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Object Detection
What is the output of object detection methods? 
• Position of the object of interest
• Scale/size/bounding box of the object of interest
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Object Detection
• Haar
Cascade classifier in OpenCV
Paul Viola and Michael Jones
Rapid Object Detection using a Boosted Cascade of Simple Features

• HOG 

• LBP

• SIFT
• SURF                                                  

• CNNs
• R-CNNs/YOLO/SSD

Traditional Approaches 
(sliding window)

Deep Learning Approaches

KeyPoints Approaches
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Sliding Window

• In general, the sliding window technique represents the popular and successful 
approach for object detection. The main idea of this approach is that the input 
image is scanned by a rectangular window at multiple scales. The result of the 
scanning process is a large number of various sub-windows. A vector of 
features is extracted from each sub-window. The vector is then used as an 
input for the classifier (e.g. SVM classifier). 

• During the classification process, some sub-windows are marked as the objects. 
Using the sliding window approach, the multiple positive detections may appear, 
especially around the objects of interest
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Sliding Window

• These detections are merged to the final bounding box that represents the 
resulting detection. 

• The classifier that determines each sub-window is trained over the training set 
that consists of positive and negative images.

• The key point is to find what values (features) should be used to effectively 
encode the image inside the sliding window.
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Sliding Window
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Sliding Window
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Feature Vector 

(properties of object)

Trainable Classifier

(SVM, ANNs, …)

Sliding Window
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Face Detection
Face Detection (Viola-Jones Detector):

1.   Rectangle features (Haar features):
• faces have similar properties
• eye regions are darker than the upper-cheeks
• the nose bridge region is brighter than the eyes
• thousands of possible features variations

2. Integral Image
• speed the computational process

3. Cascade Classifier + AdaBoost
• in an image, most of the image is non-face region
• reject the non-face region as soon as possible 

David Gerónimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009
https://docs.opencv.org/4.5.5/db/d28/tutorial_cascade_classifier.html
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Face Detection
1.   Rectangle Features (Haar features):

• Haar features are image descriptors used in object detection, 
particularly in the Viola-Jones detection framework. They work by 
comparing pixel intensity differences between adjacent rectangular 
regions within an image. 

• These features are designed to capture patterns such as edges, lines, 
and textures, which are essential for recognizing objects like faces. 
These features are placed at various positions and scales within a 
detection window (typically 24×24 pixels).

• The three primary types of Haar-like features are: 
• Edge features: Detect vertical or horizontal transitions, e.g. between 

forehead and eyes - A vertical feature with a dark region for the eyes and a 
bright region for the forehead.

• Line features: Identify structures like the bridge of the nose. A feature with 
three bands (e.g. bright, dark, bright). Example: the brightness of the nose 
appears different from the surrounding areas.

• Four-rectangle features: Capture finer patterns like cheekbones or jawlines. 

Feature Value = ∑(pixels in black) − ∑(pixels in white)
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Face Detection
2. Integral Image

Viola-Jones algorithm needs to evaluate approximately 160,000+ Haar features efficiently. An integral image, also known 
as a summed-area table, is a technique used in computer vision to quickly compute the sum of pixel values within a 
rectangular region. It is widely used in Haar cascade classifiers for real-time face detection. 

https://www.mathworks.com/help/images/integral-image.html

https://www.mathworks.com/help/images/integral-image.html


11

3. Cascade Classifier + AdaBoost

Many Haar features (approximately 160,000+) are generated for various scales and positions within the image (e.g., 24x24 
windows). Since most features are irrelevant, a selection process is necessary, this is done using Cascade Classifier + 
AdaBoost.

The cascade classifier in the Viola-Jones framework is a hierarchical structure of classifiers designed to efficiently detect 
objects (e.g., faces) in an image by progressively eliminating non-object regions. It uses Haar features to evaluate patterns 
in the image and applies a series of increasingly complex classifiers to focus computational resources only on promising 
regions.

• The cascade consists of multiple stages. At each stage, regions that are unlikely to contain the object (e.g., faces) are 
quickly rejected. Only regions passing all stages are classified as containing the object.

• Each stage is trained using AdaBoost, which selects the most relevant Haar features and combines them into a strong 
classifier. This ensures that each stage focuses on distinguishing between object and non-object regions effectively. 

• Early stages are simple and reject most non-object regions quickly - early stages detect simple patterns.  

• Later stages are more complex and focus only on regions that pass earlier stages, reducing computational cost.

• The cascade structure ensures that most irrelevant regions are discarded early, making it computationally efficient.
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Face Detection

https://docs.opencv.org/4.5.5/db/d28/tutorial_cascade_classifier.html

Cascade of Classifier

https://docs.opencv.org/4.5.5/db/d28/tutorial_cascade_classifier.html


Cascade of Classifier
Face Detection
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Cascade of Classifier
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Cascade of Classifier
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Cascade of Classifier
Face Detection



https://vimeo.com/12774628

Face Detection

https://vimeo.com/12774628


https://vimeo.com/12774628

Face Detection

https://vimeo.com/12774628
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https://docs.opencv.org/4.5.5/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498

Face Detection - OpenCV

https://docs.opencv.org/4.5.5/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498
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Face Detection - OpenCV
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Object Detection
• Haar

• HOG 

• LBP

• SIFT, SURF                                                      

• CNNs
• R-CNNs/YOLO/SSD

Traditional Approaches 
(sliding window)

Deep Learning Approaches

KeyPoints Approaches



Histograms of Oriented Gradients (HOG)
Basic Steps:

• In HOG, a sliding window is used for 
detection.

• The window is divided into small connected 
cells.

• The histograms of gradient orientations are 
calculated in each cell.

• For each window position, compute its HOG 
descriptor and pass it to a classifier (e.g., 
Support Vector Machine) trained to detect 
objects like pedestrians.

Olejniczak, Michał & Kraft, Marek. (2017). Taming the HoG: The Influence of Classifier Choice on Histogram of Oriented Gradients Person Detector Performance. 552-560. 10.1007/978-3-319-59063-9_49. 



Histograms of Oriented Gradients (HOG)

https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_hog.html

https://scikit-image.org/docs/stable/auto_examples/features_detection/plot_hog.html


SVM

https://docs.opencv.org/4.9.0/d1/d73/tutorial_introduction_to_svm.html

Basic Idea of SVM

SVM aims to find the optimal decision boundary, called a hyperplane. The hyperplane maximizes 
the margin, which is the distance between the hyperplane and the nearest data points from each 
class, known as support vectors

 The algorithm chooses the hyperplane with the largest possible margin to improve classification 
accuracy and generalization for new data points.

Linear and Nonlinear Classification:
• Linear SVM: If the data is linearly separable, SVM uses a straight-line hyperplane.
• Nonlinear SVM: For complex datasets where linear separation isn't possible, SVM employs the 

kernel trick. Kernels map input data into a higher-dimensional feature space, enabling linear 
separation in that transformed space. Common kernels include polynomial, radial basis 
function (RBF), and sigmoid

Support Vectors: These are the critical data points closest to the hyperplane that influence its 
orientation and position. Removing or altering these points can change the hyperplane, making 
them essential for building the classifier

https://docs.opencv.org/4.9.0/d1/d73/tutorial_introduction_to_svm.html


SVM

https://docs.opencv.org/4.9.0/d1/d73/tutorial_introduction_to_svm.html

https://docs.opencv.org/4.9.0/d1/d73/tutorial_introduction_to_svm.html


SVM

https://docs.opencv.org/4.9.0/d1/d73/tutorial_introduction_to_svm.html

https://docs.opencv.org/4.9.0/d1/d73/tutorial_introduction_to_svm.html


AdaBoost

Basic Idea of AdaBoost

AdaBoost (short for Adaptive Boosting) is a powerful ensemble learning algorithm that combines 
multiple weak classifiers to create a strong classifier. It is widely used for classification tasks and 
works particularly well with decision trees as its base learners.

AdaBoost builds a series of weak classifiers (often decision stumps, which are single-split decision 
trees). A weak learner is a model that performs slightly better than random guessing. The 
algorithm trains weak classifiers sequentially, where each subsequent classifier focuses more on 
the errors (misclassified samples) made by the previous ones. This allows the ensemble to 
progressively improve its performance.

Initially, all data points are assigned equal weights. After each weak classifier is trained, AdaBoost 
increases the weights of misclassified data points so that the next classifier pays more attention to 
these "hard" examples. Correctly classified points receive lower weights. Each weak learner is 
assigned a weight based on its accuracy (or error rate). Better-performing classifiers are given 
higher weights. The final prediction is made by combining the weighted votes of all weak 
classifiers in the ensemble.



AdaBoost

Iddianozie, Chidubem & Bertolotto, Michela & McArdle, Gavin. (2020). Exploring Budgeted Learning for Data-Driven Semantic Inference via Urban Functions. IEEE Access. PP. 1-1. 
10.1109/ACCESS.2020.2973885. 


