrix])
- Ux
n 0 0 O [MUy] N, eye X,
O n 0 O v nv,, , vy Ye
= . = =1Nn
b=1{s 0o 4 b'DH av, 5| =V —v, z,
0 0 -1 0. L TV Note that projected points are in LHS (compare
Instead of a linear transformation of v, (i.e. nv,))) the orientation of z, and pseudodepth)

we can use a more general affine transformation
(i.e. av, + b) to solve the problem with the
same depth of vertices in a single line of sight.

Projection Matrix 3/4

Note that the pseudo depth is
already normalized

* Normalization transformation to NDC
We need to normalize the actual width of

2 /w 0 0 O the near plane w into the range of (—1, 1)
vo| 0 *2/h 0,0 '
0 0 1) 0 1 1
0 0 0 1.
where w = 2ntan(fov,/2) and h = 2n tan(fovy/Z) = w/aspect fov, n
fov,
fovy

fova

Projection Matrix 4/4

2/w 0 0O O]fn O O O]
e P=ND = 0 iZ/h 0 0]{0 n 0 0 = Use + when the clip control origin
0 0 1 0110 O a b is lower left and — when upper left
0 0 O 1110 0 -1 0.
1 /tan(fov, /2) 0 0 0]
_ 0 +1/tan(fov,/2) 0 O
0 0 a b
0 0 —1 O
where a = f and b = n_f . Also note that 1/tan(fov, /2) = aspect/tan(fov,/2) or

1/tan(fov,/2) = 1/(aspect tan(fovy/Z))

Perspective Projection

Note that the near plane is the projection plane

Fall 2025 Fundamentals of Computer Graphics 46

Orthographic Projection Matrix

2/w 0 0 O0J[L 0 0 O . |
0 +2/h 0 O0[|l0 1 0 © Solve the set of two equations
*P=ND = - =-1=a(-n)+b,1=a(-f)+b
ortho 0 0 1 ollo o a b foraacri((j bn) a(—f)
0 0 0O 1110 0 0 1.
2/w 0 0
Also note that w and h are just the physical — 0 iZ/h 0
dimensions of both near and far planes 0 0 a
L 0 0 0
where a = ——and b = 221

n-f n—-f

-~ o9

Example

input vertex in eye-space coordinates (m)

Camera (viewing frustum) parameters

, 4
aspect:=—
pect=3

fov_z:=67.38 deg

fov_y:=2-.atan [a.spect_1 - tan [

n:=23

f::s

Projection transformation

P i)

n—f
n0 0
M= 0n 0O
00 a
00 -1

Fall 2025

Normalization transformation

w::?-n-tan('fov_m]:dl h=:2-n-ta.n(‘fw_y]:3 h:=w-aspect ' =3
1 000 o]
aspect ratio of the front face of the frustum w L L UL
NZDE{](}:D 0.667 0 0
horizontal field of view h 00 L0
0010 0 0 01
fo;‘x)]:sa.ls deg vertical field of view (0 0 0 1)
distances of near plane and far plane Perspective projection matrix
1.5 0 0 0 [2.4
p=N.m=|0 %2 0 0 e vertex in 4D clip space coordinates
p22fom 0 0—4—15 1
n—f 0 0-1 0 L4 ... and after perspective division we get ...
0] [30 0 o0 1.2 =|[0.ﬁ]I
o] |03 0 0 M.v |0 P.v Jlo . . E
I e W_ T (P-v}.;_{ﬂ.%‘ output vertex in 3D NDC coordinates (-)
of [oo-1 0 1 M should be D matrix here (e

Fundamentals of Computer Graphics

48

Review of Coordinate Systems

Fall 2025

Model (local, object) space
Model matrix M

World space
View matrix V
View (eye, camera) space
Projection matrix P
Clip space
Perspective division

Normalized device coordinates

Viewport transform

Screen space

Fundamentals of Computer Graphics 49

Normal Vectors Transformation

* We cannot multiply matrix and normals as we do with vertices
matrix contains translation part which will clearly affect (damage) the normal

* Normal vector n,,, has to be transformed in a different way, by MV,, matrix

matrix = View Model
€.8. Vo5 = Vs
Model-View normal matrix MV,, = ((View Model)_l)T

e.g.n,c = MV, n,,.

Fall 2025 Fundamentals of Computer Graphics 50

Camera Movement

* In case of our camera model, all we know are vectors view from and view at
(other parameters like field of view or resolution are unimportant here)

* We may use two angles (yaw and pitch) to describe the rotation of our camera
around the point view from (our eye). We will not allow camera roll

Z

yaw (kurs/zatoéeni) To avoid gimbal lock and
S unwanted view flipping, we

should restrict the range of pitch
Ny angle, e.g. +80°

roll (natoceni)

¥ pitch (sklon/stoupani)

X

Camera Movement

* The question is how to initialize these two angles from known view from and
view at vectors

* If we assume our "zero" rotation position heading toward y-axis, we may
compute yaw and pitch angle as follows

yaw = atan2f(view dir.y, view dir.x) - M PI 2;

pitch = acosf(-view dir.z) - M PI 2;

* Note that the view_dir is normalized viewing direction vector.

Camera Movement

* After change of any angle, we need to update view at vector.

* To do so, we pitch our initial|"zero" rotation vector around x-axis and then we
apply yaw around z-axis

* Updating the view at vector is straightforward and the whole process can be
summarized as follows

Vector3 new view dir = Rz(yaw) * Rx(pitch) *|Vector3(0, 1, 0);
new view dir.Normalize();

view at = view_from + new_view dir;

Mouse and Keyboard Inputs in GLFW

* GLFW provides many kinds of input.

* All input callbacks receive a window handle allowing us to reference user pointer
(e.g. our class Rasterizer) from callbacks

glfwSetWindowUserPointer/ glfwGetWindowUserPointer

* Note that the key press event is reported only once and the repeat event occurs
after a while what induces a delay.

e Use raw mouse motion (as well as hidden cursor) for better control of the camera
rotation

* For further reference, see https://www.glfw.org/docs/3.3/input_guide.html

OpenGL

* Open Graphics Library for rendering 2D and 3D vector graphics

* Modern GPUs accelerate almost all OpenGL operations to achieve real-time
framerates

* APl released by SGI (OpenGL Architecture Review Board ARB) in 1992
* Since 2006 managed by the consortium Khronos Group

* Multiplatform, cross-language, client-server (same or different address space or
computer)

 HW vendor extensions are possible

e Current version is 4.6 (core profile, compatibility profile, shading language GLSL
4.60)

* https://www.khronos.org/registry/OpenGL/index_gl.php

OpenGL

1.0 (1992) — first release
1.1 (1997) — texture objects

3.1 (2009) — instancing, TBO, UBO
3.2 (2009) — geometry shader

e 1.2 (1998) — 3D textures, BGRA e 3.3(2010)
e 1.2.1 (1998) — ARB extension concept * 4.0 (2010) — tessellation
e 1.3(2001) — multitexturing * 4.1(2010)

1.4 (2002) — depth textures

1.5 (2003) — vertex buffer objects
2.0 (2004) — shader objects (GLSL)
2.1 (2006) — pixel buffer objects, sSRGB <+ 4.5(2014) — additional clip control
3.0 (2008) — frame buffer objects 4.6 (2017) — SPIR-V language

For further reference see https://www.khronos.org/opengl/wiki/History_of OpenGL
(*) https://www.khronos.org/opengl/wiki/Debug_Output

4.2 (2011) — atomic counters
4.3 (2012) — debug output*
4.4 (2013) — bindless textures

Other Graphics APls

* SGI RIS GL, 3dfx Glide, Microsoft DirectX 12, Apple Metal 3, AMD
Vantle, Vulkan 1.2 (initially released in 2016)

Fall 2025 Fundamentals of Computer Graphics

57

OpenGL vs Vulkan

Vulkan Explicit GPU Control
penGL|ES.
@ G Walkan.

Complex drivers lead to driver Application Application Simpler drivers for low-overhead
overhead and cross vendor responsible for efficiency and cross vendor
unpredictability » memory portability
Traditional allocation and
E . _graphics thread Layered architecture so validation
rror management is drivers include management to and debug layers can be unloaded
always active significant generate when not needed
context, memory command buffers
and error _ :
- Driver processes full management Direct GPU Run-time only has to ingest SPIR-V
o= shading language source Control intermediate language
(o]
2 Separate APIs for desktop Unified API for mobile, desktop,
and mobile markets GPU GPU

console and embedded platforms

Vulkan delivers the maximized performance and cross platform
portability needed by sophisticated engines, middleware and apps

Fall 2025 Fundamentals of Computer Graphics

OpenGL vs Vulkan

Ground-up Explicit APl Redesign

\
penGL. Wukan
™
Originally architected for graphics workstations Matches architecture of modern platforms
with direct renderers and split memory including mobile platforms with unified memory, tiled rendering
Driver does lots of work: state validation, dependency tracking, Explicit APl - the application has direct, predictable control
error checking. Limits and randomizes performance over the operation of the GPU
Threading model doesn’t enable generation of graphics Multi-core friendly with multiple command buffers
commands in parallel to command execution that can be created in parallel
E
- Syntax evolved over twenty years — complex API choices can Removing legacy requirements simplifies API design,
OO obscure optimal performance path reduces specification size and enables clear usage guidance
; Shader language compiler built into driver. SPIR-V as compiler target simplifies driver and enables front-end
z Only GLSL supported. Have to ship shader source language flexibility and reliability
O Despite conformance testing developers must often handle Simpler API, common language front-ends, more rigorous
implementation variability between vendors testing increase cross vendor functional/performance portability
(a4
-
=2

© Copyright Khronos Group 2015 - Page 14

Fall 2025 Fundamentals of Computer Graphics

OpenGL

* OpenGL is a pipeline concerned with processing data in GPU memory
* programmable stages
e state driven fixed-function stages
* OpenGL ES (subsets of OpenGL + some specific functionality) is a royalty-free,

cross-platform API for full-function 2D and 3D graphics on embedded systems
such as mobile phones, game consoles, and vehicles

* WebGlL is a cross-platform, royalty-free web standard for a low-level 3D graphics
API based on OpenGL ES

* SPIR-V is a binary intermediate language for representing graphical-shader stages
and compute kernels for multiple Khronos APIs, such as OpenCL, OpenGL, and
Vulkan

OpenGL

 OpenCL is an open, royalty-free standard for cross-platform, general purpose
parallel programming of processors found in personal computers, servers, and
mobile devices, including GPUs.

* interop methods to share OpenCL memory and image objects with
corresponding OpenGL buffer and texture objects

OpenGL Context

Window system provided (default framebuffer) or
application created (framebuffer objects — FBOs)

Internal global state owning OpenGL

objects (textures, buffers, shaders) Framebuffers

Context
state interaction

API calls change current context

Processed independently, in

Command Primitives order, and in the same way

Vertices

Position, color, normal,
texture coords. etc.

Fall 2025 Fundamentals of Computer Graphics 62

OpenGL Context

* OpenGL is a state machine (collection of variables)
* It's current state is referred to as the OpenGL context
» C-library API consist of state-changing functions

struct Object {
int option_1;
float option_2;
}s

struct OpenGLContext {
ObjectName * object _Target = 0;
} opengl_context; OpenGL allows binding to several buffers at once

GLuint object id = o; as long as they have a different type/target

glGenObject(1, &object _id);
glBindObject(GL_TARGET, object _id); // bind before usage

glSetObjectOption(GL_TARGET, GL_OPTION 1, 123);
glSetObjectOption(GL_TARGET, GL_OPTION 2, 3.14);
glBindObject(GL_TARGET, 0);

glDelete(1, &object_id);

Fall 2025 Fundamentals of Computer Graphics

63

Phong Reflection Model

e Designed by Bui Tuong Phong in 1975

* Baseline shading method for many rendering applications

Ambient + Diffuse Specular = Phong Reflection

lllustration of the components of the Phong reflection model (Ambient, Diffuse and Specular reflection)
Source: Brad Smith

Phong Reflection Model
A

v

e Original definition
ix/i

X

s sV
C=1I,my+ Y isimieiighesTama(f - 1) + I;mg(D- 1)) where

I, =2(r-Da-1

For a white source set I, = I; = I, = (1,1, 1). You can also extend the model with attenuation based on
distance from the source.
The material definition includes ambient, diffuse, and specular colors, and a real value y called shininess

Reflection

2(v-n)n
Al\
AN
N
R
~ \\
n i \\
N
AN
v Gl G 5| r= 2(17 . ﬁ)ﬁ — D
- v-n

Fall 2025 Fundamentals of Computer Graphics

Result of Second Exercise

Fall 2025

¥ Image

Fundamentals of Computer Graphics

¥ Ray Tracer Params

Surfaces

Materials
Vsync

float

Application average 16,662 ms/frame (60.0 FPS)

67

Normal Shader

* We can easily see that normal cannot be represented in RGB space directly

/———N\\
~ ~

/// \\\
Y, G // \\ .
n+(1,1,D7 / \ Space of possible
n = /" RGB color space \ o
RGB 2 Ll cub . ,colorized” normals
| . .
Sl ,_(Er\"t cube) | (sphere with unit
Space of possible normals 7 ‘v/ IRNA | diameter and centered
. > /
(unit sphere) // N S / at (0.5, 0.5, 0.5))
n /
/" MRGB { \ \ /
/ \ \\){ /
—~ / \ 7\ //
nl: (—1,0’0)71 \\\ \\></ | ////
| o
—1 \\ 0 // 1 X, R
\ /
\ /
\ /
\\ /
Note that the z-axis, resp. the blue color axis, N ///
are omitted for the sake of brevity S~—_ | -7

RGB vs sRGB Color Spaces

* RGB color space is any additive color space based on RGB color model that
employs RGB primaries (i.e. red, green, and blue chromacities)

* Primary colors are defined by their CIE 1931 color space chromacity coordinates
(x,¥)

 Specification of any RGB color space also includes definition of white point and
transfer function

* SRGB is one of many (but by far the most commonly used) color spaces for
computer displays

* Our renderer will produce sRGB images

Specifications of RGB color spaces

Primaries Transfer function parameters
White
Color space Standard Year Gamut - Red Green Blue a B <] Bd
poin y
XR YR XG yG XB YB a+1 Kolp = E¢ P Ko
I1SO RGB Limited
floating floating
Extended ISO RGB Unlimited
scRGB IEC 61966-2-2 2003 (signed)
I sRGB IEC 61966-2-1 1890, 1996 D65 0.64 0.33 0.30 0.60 0.15 0.06 1.0565 |0.0031308 1—52 12.92 | 0.04045 I
20
HDTV ITU-R BT.709 1999 b b 1.089 | 0.004 g 45 0.018
064 o033 039 060 445 006 g
Adobe RGB 98 1998 021 071 1 0 21 o
EBU 3213-E, ITU-R 2o 14
PAL / SECAM 1870 0.29 0.60 1 0 5 |1 0
BT.470/601 (B/G)
CRT
Apple RGB 0.625 0.28
SMPTE RP 145 (C), 20
NTSC 1987 0.34 0.585 |0.155 | 0.07 1.1115 | 0.0057 T 4 0.0228
170M, 240M 0.63 0.31
NTSC-J 1987 D93
NTSC (FCC) ITU-R BT.470/601 (M) 1953 C 1 0 % 1 0
1999 (v1) 067 033 |021 (071 |014 008
eciRGB 1SO 22028-4 ' D50 1.16 0.008856 3 9.033 | 0.08
2007, 2012
DCI-P3 SMPTE RP 431-2 2011 Theater
0.68 0.32 0.265 | 0.69 0.15 0.06 1.055 |0.0031308 12 12.92 | 0.04045
Display P3 SMPTE EG 4321 2010 5
D65
UHDTV ITU-R BT.2020, BT.2100 2012, 2016 0.708 ' 0.282 |0.170 |0.797 |0.131 | 0.046 1.0993 | 0.018054 4.5 0.081243
Adobe Wide Gamut Wide 563
0.735 |0.265 |0.115 0.826 0.157 | 0.018 |1 0 555 | 1 0
RGB
RIMM 1SO 22028-3 2006, 2012 D50 1.089 |0.0018 % 5.5 0.089
ROMM RGE, 0.1596 | 0.8404 | 0.0366 | 0.0001 7
1SO 22028-2 2006, 2013 0.7347 | 0.2653 1 0.001953125 | 16 0.031248
ProPhoto RGB
CIE RGB 1931 0.2738 | 0.7174 | 0.1666 0.0089
E
CIE XYZ 1931 Unlimited 1 0 0 1 0 0 1 0 1 1 0

Source: https://en.wikipedia.org/wiki/RGB_color_space

Fall 2025 Fundamentals of Computer Graphics

Color Gamut

* A color gamut is defined as a range of colors that a
particular device is capable of displaying or recording

* It usually appears as a closed area of primary colors in
a chromaticity diagram. The missing dimension is the
brightness, which is perpendicular to the screen or

paper)
e Color gamut is displayed as a triangular area enclosed

by color coordinates corresponding to the red, green,
and blue color

0.9
1 520 ProPhoto RGB

] Colormatch‘v RGB:
0.61 !

5007
0.51

0.4

0.21

0.14]

CIE 1931 XYZ color space

540

Adabe RGB 1998

560

SRG

H T AR ’\\\

SWOP CMYK

|
ik D85 white point \{

if| i

Color Gamut

* SRGB - by far the most commonly used color space for computer displays
 NTSC — standard for analog television

 Adobe RGB (1998) - encompass most of the colors achievable on CMYK color
printers, but by using RGB primary colors on a device such as a computer display

* DCI-P3 — space for digital movie projection from the American film industry
 EBU — European color space surpassing the PAL standard

* Rec. 709 - shares the sRGB primaries, used in HDTVs

* Rec. 2025 — 4K or 8K resolution at 10 or 12 bits per channel

« Remember that 72% NTSC is not sRGB (which is often claimed). Matching the
ratios of the color gamut areas does not necessarily guarantee the ability to
achieve the same image (the degree of overlap of the triangles is important and
not the ratio of their areas).

Linear sSRGB and Gamma Compressed sRGB

* Images displayed on monitors are encoded in nonlinear sRGB color space to
compensate the transformation of brightness the monitor does

* Our render has to work in linear space as we are using linear operations with
colors

* Every texel and material color have to be processed in linear sSRGB color model

* Only the final color values stored in framebuffer are converted back to gamma
compensated sRGB values

* Issue with blending two sRGB colors in non-linear color space:
Csrgp = AAgrgp + (1 —a)Bggp doesn work well 1
Crgp = aArgp + (1 — a)Bryyp correct
Note the'undesirable dark
Csrgp = TOSRGB (a ToRGB(Asrgb) +(1—a) ToRGB(Bsrgb)) correct silhouettes when mixing two

colors directly in sSRGB space

(created in paint.net)
Fall 2025 Fundamentals of Computer Graphics 73

Gamma Correction

* The human visual system response is logarithmic, not linear, resulting in the
ability to perceive an incredible brightness range of over 10 decades

 Gamma characterizes the reproduction of tone scale in an imaging system.
Gamma summarizes, in a single numerical parameter, the nonlinear relationship
between code value (in an 8-bit system, from 0 through 255) and luminance.
Nearly all image coding systems are nonlinear, and so involve values of gamma
different from unity

* The main purpose of gamma correction is to code luminance into a perceptually-
uniform domain, so as optimize perceptual performance of a limited number of
bits in each channel

Source: POYNTON, Charles A. The rehabilitation of gamma, 2000.

SRGB Transfer Functions

* Function returns gamma-expanded (or linear)
SRGB values from gamma-compressed (or non-
linear) sRGB values

float c_linear(float c_srgb, float gamma = 2.4f)
{

if (c_srgb <= 0.0f) return 0.0f;

else if (c_srgb >= 1.0f) return 1.0f;

assert((c_srgb >= 0.0f) & (c_srgb <= 1.0f));
if (c_srgb <= 0.04045f)

return c_srgb / 12.92f;
}

else
{
const float a = 0.055f;
return powf((c_srgb + a) / (1.0f + a), gamma);
¥
}

* Function returns gamma-compressed (or non-
linear) sRGB values from gamma-expanded (or

linear) sRGB values

float c_srgb(float c_linear, float gamma = 2.4f)

}

if (c_linear <= 0.0f) return 0.0f;
else if (c_linear >= 1.0f) return 1.0f;

assert((c_linear >= 0.0f) & & (c_linear <= 1.0f));

if (c_linear <= 0.0031308f)

{

return 12.92f * c_linear;

}

else

{
const float a = 0.055f;
return (1.0f + a)*powf(

}

c_linear, 1.0f / gamma) - a;

Tone-mapping

* A process which maps an input image of high dynamic range (HDR) to a limited
low dynamic range (LDR)

» Typical output devices such as LCD monitors have LDR (i.e. accept values with a
very narrow range of (0, 1))

* Aray tracer produces linear HDR outputs with a potentially unlimited range of
(0,)

* We need to scale down these HDR values into LDR somehow

* We can use various (tone)-mapping operators (or functions) to do so

Background (Environment) Images

e Cube map —six square textures {+x, +y, +z}

* Firstly, select the one of the six maps

oY +1 (3,1.5,0.9)

+1

Based on the index of largest component
[in absolute value of directional vector d
it el select the one of the six square maps.

e Secondly, compute u and v coordinates

L u=1 Source: http://www.humus.name
A . . : : u' dy
1 From similar triangles we can easily see that 1= T and after the
1 o[[u'+1 |
\ / —remec NOrmalization of u’ we get u = - The same holds for v
n u=i coordinate.

Fall 2025 Fundamentals of Computer Graphics 77

Textures Bilinear Interpolation

* Colors (or other values) obtained from textures should be interpolated using
bilinear interpolation at least

Nearest neighbor interpolation Bilinear interpolation

1 spp at pixel center 1 random spp 1 spp at pixel center

Fall 2025 Fundamentals of Computer Graphics 78

Bilinear Interpolation

* Number of required samples
* Nearest neighbor: 1 sample
e 2D bilinear interpolation: 2x2=4 samples
» 2D bicubic interpolation: 4x4=16 samples

B - V‘
i |

20) () B

neighbour Bilinear Bicubic

H M Mr

‘ 1D nearest- Linear Cubic
neighbour

Nearest neighbor Bilinear Bicubic

Source: https://en.wikipedia.org/wiki/Bilinear_interpolation

Fall 2025 Fundamentals of Computer Graphics 79

Bilinear Interpolation

* For more detailed explanation refer to the link below

yol Q2 Re 97
NI
Ty — T T—x | . |
f@y1) ~ == F(Qu) + — - f(Qx)

- g — & r — I
f(z,y2) = P—— f(Qi2) + P—— f(Q22)
f(z,y) |~ 2 Y f(z,Y1) + y11 f(z,y2) Yit---- +Q-1-1 ------- P4 +le-

(:17 - Qll) ‘|‘ f(Q21)) + ZZ__Z;II (;22__;1 f(le) + ;2__1;11 f(QZZ)))I<1 X)'(2
= _xl)l(w) (F(Qu)(z2 — =) (y2 — y) + f(Q21)(z — 1) (32 — y) + f(Qu2) (%2 —) (y — 31) + f(Q22) (= — z1)(y — 31))

This is the resulting value of interpolated quantity at the point P

Source: https://en.wikipedia.org/wiki/Bilinear_interpolation

Fall 2025 Fundamentals of Computer Graphics 80

Composition

* In the case of the image from the previous slide, the color C* from i-th hit point
on opaque dielectric surface is computed as follows

C' = CPhong + Crefl R(6;)

Where Color of the light source, e.g. (1,1,1)

Crnong = Le (mq +9(p,1,) (ma(ly - 7) + my (L, - 9)")),

Visibility function between the hit point
p and the position 1, of an omni light

C.cf1 is color returned by the reflected ray, and R is Schlick's approximation of hit
point reflectivity

Composition

newmtl white_phong

Ni 1.460

Ka ©.01 0.01 0.01
Kd ©.95 0.95 0.95
Ks 0.8 0.8 0.8
map_Kd 4150pe4.jpg

shader 3

newmtl white_phong_3069bp13
Ns 20

newmtl green_glass
Tf 0.4 0.001 0.4
Ni 1.5
shader 4

Fall 2025

Notes:

Ka, Kd, and Ks are treated as RGB
values stored in SRGB gamma
compressed space to match values
stored in texture files

Tf (in case of shader 4 - glass) is
treated as RGB value representing

attenuation coefficient

Recursion depth is set to 10

Fundamentals of Computer Graphics

82

Diffuse Material

* Incident ray is scattered at many angles

* |deal diffuse material is said to be Lambertian = equal luminance (radiance) when
viewed from all directions lying in ,,upper” hemisphere

* Good examples of solid diffuse reflectors are plaster, paper, or polycrystalline
materials (exhibit subsurface scattering mechanism caused by internal
subdivisions)

* Few materials do not cause diffuse reflection: metals (do not allow light to enter),
gases, liquids, glass, and transparent plastics

Local Reference Frame

 Hemisphere samples generated in RS must be (at some point in the ray tracing
pipeline) transformed to WS

In the case of isotropic BRDFs, the rotation of vectors
0, and 0, around the normal 11 does not matter

Fall 2025 Fundamentals of Computer Graphics 84

Local Reference Frame

* Derive transformation matrix (RS - WS) from surface normal n

* Vector 11 and any non-parallel vector a define a plane (we assume that the plane is
passing through the origin)

 This plane has normal 0, such that 0, = i X a and by definition, the vector 0, is
perpendicular to 1. The remaining question is how to construct such a vector a?

inline Vector3 orthogonal(const & n) 0> where a = (0,0,1) 0; where a = (1,0,0)
{

return (abs(n.x) > abs(n.z)) ? (n.y, -n.x, 0.0f) : (@.0f, n.z, -n.y);
}

* The remaining third axis can be computed as 0; = 0, X 7 yelding vector
perpendicular to both 0, and n

* Now we can construct a change-of-basis matrix Tps_,1ys that transforms vector in the
reference (local) space (RS) to the world space (WS)

Local Reference Frame

Trs—ows = l01 0, n]

* Inverse transformation can be computed as follows
_ -1
Tws—rs = Trsows
* Moreover, the matrix Trs_,1ys belongs to a special orthogonal group SO(3), also

called the 3D rotation group (matrices of orthonormal basis) for which holds that
QQT = I for every Q € SO(n). Also note that for any nonsingular A: AA™1 =1

* This property allows us to calculate the inversion of the transformation matrix
using simpler (and faster) transposition

— 7—1 7T
TWS—>RS — TRS—>WS — TRS—>WS

Tangent-Bitangent-Normal

Side note: Texture coordinates are interpolated linearly

(barycentric interpolation) across the triangle. Hence,
the derivatives are all constant and we can calculate

° P1 . P() — el — Ault _|_ Avlb tangents/bitangents per triangle.

¢ PZ — PO —_ ez — AU,Zt + szb e, and t, b are 3D row vectors

« Au, = P* — P, Av, = P? — PY

¢ AUZ = P%L — Pg)l, sz = Pg — Pg)] Pi{u'v}are u, resp. v, texture coordinates of i-th vertex

... ahd we want to solve for t and b...

] — [[t] Transformation matrix TBNrs_ys = (f b >

-1 :

I'tb -
1 B
] [] - AulsziAuzAvl —Asziz AAL:1] [2]

Tangent-Bitangent-Normal

* It is not necessarily true that the tangent vectors t and b are
perpendicular to each other or to the normal vector n

* We may assume that these three vectors will be nearly orthogonal.
Use Gram-Schmidt orthogonalization proces to fix that

* To find the tangent vectors for a single vertex, we average the
tangents for all triangles sharing that vertex in a manner similar to the
way in which vertex normals are commonly calculated. In the case
that the neighboring triangles have discontinuous texture mapping,
vertices along the border are generally already duplicated since they
have different mapping coordinates anyway.

The Gram—=Schmidt Process

* The Gram—-Schmidt process works as follows

u;
u; = Vv, €1 =
[]
. up
Uz = V2 — Projy, (v2), € =
[z |
. . us
U3 = V3 — Projy, (v3) — Pro]y, (v3), €3 =
[[as |
. . . Uy
Wy = V4 — Proj,, (v4) — proj,, (v4) — proj,, (va), e4= g
4
k—1
. Uy
w, = vp — > proj,. (vi), er =
j=1 [

where proj;(v) = (v - 0)u
Source: https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process

Tangent-Bitangent-Normal

* Using this process, orthogonal (but still unnormalized) tangent
vectors t’' and b’ are given by

t' =t— (t-n)n
b=b—(b-A)A— (b -tht /t=
and the new TBN matrix takes the form

TBNTS_>WS=(P b’ ﬁ)

Unified Normals

Vertex shader file

layout (location = ©) in vec4 in_position ms; // (x, y, z, 1.0f)
layout (location = 1) in vec3 in_normal_ms;

uniform mat4 mvn; // Model View

uniform mat4 mvn; // Model View Normal

out vec3 unified_normal_es;

Coid main(void)

{

unified_normal_es = normalize((mvn * vec4(in_normal_ms.xyz, 0.0f)).xyz);
vec4 hit_es = mv * in_position_ms; // mv * vec4(in_position ms.xyz, 1.0f)
vec3 omega_i_es = normalize(hit_es.xyz / hit_es.w);

if (dot(unified_normal_es, omega_i es) > 0.0f)

{
}

unified_normal_es *= -1.0f;

Fall 2025 Computer Graphics Il

Incorrect flip tonditio
n-(0,0,1) =

Correct flip cond

fi-(-d)<0

where d = hit — 0
0

91

Vertex Buffer

glGenVertexArrays(1, &vao_);

glBindVertexArray(vao_);

glGenBuffers(1, &vbo_); // generate vertex buffer object (one of OpenGL objects) and get the unique ID corresponding to that buffer
glBindBuffer(GL_ARRAY_BUFFER, vbo_); // bind the newly created buffer to the GL_ARRAY_BUFFER target

glBufferData(GL_ARRAY_BUFFER, sizeof(Vertex)*no_vertices, vertices, GL_STATIC_DRAW); // copies the previously defined vertex data
into the bufter's memory

// vertex position

glVertexAttribPointer(@, 3, GL_FLOAT, GL_FALSE, vertex_stride, (void*)(offsetof(Vertex, position))); #tpragma pack(push, 1)
glEnableVertexAttribArray(0); ?truct Vertex
// vertex normal Vector3 position;
glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, vertex_stride, (void*)(offsetof(Vertex, normal))); Vector3 normal;
_ Vector3 color;
glEnableVertexAttribArray(1); Coord2f texture_coords;
Vector3 tangent;
) ' int material index{ © };
// material index char pad[4]; // fill up to 64 B
glVertexAttribIPointer(5, 1, GL_INT, vertex_stride, (void*)(offsetof(Vertex, material index))); s
) #tpragma pack (pop)
glEnableVertexAttribArray(5);

Fall 2025 Computer Graphics Il 92

Bindless Textures

* Classical approach: bound texture to a texture unit (represented as an
uniform variable, e.g. sampler2D, in shaders)

* The number of textures is limited to the number of texture units supported by
the OpenGL driver (at least 16)

* Spending time binding and unbinding textures between draw calls

* If OpenGL reports support for GL_ARB_bindless_texture, we can get
around these problems (Intel HD 630 with driver 23.20.16.4944+)

* This ext. allows us to get a handle for a texture and use that handle
directly in shaders to refer the underlying texture

Source: OpenGL SuperBible (7th edition)

Adding Extensions to OpenGL

Glad

Multi-Language GL/GLES/EGL/GLX/WGL Loader-Generator based on the official specs.

1. Visit https://glad.davld.de and fill it accroding the
Language Specification |eft Image

C/Cee J openaL . 2. Download the generated glad.zip
- 3. Replace all files in libs/glad directory
AP;l — Profle 4. Rename glad.c to glad.cpp in libs/glad/src
e : e © 5. Replace all includes in glad.cpp
gles1 None v
glesz None § #include <stdio.h>
e N v #%nclude <stdZ.Lib.h>
one #include <string.h>
N #include <glad/glad.h>

with the following single line

G _ARD_LoZ_CUlTipaciiey
GL_ARB_ES3_1_compatibility
GL_ARB_ES3_2_compatibility
GL_ARB_ES3_compatibility #include "pch.h"
GL_ARB_arrays_of_arrays

GL_ARB_base_instance

GL_ARB_blend_func_extended

GL_ARB_buffer_storage

GL_ARB_cl_event v

~ | GL_ARB_bindless_texture |

Fall 2025 Computer Graphics Il 94

Bindless Textures

void CreateBindlessTexture(GLuint & texture, GLuint64 & handle, const int width, const int height, const GLvoid * data)

{
glGenTextures(1, &texture);

glBindTexture(GL_TEXTURE_2D, texture); // bind empty texture object to the target

// set the texture wrapping/filtering options

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG _FILTER, GL_LINEAR);

// copy data from the host buffer

glTexImage2D(GL_TEXTURE_2D, @, GL RGB, width, height, @, GL BGR, GL UNSIGNED BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, ©); // unbind the newly created texture from the target
handle = glGetTextureHandleARB(texture); // produces a handle representing the texture in a shader function
glMakeTextureHandleResidentARB(handle);

} Details on https://www.khronos.org/registry/OpenGL/extensions/NV/NV_bindless_texture.txt

Fall 2025 Computer Graphics Il 95

Materials as SSBO with Bindless Textures

MTL file:

newmtl white_plastic

GLMaterial * gl materials = new |GLMateriall[materials_.size()]; Pr0.5

Kd1.01.01.0
int m = 9; map_Kd scuffed-plastic6-alb.png
for (const auto & material : materials_) map_RMA plastic_02_rma.png
{ norm scuffed-plastic-normal.png

auto tex _diffuse = material.second->texture(Map::kDiffuse);

if (tex_diffuse)

{
GLuint id = ©;
CreateBindlessTexture(id, gl materials[m].tex_diffuse_handle, tex_diffuse->width(), tex_diffuse->height(),|tex_diffuse->data());
gl materials[m].diffuse = Color3f({ 1.0f, 1.0f, 1.0f }); // white diffuse color

}
else #tpragma pack(push, 1) // 1 B alignment
{ struct GLMaterial

GLuint id = ©; {

GLubyte data[] = { 255, 255, 255, 255 }; // opaque white Color3f diffuse; // 3 * 4B

CreateBindlessTexture(id, gl materials[m].tex diffuse handle, 1, 1, data);

. . . — . . GLbyte pado[4]; // + 4 B = 16 B
1 materials[m].diffuse = material->value(Map::kDiffuse); d 2
} 8- [m] (P) GLuint64 tex diffuse handle{ © }; // 1 * 8 B

m++; GLbyte pad1[8]; // + 8 B =16 B

} }s
#tpragma pack(pop)

GLuint ssbo_materials = 0;
glGenBuffers(1, &ssbo_materials); see http://www.catb.org/esr/structure-packing/
glBindBuffer(GL_SHADER STORAGE_BUFFER, ssbo materials);
const GLsizeiptr gl_materials_size = sizeof(GLMaterial) * materials_.size();
glBufferData(GL_SHADER _STORAGE_BUFFER, gl materials size, gl materials, GL_STATIC DRAW);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, ©, ssbo_materials);
glBindBuffer(GL_SHADER_STORAGE BUFFER, ©);

Materials as SSBO with Bindless Textures

Vertex Shader
#tversion 450 core
// vertex attributes

layout (location = ©) in vec4 in_position_ms;
layout (location = 1) in vec3 in_normal_ms;
layout (location = 2) in vec3 in_color;

layout (location = 3) in vec2 in_texcoord;
layout (location = 4) in vec3 in_tangent;
layout (location = 5) in int in_material_index;

// uniform variables
uniform mat4 mvp; // Model View Projection
uniform mat4 mvn; // Model View Normal (must be orthonormal)
// output variables
out vec3 unified_normal_es;
out vec2 texcoord;
flat out int material index;
void main(void)
{
// model-space -> clip-space
gl Position = mvp * in_position_ms;
// normal vector transformations
vecd4 tmp = mvn * vecd4(in_normal_ms.xyz, 1.0f);
unified normal es = normalize(tmp.xyz / tmp.w);
// 3ds max related fix of texture coordinates
texcoord = vec2(in_texcoord.x, 1.0f - in_texcoord.y);
material index = in_material index;

Fragment Shader
#version 460 core
#extension GL_ARB_bindless_texture :
#extension GL_ARB_gpu_shader_int64 :
// inputs from previous stage

require
require // uint64_t

in vec3 unified normal_es;
in vec2 texcoord;

flat in int material_ index;
struct Material

From the previous slide

0, ssbo_materials);
vec3 diffuse;

uinte4 t tex diffuse;

glBindBufferBase(GL_SHADER STORAGE_BUFFER,

}s
layout (std430, binding = :l) readonly buffer Materials
{
Material materials[]; // only the last member can be unsized
array
}s
// outputs
out vec4 FragColor;
void main(void)

FragColor = vec4(materials[material index].diffuse.rgb *
texture(sampler2D(materials[material index].tex diffuse),
texcoord).rgb, 1.0f);

}

Fall 2025

Computer Graphics Il 97

PBR Materials as SSBO with Bindless Textures

Rasterizer::InitMaterials

#pragma pack(push, 1) // 1 B alignment
struct GLMaterial

{
Color3f diffuse; // 3 * 4 B
GLbyte pado[4]; // + 4 B = 16 B
GLuint64 tex_diffuse handle{ @ }; // 1 * 8 B
GLbyte padl[8]; // + 8 B = 16 B
Color3f rma; // 3 * 4 B
GLbyte pad2[4]; // + 4 B = 16 B
GLuint64 tex_rma_handle{ © }; // 1 * 8 B
GLbyte pad3[8]; // + 8 B = 16 B
Color3f normal; // 3 * 4 B
GLbyte pad4[4]; // + 4 B = 16 B
GLuint64 tex_normal_handle{ © }; // 1 * 8 B
GLbyte pad5[8]; // + 8 B = 16 B
s

#pragma pack(pop)

Structure packing really matters here. More datails on the
std430 layout rules can be found in OpenGL specification.

Fragment Shader

struct Material

{

}s

layout (std43@, binding = @) readonly buffer Materials

}s

vec3 diffuse; // (1,1,1) or albedo
uint64_t tex_diffuse; // albedo texture

vec3 rma; // (1,1,1) or (roughness, metalness, 1)<—
uint64_t tex_rma; // rma texture

vec3 normal; // (1,1,1) or (0,0,1)
uinte4_t tex_normal; // bump texture

Material materials|[];

Note that the second
option is chosen when
the corresponding
texture is not available

Fall 2025 Computer Graphics Il 98

Bindless Textures on Intel IGPs

N =

According the GLSL spec, opaque types like
sampler2D cannot be used in structures (although
some drivers allow that — e.g. NVidia)

The GL_ARB_gpu_shader_int64 extension is not
available on Intel IGPs like HD 630 or Iris 645 thus
we cannot simply replace sampler2D with uint64_t
in Material structure

As a consequence, we have to use different 64-bit
data type for our bindless texture handles
Fortunately, we can use uvec2 data type instead

remove GL_ARB _gpu_shader_int64 extension
replace uint64_t with uvec2

cast uvec2 texture handle to sampler2D in texture
function calls

C++ part of our code remains the same

Fragment Shader
#version 460 core

#textension GL_ARB_bindless_texture : require

struct Material
vec3 diffuse;
//sampler2D tex_diffuse; // not allowed by GLSL spec in structs

//uint64_t tex_diffuse; // not available on Intel IGPs
uvec2 tex_diffuse;

-

vec3 diffuse = texture(sampler2D(
materials[material index].tex diffuse), texcoord).rgb;

Provoking Vertex

* In case of flat shaded interpolants (e.g. material index), we have to
specify from which vertex of a single primitive will be taken

 Call glProvokingVertex to set the desired mode which vertex is to be
used as the provoking vertex

e GL_FIRST VERTEX_CONVENTION

Primitive Type of Polygon i First Vertex Convention Last Vertex Convention
 GL_LAST _VERTEX_CONVENTION (default) [e ' '
erau P

-_— -_— - independent line 2i-1 2i

line loop i i+1,ifi<n
1,ifi

line strip i i+1
independent triangle 3i-2 3i
triangle strip + 2
triangle fan i+ 1 i+ 2
line adjacency 4i - 2 4j-1
line strip adjacency i+ 1 i+ 2
triangle adjacency 6i-5 6i-1
triangle strip adjacency 2i-1 2i+ 3

Entity Component System (ECS) — EMTeee-

https://github.com/skypjack/entt

* EnTT uses sparse-set-based component storage, which means components of the same type are
stored contiguously in memory. This makes iteration over entities with certain components
extremely fast — critical for game loops and real-time systems like physics, rendering, and Al

* It also allows operations without the overhead of virtual function calls or inheritance
hierarchies

* Entities are just IDs, decoupled from data
* Components are plain structs or classes

» Systems operate on views of entities that have specific components — no rigid inheritance tree
needed

* Uses C++11/14/17 features like variadic templates, constexpr, and type-safe identifiers
* No need for macros or code generation — everything is compile-time type-checked

* Supports move semantics, so components can be moved efficiently without unnecessary copies

Entity Component System (ECS) — EMTeee-

https://github.com/skypjack/entt

* EnTT provides on_construct, on_destroy, and on_update signals for components. This allows easy
event-driven programming:

* Trigger initialization when a component is added
* Clean up when an entity is destroyed
* React to component changes efficiently

* While ECS is naturally flat, EnTT supports parent-child relationships, custom tags, and metadata

* You can implement scene graphs, transform hierarchies, or grouped entities without breaking
the ECS paradigm

* Coupled with views, this makes it easy to traverse complex entity relationships efficiently
* Lightweight and header-only — easy to integrate into any engine

* Well-maintained and widely used, with a strong community

Constructors

struct Mesh {
Mesh() // explicit constructor with no parameters, e.g. Mesh a; calls this constructor
Mesh(const Mesh & mesh) // explicit copy constructor, e.g. Mesh b = a; calls this constructor

Mesh(Mesh &&) noexcept = default; // forces implicit move constructor (because a copy constructor, a copy
assignment operator, a destructor (even if default but user - provided), or a move constructor / assignment
operator prevent the implicit move constructor),

e.g. Mesh a = make _mesh(); or Mesh b = std::move(a); calls this constructor

Mesh
e.g.

Mesh & operator=(const Mesh & a) // re-enable implicit copy assignment operator

operator=(const Mesh &) = delete; // removes implicit copy assignment operator,
a, calls this operator

Il

Mesh & operator=(Mesh &&) = delete; // delete copy assignment operator
Mesh & operator=§ Mesh & & a) // re-enable implicit move assignment operator,
e.g. b = std::move(a) calls this operator

~Mesh() // explicit destructor
}s

Fall 2025 Fundamentals of Computer Graphics

103

PBR Workflow

* Physically-based material workflows:

* Metallic-Roughness workflow

* Base color (albedo) = diffuse is represented as a color map without any lighting in the
range 30-240 sRGB (for dielectrics) or pure black color (for conductors)

* Metalicity is typically a binary (or linearly interpolated grayscale) texture containing O°s
(dielectrics) and 1‘s (metals)

* Roughness — a grayscale linear texture in the range 0 (smooth) and 1 (rough)

* Specular-Glossines workflow
 Diffuse (Albedo) — RGB map

e Specular — RGB map

* Glossines — a grayscale linear texture that describes the surface irregularities that cause
light diffusion. It is the inverse of the roughness map

Filament PBR Materials

BASE COLORys#ce
Defines the perce or of an object (sometimes called albedo). More precisely Jefine perceived smoothness (0.0) or
» Lhe diffuse color of = non-metallic obje tis sometimes called glossiness
— the specular color of a metallic object
NON-METALLIC
BASE COLOR LUMINOSITY

—_— 1
Metal range
170-255

METALLIC SAMPLES . k4 4 A .

Aluminum Platint ror I Coppe Gold B
; el i il bl ; METALLIC

ular y for non-metals. The

il | P REFLECTANCE crayscae

R —
| Common dielectri Gemstone

All dielectrics

s dielectric (0.0, non-metal) or conductor (1 0, metal)
are rare and will be either 0.0 or 1.0

SAMPLES

LLLLLILLLE f

NON-METAL/DIELECTRIC METAL/CONDUCTOR

Fall 2025 Fundamentals of Computer Graphics 105

Unity PBR Materials

ALBEDO RGB
ALBEDO DEFINES THE OVERALL COLOUR OF AN OBJECT
VALUES USUALLY MATCH THE PERCEIVED COLOUR OF AN OBJECT
MEDIAN LUMINOSITY
[
NON-METALS METALS
NON-METAL SRGB RANGE METAL SRGB RANGE

NON-METAL EXAMPLE VALUES

METAL EXAMPLE VALUES

METALLIC R

METALLIC DEFINES WHETHER A SURFACE APPEARS TO BE METAL OR NON-METAL
WHILST PURE FACES WILL BE EITHER OR BEAR IN MIND FEW PURE, CLEAN, WEATHERED MATERIALS EXIST IN REAL LIFE
WHEN TEXTURING A METALLIC MAP THIS VALUE WILL ALWAYS BE GREYSCALE AND IS STORED IN THE R CHANNEL OF AN RGB FILE

GREYSCALE

1).2 0.3 0.4 0.6 0.7 0.8 0.9
ALMOST ALL NON-METALS = ALMOST ALL METALS =

SMOOTHNESS DEFINES THE PERCEIVED GLOSSINESS OR ROUGHNESS OF A SURFACE
FORTEXTURES, THIS IS STORED AS THE ALPHA CHANNEL OF THE METALLIC MAP

METALS
(

0.1 0.3 4 0.5 0.6 7 8 0.9

0.0 1
NON-METALS

Fall 2025 Fundamentals of Computer Graphics 106

PBR Textures and Materials

* On-line sources of free seamless PBR textures with Diffuse, Normal,
Displacement, Occlusion, Specularity and Roughness maps:

Fall 2025

https://ccOtextures.com
https://texturehaven.com
https://www.poliigon.com
https://freepbr.com
https://3dtextures.me

Fundamentals of Computer Graphics

107

