
Image Analysis ll - Exercises
Radovan Fusek



Exercise (Parking, C++)

DETECTING FREE/OCCUPIED PLACES IN PARKING LOTS



Exercise (Parking, C++)

DETECTING FREE/OCCUPIED PLACES IN PARKING LOTS



DETECTING FREE/OCCUPIED PLACES IN PARKING LOTS

Motivation:

The vehicle detection systems using images have been very useful in the recent years. Especially nowadays in the

cities, the increasing number of vehicles brings a major problem. The car detection systems can be important,

especially for drivers who are looking for vacant spaces in the parking lots, for traffic analysis, for intelligent

scheduling, for smart cities and so on.

Input Data:
The training data with a basic template (C++/OpenCV) can be found in the following link:

http://mrl.cs.vsb.cz/data/vyuka/ano2/parking_template_clear_dlib.zip

Exercise (Parking, C++)

http://mrl.cs.vsb.cz/data/vyuka/ano2/parking_template_clear_dlib.zip


description of template: 

• training and testing data are in the “testImages” and “trainImages” folders

• each image is named as free_xx.png or full_xx.png (the name of the images represents the 
state of parking space)

• functions for loading training/testing images are already implemented - train_parking(), 
test_parking()

• the training and prediction steps are missing - You can use any available libraries to solve 
this detection task. The use of the provided main.cpp template is not required.

Exercise (Parking, C++)



description of template: 

Exercise (Parking, C++)



description of template: 

Exercise (Parking, C++)



description of template: 

Exercise (Parking, C++)



description of template: 

Exercise (Parking, C++)



description of template: 

Exercise (Parking, C++)



Output:

If you successfully run the template, you obtain this output. It means that the accuracy of the 
detector is aprox. 32%. The accuracy is low because each parking space is labeled as occupied 
- line 82 in main.cpp. The goal is to implement better prediction approach.

Exercise (Parking, C++)



Hints:

Since we want to label each parking space as free (0) or occupied (1), this recognition problem can be solved 
using classical binary classifiers (SVM, neural networks). To train the classifiers, you can use the provided training 
data in the “trainImages” folder. As the input for the classifiers, you can use the whole image or you can use 
feature extraction approaches (e.g. histograms of oriented gradients, local binary patterns).
Alternatively, you can skip the training process and use simple color or gradient information for example. In that 
case, you can use only the test_parking() function without the training.
The provided template is based on the OpenCV library https://opencv.org/
Installation in Linux: https://www.learnopencv.com/install-opencv3-on-ubuntu/
Installation in Windows: https://www.learnopencv.com/install-opencv3-on-windows/
Installation in MacOS: https://www.learnopencv.com/install-opencv3-on-macos/
Simple install for Windows without cmake using NuGet: 

http://funvision.blogspot.com/2017/04/simple-install-opencv-visual-studio.html
https://www.nuget.org/packages/opencv.win.native/320.1.1-vs141

Exercise (Parking, C++)

https://opencv.org/
https://www.learnopencv.com/install-opencv3-on-ubuntu/
https://www.learnopencv.com/install-opencv3-on-windows/
https://www.learnopencv.com/install-opencv3-on-macos/
http://funvision.blogspot.com/2017/04/simple-install-opencv-visual-studio.html
https://www.nuget.org/packages/opencv.win.native/320.1.1-vs141


Hints:

Alternatively, you can install OpenCV from the Ubuntu or Debian repository: 
sudo apt-get install libopencv-dev python3-opencv 

You can find the several tutorials in the following link: https://docs.opencv.org/3.4.2/d9/df8/tutorial_root.html

Dlib library represents another option how to solve this detection problem
Installation in Windows https://www.learnopencv.com/install-dlib-on-windows/
Installation in Linux https://www.learnopencv.com/install-dlib-on-ubuntu/
Installation in MacOS: https://www.learnopencv.com/install-dlib-on-macos/
You can follow this tutorial: http://dlib.net/dnn_introduction_ex.cpp.html

You can also use Keras, Caffe, TensorFlow, etc.

Exercise (Parking, C++)

https://docs.opencv.org/3.4.2/d9/df8/tutorial_root.html
https://www.learnopencv.com/install-dlib-on-windows/
https://www.learnopencv.com/install-dlib-on-ubuntu/
https://www.learnopencv.com/install-dlib-on-macos/
http://dlib.net/dnn_introduction_ex.cpp.html


Exercise (Parking, Python)

http://mrl.cs.vsb.cz/data/vyuka/ano2/parking_template_clear_python.zip

description of template: 

http://mrl.cs.vsb.cz/data/vyuka/ano2/parking_template_clear_python.zip


description of template: 

Exercise (Parking, Python)



description of template: 

Exercise (Parking, Python)



Exercise (Pedestrian, Python)



Exercise (Pedestrian, Python)
description of template



Exercise (Pedestrian, Python)



Exercise (Pedestrian, IR Images)



Exercise (Pedestrian, IR Images)



Exercise (R-CNN, Python)



Exercise (R-CNN, Python)



description of template: 

Exercise (R-CNN, Python)



description of template: 

Exercise (R-CNN, Python)



description of template: 

Exercise (R-CNN, Python)



Exercise (Depth, IR Images)



Openpose Library

Z. Cao, T. Simon, S. Wei and Y. Sheikh, "Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields," 2017 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 1302-1310.

Exercise (checking the driver state)



Z. Cao, T. Simon, S. Wei and Y. Sheikh, "Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields," 2017 IEEE 

Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 1302-1310.

Exercise (checking the driver state)



description of template: 

Exercise (checking the driver state)



description of template: 

Exercise (checking the driver state)


