
133

Edge Detection
• What if we want to detect different objects regardless of colour?

• Edge detection is the process for finding structure and properties of the object (i.e. edges in 
an image).

• Edges are one of the most important features.

• Edges can be described by sudden changes in pixel intensity.

• Locations with extreme differences in brightness of pixels indicate an edge.

• We need to examined changes in the neighbouring pixels.

• In OpenCV, we have several options for edge detection.

• We will experimented with: Sobel Edge Detection and Canny Edge Detection

• You can learn more about edge detection in the follow-up courses (Digital Image 
Processing and Image Analysis).



134

Edge Detection

https://docs.opencv.org/3.4/d2/d2c/tutorial_sobel_derivatives.html



135

Edge Detection

https://docs.opencv.org/3.4/d2/d2c/tutorial_sobel_derivatives.html



137

Edge Detection
• Sobel edge detection

• We can use operation that is called 
convolution

• We need input image and kernel

• Multiply the image pixels by pixels of the 
filter, then sum the results

• In Sobel, we have two kernels



138

Edge Detection

https://docs.opencv.org/4.x/d5/d0f/tutorial_py_gradients.html

In Sobel, we have two kernels

https://docs.opencv.org/4.x/d5/d0f/tutorial_py_gradients.html


141

Edge Detection

https://www.projectrhea.org/rhea/index.php/An_Implementation_of_Sobel_Edge_Detection

https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411

Simple (naive) explanation of 
convolution steps:
1. Center of the kernel is 

positioned over a specific pixel in 
an input image.

2. Each element in the kernel is 
multiplied with the 
corresponding pixel element in 
the input image.

3. Sum the result of multiplications
4. This result can be stored in our 

new image (edge map)

https://www.projectrhea.org/rhea/index.php/An_Implementation_of_Sobel_Edge_Detection
https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411


142

Edge Detection

Simple (naive) explanation of 
convolution steps:
1. Center of the kernel is 

positioned over a specific pixel in 
an input image.

2. Each element in the kernel is 
multiplied with the 
corresponding pixel element in 
the input image.

3. Sum the result of multiplications
4. This result can be stored in our 

new image (edge map)

https://www.projectrhea.org/rhea/index.php/An_Implementation_of_Sobel_Edge_Detection

https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411

https://www.projectrhea.org/rhea/index.php/An_Implementation_of_Sobel_Edge_Detection
https://medium.com/@bdhuma/6-basic-things-to-know-about-convolution-daef5e1bc411


143

Edge Detection

Simple (naive) explanation of 
convolution steps:
1. Center of the kernel is 

positioned over a specific pixel in 
an input image.

2. Each element in the kernel is 
multiplied with the 
corresponding pixel element in 
the input image.

3. Sum the result of multiplications
4. This result can be stored in our 

new image (edge map)

https://commons.wikimedia.org/wiki/File:2D_Convolution_Animation.gif

https://commons.wikimedia.org/wiki/File:2D_Convolution_Animation.gif


146

Edge Detection

https://docs.opencv.org/4.8.0/d2/d2c/tutorial_sobel_derivatives.html

https://docs.opencv.org/4.8.0/d2/d2c/tutorial_sobel_derivatives.html


147

Edge Detection

https://docs.opencv.org/4.8.0/d2/d2c/tutorial_sobel_derivatives.html

https://docs.opencv.org/4.8.0/d2/d2c/tutorial_sobel_derivatives.html


148

Edge Detection

Alternatively, you can use cv.Sobel()

https://docs.opencv.org/4.8.0/d2/d2c/tutorial_sobel_derivatives.html

https://docs.opencv.org/4.8.0/d2/d2c/tutorial_sobel_derivatives.html


149

Edge Detection

calculates absolute values, and converts the result to 8-bit.

https://docs.opencv.org/4.8.0/d2/d2c/tutorial_sobel_derivatives.html

https://docs.opencv.org/4.8.0/d2/d2c/tutorial_sobel_derivatives.html


150

Edge Detection

We try to approximate the gradient by adding both directional gradients (note that 

this is not an exact calculation at all! but it is good for our purposes).

https://docs.opencv.org/4.8.0/d2/d2c/tutorial_sobel_derivatives.html

https://docs.opencv.org/4.8.0/d2/d2c/tutorial_sobel_derivatives.html


151

https://en.wikipedia.org/wiki/Kernel_(image_processing)



152

https://setosa.io/ev/image-kernels/

https://setosa.io/ev/image-kernels/


153

Canny Edge Detection
Canny edge detection (the main steps in a simplified form):

• Noise Reduction: Smooth the image using a Gaussian filter to minimize noise 

and avoid false edges. 

• Gradient Calculation: Compute intensity gradients using operators like Sobel to 

determine edge magnitude and direction. 

• Non-Maximum Suppression: Thin edges by keeping only pixels that are local 

maxima along the gradient direction. 

• Double Thresholding and Hysteresis: Classify edges using two thresholds (high 

and low), retaining strong edges and connecting weak edges only if linked to 

strong ones, discarding isolated weak edges.

• You can learn more about Canny edge detection in the follow-up courses (Digital Image Processing)



154• You can learn more about Canny edge detection in the follow-up course (Digital Image Processing)

Canny Edge Detection in OpenCV

Canny Edge Detection



155

10, 100

Canny Edge Detection



156

400, 500

Canny Edge Detection



157

100, 200

Canny Edge Detection



158https://www.pyimagesearch.com/2021/05/12/opencv-edge-detection-cv2-canny/

• Thresholding - we need to set appropriate thresholds

Canny Edge Detection

https://www.pyimagesearch.com/2021/05/12/opencv-edge-detection-cv2-canny/


159

Image Filtering

https://docs.opencv.org/4.9.0/d4/d13/tutorial_py_filtering.html

https://docs.opencv.org/4.9.0/d4/d13/tutorial_py_filtering.html


160

Image Filtering

https://docs.opencv.org/4.9.0/d4/d13/tutorial_py_filtering.html

https://docs.opencv.org/4.9.0/d4/d13/tutorial_py_filtering.html


161

Image Filtering

https://docs.opencv.org/4.9.0/d4/d13/tutorial_py_filtering.html

Alternatively, you can use cv.blur()

https://docs.opencv.org/4.9.0/d4/d13/tutorial_py_filtering.html


162

Image Filtering

https://docs.opencv.org/4.9.0/d4/d13/tutorial_py_filtering.html

Gaussian Blurring

Gaussian blur works by convolving an image with a Gaussian kernel. Unlike box filter (cv.blur), which gives equal

weight to all pixels in the neighborhood, Gaussian filter assigns greater weight to pixels closer to the center and

less weight to more distant pixels.

https://docs.opencv.org/4.9.0/d4/d13/tutorial_py_filtering.html


163

Image Filtering

https://docs.opencv.org/4.9.0/d4/d13/tutorial_py_filtering.html

Median Blurring

https://docs.opencv.org/4.9.0/d4/d13/tutorial_py_filtering.html

	Slide 133
	Slide 134
	Slide 135
	Slide 137
	Slide 138
	Slide 141
	Slide 142
	Slide 143
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163

