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What Is AV (Autonomous Vehicle)?

A self-driving car, also known as an autonomous vehicle (AV), connected and autonomous
vehicle (CAV), driverless car, robo-car, or robotic car, is a vehicle that is capable of sensing its
environment and moving safely with little or no human input. (Wikipedia)

A Waymo self-driving car. Wikipedia [online]. [cit. 2020-01-25]. Dostupné z: https//upload.wikimedia.org/wikipedia/commons/c/cf/Waymo_self-driving_car_front_view.gk
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What Is AV (Autonomous Vehicle)?

https://www.youtube.com/watch?v=FDuvPOYYTY4
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https://www.youtube.com/watch?v=zRnSmw1i_DQ
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What Is AV (Autonomous Vehicle)?

e Ground vehicles
* Autonomous aerial vehicles (drone)
* Autonomous surface vehicles

An MQ-9 Reaper unmanned aerial vehicle

An MQ-9 Reaper. Wikipedia [online]. [cit. 2020-01-25]. Dostupné z: https://en.wikipedia.org/wiki/File:MQ-
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The sensors, hardware and software provided by Intel and Mobileye give
autonomous vehicles their ability to recognize the environment around them.
This technology creates the building blocks for autonomous vehicles (AV) and

includes a suite of cameras, lidar, radar, and computing and mapping technologies.

Click on an autonomous tool below
to find out more information

® (CAMERAS
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Intel Explainer: Sensors. Businesswire [online]. [cit. 2020-01-25]. Dostupné z: https://www.businesswire.com/news/home/201808 160051 08/en/Intel-Explainer-Sens ors-%E2%80%93-Eyes-Ears- : 2v=


https://www.youtube.com/watch?v=x7_GRigShUM
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e Cameras
e Lidars
e Radars

* Maps

Puck Lidar Sensor. Velodynelidar [online]. [cit. 2020-01-25]. Dostupné z: https://eak2mvmpt4a.exactdn.com/wp-content/uploads/2019/08/Velodyne_Puck600.png?strip=all&lossy=1&ssl=1
Intel® RealSense™ Technology. Intel [online]. [cit. 2021-01-25]. Dostupné z: https//www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html https://velodynelidar.com/products/puck/


https://velodynelidar.com/products/puck/
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What is Lidar?

Lidar (“light detection and ranging”) uses eye-safe laser beams to “see” the world in 3D, providing machines and computers an accurate
representation of the surveyed environment.

A typical lidar sensor emits These pulses bounce off The sensor uses the time it

pulsed light waves into the surrounding objects and took for each pulse to

surrounding environment. return to the sensor. return to the sensor to
calculate the distance it
traveled.

A 4 A

Repeating this process millions of times per second creates a precise,
real-time 3D map of the environment. An onboard computer can utilize
this map for safe navigation.


https://velodynelidar.com/products/puck/
https://velodynelidar.com/what-is-lidar/
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What is Lidar?

Lidar (“light detection and ranging”) uses eye-safe laser beams to “see” the world in 3D, providing machines and computers an accurate
representation of the surveyed environment.

A typical lidar sensor emits These pulses bounce off The sensor uses the time it

pulsed light waves into the surrounding objects and took for each pulse to

surrounding environment. return to the sensor. return to the sensor to
calculate the distance it
traveled.

A A A

Repeating this process millions of times per second creates a precise,
real-time 3D map of the environment. An onboard computer can utilize
this map for safe navigation.
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https://velodynelidar.com/products/puck/
https://velodynelidar.com/what-is-lidar/
https://upload.wikimedia.org/wikipedia/commons/c/c0/LIDAR-scanned-SICK-LMS-animation.gif
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https://velodynelidar.com/products/puck/
https://velodynelidar.com/what-is-lidar/
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https://velodynelidar.com/products/puck/
https://www.youtube.com/channel/UCKyHFNyJ3QV-1rjogCYHkRA
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https://velodynelidar.com/products/puck/
https://www.youtube.com/c/ANYbotics/videos
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Tesla CEO Elon Musk: “Anyone relying on LiDAR is doomed”

ELON MUSK

-

TESLA AUTONOMY DAY
APRIL 22, 201©



https://www.youtube.com/watch?v=HM23sjhtk4Q
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https://youtu.be/HLczErXDujI

EUROPEAN UNION

European Structural and Investment Funds
Operational Programme Research,
Development and Education

e

LiDAR

e cannot detect colors

e cannot interpret the text

* Impossible to identify traffic lights or road signs

« can achieve good results day and night

* high level of accuracy

* IS more expensive

* requires more space

« gives self-driving cars a three-dimensional image
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Lidar vs Camera

Camera
« can recognize colors and read road signs

« many modern Al methods to identify objects or
distances

* require significantly more computing power
e camera systems are almost invisible
« challenging low-light conditions
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A camera is mounted above the rear license plate.

Ultrasonic sensors are located in the front and rear bumpers.

A camera is mounted in each door pillar.

Three cameras are mounted to the windshield above the rear view mirror.
A camera is mounted to each front fender.

Radar is mounted behind the front bumper on the right side of the vehicle.

T omrWN

odel X is also equipped with high precision electrically-assisted braking and steering systems.


https://leddartech.com/lidar-radar-camera-demystifying-adas-ad-technology-mix/
https://medium.com/0xmachina/lidar-vs-camera-which-is-the-best-for-self-driving-cars-9335b684f8d
https://www.autopilotreview.com/lidar-vs-cameras-self-driving-cars/
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Levels of Autonomous Cars
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Automation Assistance Automation Automation Automation Automation

[ HUMAN DRIVER MONITORS ’ AUTOMATED DRIVING SYSTEM l
DRIVING ENVIRONMENT ~ MONITORS DRIVING ENVIRONMENT

Levels of autonomous cars [online]. [cit. 2020-01-25]. Dostupné z: https://geospatialmedia.s3.amazonaws.com/wp-content/uploads/2018/02/bi-graphics_autonomous-cars.png
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' Levels of Autonomous Cars

I'Nﬂ LEVEL O

Automation

In charge of
all the driving

LN

Responds only to inputs

from the driver, but can

provide warnings about
the environment

Zero autonomy; the driver performs all the driving, but the
vehicle can aid with blind spot detection, forward collision
warnings and lane departure warnings.

https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all



https://www.businessinsider.com/what-are-the-different-levels-of-driverless-cars-2016-10
https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all
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R Levels of Autonomous Cars

L LEVEL 1

Driver
Assistance

Must do all the driving,
but with some basic help
in some situations

Can provide basic help,
such as automatic
emergency braking or
lane keep support

(NI

The vehicle may have some active driving assist features, but
the driver is still in charge. Such assist features available in
today’s vehicles include adaptive cruise control, automatic

1 emergency braking and lane keeping.

https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all



https://www.businessinsider.com/what-are-the-different-levels-of-driverless-cars-2016-10
https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all
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|'2 LEVEL 2

Partial
Automation

Must stay fully alert even
when vehicle assumes
some basic driving tasks

LN

G SUtoratcally et The driver still must be alert and monitor the environment at
e e all times, but driving assist features that control acceleration,

braking and steering may work together in unison so the
driver does not need to provide any input in certain situations.
Such automated functions available today include self-parking
— and traffic jam assist (stop-and-go traffic driving).

https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all



https://www.businessinsider.com/what-are-the-different-levels-of-driverless-cars-2016-10
https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all
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Automation

Must be always ready to
take over within a specified
period of time when the
self-driving systems are
unable to continue

Can take full control over
steering, acceleration,
and braking under
certain conditions

e
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The vehicle can itself perform all aspects of the driving task
under some circumstances, but the human driver must always
be ready to take control at all times within a specified notice
period. In all other circumstances, the human performs the
driving.

https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all
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https://www.businessinsider.com/what-are-the-different-levels-of-driverless-cars-2016-10
https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all
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14 LEVEL 4

High

Automation

Can be a passenger who,
with notice, can take over
driving when the
self-driving systems are
unable to continue

(N

Can assume all driving
tasks under nearly all

conditions without any This is a self-driving vehicle. But it still has a driver’s seat and
driver attention . .

all the regular controls. Though the vehicle can drive and

“see” all on its own, circumstances such as geographic area,

road conditions or local laws might require the person in the

e driver’s seat to take over.

https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all



https://www.businessinsider.com/what-are-the-different-levels-of-driverless-cars-2016-10
https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all
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Lo

Full
Automation

No human driver
required-steering wheel
optional-everyone can
be a passenger in an
L5 vehicle

(N

In charge of all the driving
and can operate in all

environments without The vehicle is capable of performing all driving functions
need for human . ey .
intervention under all environmental conditions and can operate without

humans inside. The human occupants are passengers and
need never be involved in driving. A steering wheel is optional

R in this vehicle.

https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all



https://www.businessinsider.com/what-are-the-different-levels-of-driverless-cars-2016-10
https://newsroom.intel.com/news/autonomous-driving-hands-wheel-no-wheel-all
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“Mercedes-Benz is expected to launch the first mass-
production Level 3 car in 2022 using its Drive Pilot technology."

“BMW is widely expected to roll out Level 3 technology
in the new 7 Series”

“Alphabet's Waymo recently unveiled a Level 4 self-driving taxi
service in Arizona, where they had been testing driverless
cars—without a safety driver in the seat—for more than a year and
over 10 million miles..”

“Tesla is likely to achieve Level 4 autonomy in 2022, says Elon
Musk, when certain milestones in the development of full self-
driving (FSD) are achieved. The data show that Tesla's system
performs better than a human driver for preventing accidents.”



https://www.cnet.com/roadshow/news/the-most-important-self-driving-cars-of-2022/
https://www.reuters.com/article/us-waymo-selfdriving-focus/waymo-unveils-self-driving-taxi-service-in-arizona-for-paying-customers-idUSKBN1O41M2
https://www.tesmanian.com/blogs/tesmanian-blog/tesla-likely-to-achieve-level-4-autonomy-in-2022-says-elon-musk
https://www.synopsys.com/automotive/autonomous-driving-levels.html
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AUTOMATION LEVELS OF AUTONOMOUS CARS

LEVEL O LEVEL 1 LEVEL 2

o)

There are no autonomous features. These cars can handle one task at These cars would have at least
a time, like automatic braking. two automated functions.

LEVEL 3 LEVEL 4 LEVEL 5

]

These cars handle “dynamic driving These cars are officially driverless These cars can operate entirely on
tasks” but might still need intervention. in certain environments. their own without any driver presence.
SOURCE: SAE International BUSINESS INSIDER

Levels of autonomous cars [online]. [cit. 2020-01-25]. Dostupné z: https://geospatialmedia.s3.amazonaws.com/wp-content/uploads/2018/02/bi-graphics_autonomous-cars.png
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Company Scores (2019)

 Waymo (Google)
« GM
* Ford

D . - | Cr
Q Aqtono”‘WSVehicleDevelopment , ; = A ’ U

JOIN THe DRIVERLES REVOLUT‘ON

Automated Driving Leaderboard. Sae [online]. [cit. 2020-01-25]. Dostupné z: https//www.sae.org/news/2019/03/2019-navigant-autonomous-leaderboard
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Company Scores (2019)

The Navigant Research Leaderboard Grid

A FOLLOWERS CHALLENGERS CONTENDERS LEADERS

Daimler-Bosch o CLiseJ- Waymo
\:/olkswagen

Renault-Nissan-

Mitsubishi Alliance Steup 'y
BMW-Intel-FCA x Ford Autonomous
Hyundai Motor \0 V?hICIeS

Group e /. X Aptiv

Volvo-Veoneer- Toyota Intel-Mobileye
Ericsson-Zenuity Baidu

c ©— Uber -

_g e — €©—— May Mobility

&

Tesla —/. .\

Voyage Auto

Strategy
Automated Driving Leaderboard. Sae [online]. [cit. 2020-01-25]. Dostupné z: https//www.sae.org/news/2019/03/2019-navigant-autonomous-leaderboard
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Company Scores (2020)

A FOLLOWERS CHALLENGERS CONTENDERS LEADERS

Waymo

Baidu Nvidia
Zoox— oo e ',-/Argo Al

/0 o S Chart 1-1 shows the ranking of each company. This year, four companies had

Mobileye \ scores that earned a place in the Leaders group: Waymo, Nvidia, Argo Al, and
Yandex\. .L Motional  Baidu. Several others, including Cruise, Motional, Mobileye, Zoox, and Aurora, fell

Nuro Aurora . . . . . .
- Autox just outside of this group among the eight companies in the Contenders group.
uto.
'-§ - Notably, Tesla continues to rank at the bottom of this list despite getting significant
g May Mobility J. pu Gatik press attention for its full self-driving (FSD) beta software release. Although

Tesla ! several of the companies ranked this year have close affiliations with automakers,

Tesla is the only automaker on the list and has made marketing FSD a key feature
in selling vehicles. Tesla has made significant progress in strengthening several
areas including staying power thanks to the runup in its stock price in the second
half of 2020, but its technology is still lacking.

Strategy

(Source: Guidehouse Insights)

Guidehouse Insights Leaderboard report. Guidehouseinsights [online]. [cit. 2022-02-25]. Dostupné z: https://guidehouseinsights.com/reports/guidehouse-insights-leaderboard-automated-driving-systems
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Company Scores (2019 vs 2020)

The Navigant Research Leaderboard Grid

A FOLLOWERS CHALLENGERS CONTENDERS LEADERS
Daimler-Bosch oM CiseJ \iaymo
Renault-Nissan- \lolkswagen
Mitsubishi Alliance e
BMW-Intel-FCA Ford Autonomous
Vehicl
Hyundai Motor \. ? ieles

Volvo-Veoneer- Toyota Intel-Mobileye
Ericsson-Zenuity Baidu

c ©— Uber -

_g e o ©—— May Mobility

3 Apple —¢ Zoox

&
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Voyage Auto

Strategy

Automated Driving Leaderboard. Sae [online]. [cit. 2020-01-25]. Dostupné z: https://www.sae.org/news/2019/03/2019-navigant-autonomous-leaderboard
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Execution
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Zoox = ~e 4
Mobileye S
Yandex T_ Motional
\. Nuro Aurora
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May Mobility P catik
Tesla f
>

Strategy

(Source: Guidehouse Insights)

Guidehouse Insights Leaderboard report. Guidehouseinsights [online]. [cit. 2022-02-25]. Dostupné z: https://guidehouseinsights.com/reports/guidehouse-insights-leaderboard-automated-driving-systems
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Identifying the Waymo Fully Self-Driving Vehicle

The Waymo fully self-driving Chrysler Pacifica Hybrid minivans can be easily identified by the white
color with Waymo logos, roof assembly, front fender additions, or rear roof additions below.

During driverless testing and operation, Waymo’s vehicles are fully self-driving at all times, and
will not have any person in the driver’s seat either steering or otherwise controlling the vehicle.

Roof

Rear Roof
Assembly

Addition

Front Fender
Addition

Front
Sensor

Rear Sensor

Waymo Fully Self-Driving. Thedrive [online]. [cit. 2022-02-25]. Dostupné z: https://s3.amazonaws.com/the-drive-staging/message-editor%2F1 540065806515-waymo1.jpg
Waymo Fully Self-Driving. Thedrive [online]. [cit. 2020-01-25]. Dostupné z: https://guidehouseinsights.com/reports/guidehouse-insights-leaderboard-automated-driving-systems https://wavmo.com/



https://waymo.com/
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https://www.youtube.com/watch?v=DJlcdH6iuAk
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https://www.youtube.com/watch?v=O8TSA-X9UlU
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The Autonomous Vehicles Readiness Index

‘ ‘ | d ' !X ' !: ; | \ ‘ Country or jurisdiction 2020 score

Singapore 25.45
The Netherlands 25.22
Norway 24.25
United States 23.99
Finland 23.58
Sweden 23.17
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Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020-01-25]. Dostupné z: https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html
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February 2019

President Tsai
Ing-wen opens the
Taiwan CAR
(connected,
autonomous and
road-test) Lab in
Tainan, its first
closed testing
ground for AVs.2

© 2020 KPMG

provides no client services and is a Swiss entity with which the independent member firns of the KPMG network are affiliated.

June 2019

Apple buys Drive.ai,
a Silicon Valley-based
startup that has
piloted AV
technology that can
be fitted to existing
vehicles.™

October 2019

Singapore’s
government opens
one-tenth of its total
road network for AV
testing and starts
retraining 100 bus
drivers as safety
operators."”

June 2020

Germany vehicle
makers BMW and
Mercedes-Benz put
onhold a
partnership involving
around 1,200 people
that was developing
shared technology
for level 4 AVs. =

February 2020

The Spanish
government
announces a new
mobility law that will
cover AVs as well as
more EV charging
points, although
details have since
been delayed by the
coronavirus crisis.?!

April 2019

The City of Espoo in
Finland begins public
operation of the
allweather Gacha
driverless bus,
designed by local
company Sensible 4
and Japanese
retailer Muiji."

August 2019

UK testing
organization Zenzic,
which is funded by
industry and
government, opens
a funding
competition for
studies on the

cybersecurity of
AVs.s

December 2019 April 2020

Japan's Road
Transport Vehicle law
comes into force,
including legal
recognition of AVs,
an inspection regime
and a permit
system.?

Waymo buys Latent
Logic, a machine
learning-focused
company that had
been spun-out from
Oxford University's
Department of
Computer Science.®

A —o_

Q

————

2

Q

The Consumer
Electronics Show in
Las Vegas sees
Daimler Trucks unveil
its Freightliner
Cascadia, the first
truck in North
America to include
automated
assistance.?

January 2019

Austria allows users
to take their hands
off the steering
wheel when driving
within one lane on a
highway and operate
self-parking systems
when outside the
vehicle.®

March 2019

A driverless electric
truck built by
Swedish AV startup
Einride takes its first
drive on a public
road between a
warehouse and a
terminal in
Jonkoping.™?

May 2019

Residents of a
retirement village in
Coffs Harbour, New
South Wales, get
access to an
on-demand AV
minibus service
called BusBot,
summoned using a
smartphone app.™

July 2019

Shanghai becomes
the first Chinese city
to issue permits
making it easier to
test AVs on public
roads, to
vehicle-makers SAIC
and BMW and
ride-hailing company
Didi Chuxing.®

September 2019

Russian technology
company Yandex
said it has started
road-testing small
autonomous robots
known as Yandex
Rovers that are
designed to make
local deliveries in
cities.™

General Motors’
Cruise AV division
unveils the Origin, a
purpose-built
self-driving car
designed for
ride-sharing with no
physical driving
controls and room
for six passengers.?

November 2019

January 2020

US ride-hailing
company Uber
resumes testing of
AVs in its home city
San Francisco, two
years after one of its
vehicles was
involved in a fatal
accident in Arizona.?2

March 2020

Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020-01-25]. Dostupné z: https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html
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US technology
company Intel buys
Moovit, an Israeli
startup which
provides an urban
mobility app, for
around US$900
million, to support its
Israeli-based AV unit
Mobileye.2

May 2020
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https://www.daimlertruck.com/innovation/safe-automated/autonomous-driving-daimler-trucks.html
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MINISTRY C

E/NRIDE

SELF-DRIVING TRANSPORT VEHICLE

https://en.wikipedia.org/wiki/Einride
Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020-01-25]. Dostupné z: https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html
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https://www.youtube.com/c/Einride
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The 2020 edition of the AVRI assesses 30 countries and jurisdictions.This includes the addition of five new countries and jurisdictions to the roster from
2019, and can explain some of the downward movement of some countries as a result. The AVRI uses 28 different measures, organized into four pillars:
policy and legislation, technology and innovation, infrastructure and consumer acceptance. Four of the variables are scored for this index by KPMG
International and ESI ThoughtLab and 24 draw on existing research by KPMG Intemational and other organizations. Full details are in the Appendix.

Methodology

Singapore P13 The Netherlands P14 B Norway

— For the first time Singapore leads the — The Netherlands retains top ranking on — Norway extended its use of AVs in

AVRI, overtaking the Netherlands for
the top-ranked position and leading on
both the consumer acceptance and
policy and legislation pillars.

— The city-state has expanded AV testing
to cover all public roads in western
Singapore and aims to serve three
areas with driverless buses from 2022.

— The number of charging points will
increase from 1,600 to 28,000 by 2030
with incentives for buying EVs, although
the government is also phasing in a
usage tax to compensate for loss of
fuel excise duties. Given they will be
mostly electric, such moves are vital in
enabling AV implementation.

the infrastructure pillar, leading on EV
charging stations per capita and second
only to Singapore on road quality.

— An extensive series of pilots means that

81 percent of people live near AV
testing sites. However, tests on truck
platooning in July 2019 found
challenges in keeping vehicles
connected at all times.

2019 saw the Netherlands extending its
use of smart road furniture, including
traffic lights that send their statuses
wirelessly to AVs in 60 new areas of
the country.

2019, with several bus routes in Oslo
now driverless, and the speed limit for
driverless vehicles on roads increasing
from 16kph to 20kph.

— A majority of passenger vehicles bought

in Norway in 2019 were battery or
plug-in hybrids, as a result of high taxes
on internal combustion vehicles and
fuels and subsidies for EVs.

— The country is testing AVs in extreme

weather, with pilots of driverless trucks,
cars and buses on the snow-bound
Svalbard islands in the Arctic Circle.

Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020-01-25]. Dostupné z: https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html
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— South Korea climbs six places to 7™ in this edition — Denmark is the highest-rated of the five countriesand ~ — Italy, placed 24™, introduced rules and an observatory
of the AVRI, the biggest rise of any country. The jurisdictions joining this edition of the AVRI, occupying for AV testing in 2018, with tests beginning in Parma
government published a national strategy for AVs in the 10th spot. It allows AV tests on any public road and and Turin in 2019.

October 2019, with the goal of reducing road deaths its first driverless bus service started running in March

= " N
by three-quarters. 2020 in Aalborg. Chile, at 27™, has made use of AVs in mining for several

years and in January 2020 started Latin America'’s first
— The UK leads on a new AVRI measure of Taiwan, the second highest at 13th, has a focus on public pilot in a park in central Santiago.

cybersecurity, with AV testing body Zenzic funding testing AVs on its challenging mixed-use roads. Taipei

seven projects in this field. is planning to start a night-time trial of driverless buses

Israel retains its leadership of the technology partly to tackle a shortage of drivers.

pillar, leading on both AV-related companies and Belgium, entering at 21, ran its first demonstration of
investments scaled by population. an AV bus at Brussels airport in May 2019, operated by
Flemish regional transport authority De Lijn.

P15 United States P16 Finland

— The US is second only to Israel on technology and innovation, with — Finland has the highest ratings for AV-specific regulations and for
420 AV company headquarters, 44 percent of all of those tracked in the efficiency of its legal system in challenging regulations, and its
this research. entire road network is open for AV trials.

— American technology companies, including Apple and Google's Helsinki (profiled in Cities to watch) and its neighbor Espoo both
Waymo unit, and vehicle makers such as General Motors and Ford, run public AV bus services, with the latter using an all-weather
continue to dominate AV development. GM’s Cruise division unveiled vehicle designed by local company Sensible 4.

ULt ISR Tl et =pe HIGE SRl e e 2l LRI e D Finland also leads on measures of digital skills, benefiting from a

— Cities including Detroit and Pittsburgh are undertaking innovative breadth of talented engineers, many of whom have notable
work to introduce and promote AVs (both are profiled in the Cities to experience having been part of Nokia's legacy. It also makes the
watch section). greatest use of ride-hailing services.

Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020-01-25]. Dostupné z: https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html
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United Arab Emirates Germany United Arab Emirates
New Zealand United Arab Emirates e United Kingdom

Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020
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The Czech Republic is one of the five countries receiving the
top rating for government-funded AV pilots, and testing is the
country's main area of strength. 2020 should see construction
start on German vehicle maker BMW's EUR300 million
(US$340 million) AV test site at Sokolov, around 300km

(190 miles) from the company's main development site in
Munich. BMW plans to open the site, which will have around
100km of road allowing tests of city, highway and rural roads,
in the second half of 2022. It will create around 700 jobs and
has established a cooperation agreement with the University
of West Bohemia.'®

The country has several other test facilities under
development. Czech investment group Accolade is planning
to build on a site near Stfibro, which is similarly near the
German border, to be used by companies developing AV
technologies. It plans to open in 2022 at a cost of EUR180
million (US$200 million), which will also offer a range of road
environments including European cities that do not use right-
angled grids of roads.'™ Czech-based vehicle maker Skoda,

part of Germany's Volkswagen, is working on a site while
German safety company TUV and French vehicle part maker
Valeo Group are both looking to convert disused airfields.

“Our strength is that the automotive industry is already here,”
says Pavel Kliment, Partner, KPMG in the Czech Republic, with
the country making vehicles for a number of companies. “That's
why there is the focus on test sites.” There is less research and
development work, although there are good examples, such as
German vehicle maker Porsche, another Volkswagen unit, and
Italian parts maker Marelli have research partnerships with the
CzechTechnical University in Prague.’®®

Aside from testing, Kliment says that the Czech Republic lacks
a legal framework for the use of AVs.The technology attracts
attention when there is a significant announcement, such as
when BMW detailed its test site plans in January 2020. “There
are a lot of positive things happening, but it's not a strategic
issue,” he says. “l expect the importance will gradually grow
over time, particularly when the test sites are completed.”

Infrastructure Consumer

acceptance

Policy and
legislation

Technology
and innovation

Government-funded AV pilots

DEroming e
COUNtries
1
Jnisdictions

Source: KPMG International (2020)

South Korea

Taiwan

L& Our strength is that the automotive industry
Is already here. That's why there is the focus
on test sites. 9

Pavel Kliment
Partner
KPMG in the Czech Republic

Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020-01-25]. Dostupné z: https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html
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* Infrastructure

* Consumer acceptance
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Policy and legislation pillar scores breakdown by variable

Position AV Regulations | Government- AV-focused Future Efficiency of Government Data-sharing Pillar 1 score
funded AV agency orientation of legal system readiness for environment (unadjusted)
Pilots government in challenging change
regulations
1 | Singapore 1.000 1.000 1.000 1.000 0.673 1.000 04m 6.084
2 | United Kingdom 0.929 0.857 0.8567 0.534 0.668 0.780 1.000 5.626
3 | The Netherlands 1.000 0.829 0.714 0.639 0.825 0.780 0.688 5.576
4 | Finland 1.000 0.857 0.714 0.718 1.000 0.780 0.451 5.521
5 | New Zealand 0.929 0.714 0.929 0.573 0.792 0.829 0.743 5.509
6 | United States 0.8567 0.929 0.714 0.763 0.792 0.634 0771 5.461
7 | Germany 0.786 0.857 0.857 0.604 0.747 0.829 0.621 5.301
8 | United Arab Emirates 0.867 0.714 0.929 0.880 0.865 0.951 0.081 5.278
9 | Canada 0.786 1.000 0.714 0.502 0.614 0.756 0.870 5.242
10 | Norway 0.929 0.857 0.643 0.575 0.629 0.854 0.674 5.161
11 | Austria 0.857 0.857 0.929 0.502 0.568 0.610 0.629 4,952
12 | Denmark 0.714 0.643 0.857 0.589 0.666 0.829 0.633 4,931
13 | Taiwan 0.857 1.000 0.786 0.334 0.425 0.659 0.860 4.920
14 | France 0.786 0.857 0.714 0.481 0.615 0.585 0.815 4.854
15 | Sweden 0.714 0.714 0.714 0.564 0.624 0.878 0.625 4.834
16 | South Korea 0.857 1.000 0.857 0.488 0.346 0.463 0.766 4.777
17 | Australia 1.000 0.571 0.714 0.409 0.516 0.707 0.765 4,683
18 | Japan 0.571 0.857 0.571 0.505 0.642 0.659 0.691 4.496
19 | Israel 0.714 0.786 0.643 0.5632 0.603 0.488 0.331 4.097
20 | Belgium 0.929 0.714 0.714 0.271 0.565 0.512 0.319 4.024
21 | China 0.786 0.929 0.643 0.490 0.535 0.561 0.000 3.944
22 | Czech Republic 0.8567 1.000 0.714 0.186 0.222 0.512 0.309 3.800
23 | Spain 0.857 0.571 0.714 0.163 0.322 0.317 0.668 3.614
24 | Chile 0.429 0.571 0.429 0.435 0.435 0.439 0.346 3.083
25 | Hungary 0.643 0.857 1.000 0.266 0.000 0.244 0.046 3.056
26 | Russia 0.571 0.286 0.867 0.367 0.240 0.293 0.360 2973
27 | ltaly 0.857 0.643 0.643 0.000 0.056 0.293 0.452 2.943
28 | India 0.000 0.000 0.000 0.5636 0.5614 0.341 0.288 1.679
29 | Mexico 0.143 0.143 0.143 0.168 0.194 0.098 0.670 1.557
30 | Brazil 0.286 0.143 0.143 0.01 0.119 0.000 0.488 1.190

Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020-01-25]. Dostupné z: https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html
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Technology and innovation pillar scores breakdown by variable

Position Industry AV technology | AV-related | Industry Availability Innovation | Cybersecurity | Assessment | Market share | Pillar 2 score
partnerships | firm patents investments | of the latest | capability of cloud of electric (unadjusted)
headquarters in AV technologies computing, cars
Aland loT
1 | Israel 0.750 1.000 0.052 1.000 0.946 0.716 0.679 0.551 0.029 5.722
2 | United States 1.000 0.122 0.298 0.370 0.931 0.939 0.989 1.000 0.033 5.681
3 | Japan 0.917 0.022 1.000 0.0656 0.843 0.808 0.889 0.707 0.017 5.258
4 | Germany 1.000 0.078 0.849 0.124 0.751 1.000 0.822 0.574 0.052 5.250
5 | Norway 0.917 0.063 0.012 0.000 0.971 0.576 0815 0.764 1.000 5.209
6 | Sweden 0.833 0.203 0.352 0.051 0.937 0.826 0.737 0.805 0.201 4.946
7 | South Korea 1.000 0.026 0.856 0.023 0.633 0.826 0.87 0.551 0.043 4.832
8 | Finland 0.833 0.171 0.7 0.035 1.000 0.752 0.837 0.705 0.123 4.475
9 | United Kingdom 0.833 0.104 0.113 0.011 0.8556 0.806 1.000 0.676 0.057 4.456
10 | The Netherlands 0.667 0.066 0.032 0.103 0.907 0.763 0.900 0.701 0.265 4.403
11 | Singapore 0.833 0.133 0.020 0.004 0.771 0.738 0.928 0.717 0.085 4.230
12 | France 0.833 0.043 0.116 0.029 0.735 0.783 0.972 0.567 0.049 4.127
13 | Canada 1.000 0.085 0.012 0.073 0.782 07N 0815 0.488 0.047 4.114
14 | Taiwan 0.833 0.007 0.094 0.000 0.551 0.851 0.856 0.736 0.018 3.946
15 | Denmark 0.667 0.015 0.01 0.000 0.740 0.761 0.829 0.800 0.074 3.896
16 | Austria 0.667 0.087 0.036 0.044 0.685 0.722 0.772 0.450 0.085 3.527
17 | Australia 0.500 0.034 0.045 0.007 0.576 0.609 08n 0.545 0.020 3.248
18 | Belgium 0.417 0.032 0.007 0.001 0.808 0.852 0.748 0.521 0.057 3.242
19 | New Zealand 0.667 0.019 0.010 0.000 0.743 0.409 0.692 0.567 0.048 3.155
20 | China 1.000 0.002 0.045 0.014 0.023 0.503 0.777 0.446 0.103 2913
21 | Italy 0.833 0.008 0.012 0.000 0.330 0519 0.796 0.360 0.016 2.875
22 | United Arab Emirates 0.833 0.008 0.000 0.005 0.787 0.221 0.731 0.193 0.085 2.864
23 | Spain 0.500 0.015 0.013 0.000 0.462 0.492 0.924 0.338 0.025 2.769
24 | Hungary 0.667 0.037 0.008 0.028 0.371 0.1M 0.742 0.103 0.033 2.095
25 | Czech Republic 0683 0.007 0.008 0.000 0.543 0.325 0.215| 0.335 0.009 2.025
26 | Russia 0.333 0.004 0.007 0.001 0.000 0.235 0.794 0.058 0.001 1.432
27 | Chile 0.333 0.004 0.001 0.000 0.554 0.000 0.000 0.190 0.001 1.084
28 | India 0.167 0.001 0.001 0.000 0.122 0.180 0.540 0.000 0.000 1.020
29 | Mexico 0.000 0.000 0.001 0.000 0.269 0.025 0.345 0.122 0.001 0.763
30 | Brazil 0.167 0.001 0.001 0.000 0.048 0.144 0.232 0.144 0.001 0.736

Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020-01-25]. Dostupné z: https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html
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Infrastructure pillar scores breakdown by variable

Position EV charging 4G coverage Quality of roads Technology Mobile connection | Broadband (0.5 Pillar 3 score
stations infrastructure speed (0.5 weight) | weight) (unadjusted)

change readiness

1 The Netherlands 1.000 0.832 0.993 0.622 0.755 0.792 4.221
2 | South Korea 0.060 1.000 0.838 0.689 0.959 0.917 3.525
3 | Norway 0.808 0.929 0.448 0.467 0.728 0.958 3.495
4 | United Arab Emirates 0.010 0.636 0.869 1.000 1.000 0.833 3.431
5 | Singapore 0.095 0.739 1.000 0.756 0.578 1.000 3.379
6 |Japan 0.078 0.957 0.894 0.689 0.272 0.958 3.233
7 | Austria 0.166 0.6M1 0.871 0.844 0.498 0.708 3.095
8 | Sweden 0.290 077 0.669 0.578 0.473 0.958 3.023
9 | United States 0.070 0.839 0.714 0.600 0.393 0.917 2.878
10 | Denmark 0.158 0.682 0.744 0.556 0.491 0.875 2.823
11 | Finland 0.068 0.714 0.653 0.644 0.483 0.833 2.738
12 | Australia 0.010 0.743 0.557 0.578 0.693 1.000 2.735
13 | Canada 0.074 0.689 0.5687 0.378 0.788 0.917 2.580
14 | Taiwan 0.024 0.588 0.754 0.533 0.453 0.865 2.558
156 | Spain 0.062 0.639 0.782 0.633 0.327 0.750 2.555
16 | United Kingdom 0.141 0.543 0.5638 0.689 0.313 0.750 2.442
17 | France 0.150 0.364 0.704 0.533 0.467 0.792 2.381
18 | Belgium 0.192 0.746 0.399 0.333 0.516 0.708 2.283
19 | Germany 0.165 0.264 0.666 0.600 0.328 0.667 2.192
20 | New Zealand 0.021 0.250 0.420 0.71 0.522 0.917 2.121
21 | Hungary 0.023 0.782 0.293 0.333 0.433 0.542 1919
22 | China 0.079 0.581 0.456 0.267 0.751 0.250 1.884
23 | haly 0.024 0.339 0.406 0.622 0.318 0.625 1.863
24 | Czech Republic 0.033 0.754 0.261 0.289 0.496 0.542 1.856
25 | Israel 0.108 0.000 0.5637 0.578 0.146 0.833 1712
26 | Chile 0.002 0.257 0.638 0.422 0.117 0.542 1.648
27 | Russia 0.001 0.157 0.136 0.622 0.117 0.625 1.287
28 | Mexico 0.007 0.368 0.434 0.200 0.218 0.333 1.284
29 | India 0.000 0.764 0.437 0.000 0.000 0.000 1.202
30 | Brazil 0.001 0.089 0.000 0.31 0.171 0.417 0.695

Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020-01-25]. Dostupné z: https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html
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Consumer acceptance pillar scores breakdown by variable

Position Population living | Civil society Consumer ICT Digital skills Individual Online ride- Pillar 4 score
near test areas technology use adoption readiness hailing market (unadjusted)

penetration

1 Singapore 1.000 0.514 0.906 0.910 0.715 0.828 4.873
2 | Finland 0.364 0.886 0.796 1.000 0.673 1.000 4.718
3 | Sweden 0.353 1.000 0.918 0.911 0.641 0.524 4.377
4 | United Arab Emirates 0.210 0.543 0.985 0.814 1.000 0.719 4.271
5 | Norway 0.342 0.857 0.840 0.805 0.705 0.528 4.078
6 | United States 0.324 0.914 0.695 0.818 0.636 0.682 4.069
7 | The Netherlands 0.81 0.814 0.728 0.926 0.624 0.131 4.034
8 | Denmark 0574 0.729 0.843 0.849 0.734 0.199 3.927
9 | Australia 0.365 0.786 0.684 0.705 0.719 0.412 3.670
10 | South Korea 0.216 0514 1.000 0.694 0.690 0.483 3.597
11 | Israel 0.562 0.643 0.585 0.880 0.472 0.412 3.553
12 | United Kingdom 0.305 0.714 0.674 0.674 0.5641 0.607 3.515
13 | Canada 0.477 0.729 0.629 0.724 0.444 0.453 3.457
14 | New Zealand 0.342 0.757 0.751 0.672 0.683 0.315 3.420
15 | Taiwan 0.465 0.171 0.827 0.748 0.749 0.435 3.396
16 | China 0.043 0.571 0.764 0.573 0.419 0.993 3.364
17 | Spain 0.000 0.329 0.759 0.457 0.676 0.539 2.761
18 | Japan 0.302 0.286 0.891 0.490 0.709 0.000 2.678
19 | France 0.284 0.386 0.685 0.5612 0.407 0.348 2.622
20 | Russia 0.000 0.329 0.740 0.678 0.394 0.442 2.583
21 | Germany 0.096 0.529 0.624 0.722 0.483 0.127 2.581
22 | Czech Republic 0.000 0.500 0.588 0.617 0.364 0416 2.494
23 | Belgium 0.000 0.657 0675 0.635 0.485 0.116 2.468
24 | Austria 0.000 0.457 0.652 0.617 0.504 0.333 2.463
25 | Chile 0.000 0.257 0.511 0.429 0.612 0.367 2.176
26 | ltaly 0.125 0.271 0.534 0.396 0.464 0.000 1.790
27 | Mexico 0.000 0.100 0.377 0.245 0.375 0.464 1.561
28 | Hungary 0.000 ona 0.529 0.322 0.221 0.266 1.451
29 | Brazil 0.104 0.000 0.428 0.000 0.306 0476 1.314
30 |India 0.000 0.157 0.000 0.490 0.000 0.427 1.074

Autonomous Vehicles Readiness Index: AVRI [online]. [cit. 2020-01-25]. Dostupné z: https://home.kpmg/xx/en/home/insights/2020/06/autonomous-vehicles-readiness-index.html
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What is Object Detection?

* Itis clear that the images contain many objects of interest. The goal of the
object detection
systems is to find the location of these objects in the images (e.g. cars,
faces, pedestrians).

* For example, the vehicle detection systems are crucial for traffic analysis or
intelligent scheduling, the people detection systems can be useful for
automotive safety, and the face detection systems are a key part of face
recognition systems.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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What Is Object Detection?

2018/11/15 08:29:04 DOD RC500S 38KM/H N49° 50’ 19. 54" E18°17 13. 54" 34KM/H N49° 507 25. 48" E18° 17 32. 06" 1S0:00051
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What is Object Detection?

= Qutput?
= position of the objects
" scale of the objects
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Problems (Challenges)

= different views

" [llumination challenges
= occlusion

= different backgrounds
= shadows

2018/11/15 08:28:14 DOD RC500S 28KM/H N49° 507 16. 42” E18°16° 58. 24" 1S0:00051
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Problems (Challenges)

" |ow quality images

Face Detection Data Set and Benchmark Home [online]. [cit. 2020-01-25]. Dostupné z: http://vis-www.cs.umass.edu/fddb/
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Problems (Challenges)

" jllumination + low quality

Face Detection Data Set and Benchmark Home [online]. [cit. 2020-01-25]. Dostupné z: http://vis-www.cs.umass.edu/fddb/
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Image Features

* The objects of interest can be described using various image
information (e.g. shape, texture, colour). In the area of feature based
detectors the image features are the carries of this information.

* Many methods for extracting the image features that are able to
describe the appearance of objects were presented, especially, the
detectors that are based on the histograms of oriented gradients
(HOG), Haar features, or local binary patterns (LBP) are dominant and
they are considered as the state-of-the-art methods.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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— Object Detection/Recognition
= Haar

__ Traditional Approaches
= HOG

= |BP —

= SIFT, SURF } KeyPoints

= CNNs } Deep Learning Approach

" Practical examples using OpenCV + Dlib (https://opencv.org/, http://dlib.net/)


https://opencv.org/
http://dlib.net/
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Constantine Papageorgiou and Tomaso Poggio: A Trainable System for Object Detection. Int. J. Comput. Vision 38, pp. 15-33. (2000)
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Sliding Window - Main Idea

\~

Constantine Papageorgiou and Tomaso Poggio: A Trainable System for Object Detection. Int. J. Comput. Vision 38, pp. 15-33. (2000)
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Sliding Window - Main Idea

* In general, the sliding window technique represents the popular and
successful approach for object detection. The main idea of this
approach is that the input image is scanned by a rectangular window
at multiple scales. The result of the scanning process is a large
number of various sub-windows. A vector of features is extracted
from each sub-window. The vector is then used as an input for the
classifier (e.g. SVM classifer).

* During the classification process, some sub-windows are marked as
the objects. Using the sliding window approach, the multiple positive
detections may appear, especially around the objects of interest

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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Sliding Window - Main ldea

 These detections are merged to the final bounding box that
represents the resulting detection.

* The classifer that determines each sub-window is trained over the
training set that consists of positive and negative images.

* The key point is to find what values (features) should be used to
effectively encode the image inside the sliding window.
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Detection Process

Feature Vector

(gradient, HOG, LBP, ...)
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Detection Process

Feature Vector

(gradient, HOG, LBP, ...)

Trainable Classifier

(SVM, ANNSs, ...)
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Detection Process

e Typically, in the area of feature-based detectors, the detection
algorithms consist of two main parts. The extraction of image features
is the first part. The second part is created by the trainable
classifiers that handle a final classification (object/non-object).

* The extraction of relevant features has a significant influence on the
successfulness of detectors. The large number of features slows down
the training and detection phases; on the other hand a very small
number of features may not be able to describe the properties of
object of interest. The quality of training set is also equally important.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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Training Sets

" negative set - without the object of interest
= positive set

= rotation

" noise

" |[lumination

" gscale
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Training Set — Traffic Sign

The German Traffic Sign Recognition/Detection Benchmark

. Single-image, multi-class classification problem

. More than 40 classes

. More than 50,000 images in total

. Large, lifelike database

. Reliable ground-truth data due to semi-automatic
annotation

. Physical traffic sign instances are unique within the
dataset
(i.e., each real-world traffic sign only occurs once)

The German Traffic Sign Recognition Benchmark [online]. [cit. 2020-01-25]. Dostupné z: https://benchmark.ini.rub.de/gtsrb_news.html



VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
_ || ‘| UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
EUROPEAN UNION ’\Kﬁr OF OSTRAVA | SCIENCE SCIENCE
European Structural and Investment Funds
Operational Programme Research,
Development and Education

Training Set — Traffic Lights

Bosch Small Traffic Lights Dataset (Germany)

« Training set:
5093 images
« Annotated about every 2 seconds
« 10756 annotated traffic lights
« Median traffic lights width: ~8.6 pixels | = ,
« 15 different labels D ‘ °| ﬂ ﬂ
« 170 lights are partially occluded s o e e

* Test set: D D E o,

10533.jpg 9732 2363.jpg 1167.jpg 10340.jpg 10053.jpg 8756.jpg

« 8334 consecutive images »
« Annotated at about 15 fps

13486 annotated traffic lights l 2 D B
« Median traffic light width: 8.5 pixels P9 79073 5953ipg 10086 ps
. 4 labels (red, yellow, green, off) '—] £] |2 | B
« 2088 lights are partially occluded R e e oo o D B e

Bosch Small Traffic Lights Dataset [online]. [cit. 2020-01-25]. Dostupné z: https://hci.iwr.uni-heidelberg.de/content/bosch-small-traffic-lights-

085.jpg 2521.jpg 5679.jpg 4691.jpg
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Training Set — Road Objects

Berkeley Deep Drive

Berkeley DeepDrive [online]. [cit. 2020-01-25]. Dostupné z: https://bdd-data.berkeley.edu/
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nttp://apolioscapeante  17@INING Set — Road Objects

1.

F.
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ES € W e

’&g—‘-;;-__;;;: e

ApolloScape Dataset [online]. [cit. 2020-01-25]. Dostupné z: http://apolloscape.auto/


http://apolloscape.auto/
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Training Set — Road Objects

nuScenes

NuScenes dataset [online]. [cit. 2020-01-25]. Dostupné z: https://www.nuscenes.org/nuscenes
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https://boxy-dataset.com/boxy/ Training Set - Road ObjeCtS

ST

v BOSCH

Invented foc liin

R .‘\ '.-}

rﬁ'; X

The Boxy Vehicle Dataset and Baselines [online]. [cit. 2020-01-25]. Dostupné z:
THE BOXY VEHICLES DATASET [online]. [cit. 2020-01-25]. Dostupné z: https#/boxy-dataset.com/boxy/ The Boxy Venicle Dataset and Baselines [online]. [eit. 2020-01-23]. Dostupne 2


https://boxy-dataset.com/boxy/
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= Haar
= HOG
= |BP

= SIFT, SURF

= (CNNs

—

Traditional Approaches

KeyPoints

Deep Learning Approach
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Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de I'Europe, Montbonnot 38334, France
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Haar Wavelet-based Descriptors

* The main idea behind the Haar-like features is that the features can
encode the differences of mean intensities between the rectangular
areas. For instance, in the problem of face detection, the regions around
the eyes are lighter than the areas of the eyes; the regions bellow or on
top of eyes have different intensities that the eyes themselves.

 These specific characteristics can be simply encoded by one two-

rectangular feature, and the value of this feature can be calculated as the
difference between the sum of the intensities inside the rectangles.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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Haar Wavelet-based Descriptors

* The paper of Viola and Jones contributed to the popularity of Haar-like
features. The authors proposed the object detection framework based
on the image representation called the integral image combined with the
rectangular features, and the AdaBoost algorithm.

 With the use of integral image, the rectangular features are computed
very quickly. The AdaBoost algorithm helps to select the most important
features.

e The features are used to train classifers and the cascade of classifers is
used for reducing the computational time.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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Haar Wavelet-based Descriptors

e faces have similar properties
* eye regions are darker than the upper-cheeks
* the nose bridge region is brighter than the eyes

Face Detection using Haar Cascades [online]. [cit. 2020-01-25]. Dostupné z: https://docs.opencv.org/3.4.1/d7/d8b/tutorial_py_face_detection.html
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Haar Wavelet-based Descriptors

Figure 1: Example rectangle features shown relative to the
enclosing detection window. The sum of the pixels which
lie within the white rectangles are subtracted from the sum
of pixels in the grey rectangles. Two-rectangle features are
shown in (A) and (B). Figure (C) shows a three-rectangle
feature, and (D) a four-rectangle feature.

P. Viola and M. Jones, "Rapid object detection using a boosted cascade of simple features," Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Patterm Recognition. CVPR 2001, Kauai, HI, USA, 2001, pp. I-I, doi: 10.1109/CVPR.2001.990517.

There are many motivations
for using features rather than the pixels directly. The most
common reason is that features can act to encode ad-hoc
domain knowledge that is difficult to learn using a finite
quantity of training data. For this system there is also a
second critical motivation for features: the feature based
system operates much faster than a pixel-based system.
The simple features used are reminiscent of Haar basis
functions which have been used by Papageorgiou et al. [10].
More specifically, we use three kinds of features. The value
of a two-rectangle feature 1s the difference between the sum
of the pixels within two rectangular regions. The regions
have the same size and shape and are horizontally or ver-
tically adjacent (see Figure 1). A three-rectangle feature
computes the sum within two outside rectangles subtracted
from the sum in a center rectangle. Finally a four-rectangle
feature computes the difference between diagonal pairs of
rectangles.

Face Detection using Haar Cascades [online]. [cit. 2020-01-25]. Dostupné z: https://docs.opencv.org/3.4.1/d7/d8b/tutorial_py_face_detection.html
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Features
= Rectangular features

Haar-Feature = white region - black region

Rwhite Rblack

David Gerdénimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009
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Features

Different sets

4 ™

A=l =N

Basic Haar set |

L

Haar-like features

AR R PR R

Extended Haar features )

David Gerdnimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009
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Face Detection

e 24x24 sub-window aprox. 160,000 rectangular
features

* How speed the computational speed?
 decrease memory accesses

David Gerdénimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009
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Integral Image

Original image (i) Integral image (ii)
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Integral Image

Integral image (i)

133=99+109—-83+8

David Gerdénimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009
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Integral Image

Integral image (if)

ii, =sum(A4)

ii, =sum(A4)+sum(B)
ii; = sum(A4) +sum(C)

ii, =sum(A4)+sum(B)+sum(C)+sum(D)

1
1
i
LR
Y

sum(D) = i, + ii,—ii, — i,

David Gerdénimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009



VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
EUROPEAN UNION Wr [I" oF osTrRAVA | scIENCE SCIENCE
European Structural and Investment Funds

Operational Programme Research,

Development and Education

Integral Image

Original image (/) Integral image (i)

David Gerdénimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009
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Integral Image

Integral image (ii)

Original image (1)
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David Gerdénimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009
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1.5. Stochastic Gradient Descent

1.6. Nearest Neighbors 1.10. Decision Trees

1.7. Gaussian Processes

1.8. Cross decomposition Decision Trees (DTs) are a non-parametric supervised learning method used for classification and

1.9. Naive Bayes regression. The goal is to create a model that predicts the value of a target variable by learning simple

1.10. Decision Trees decision rules inferred from the data features. A tree can be seen as a piecewise constant approximation.

1.11. Ensembles: Gradient boosting, For instance, in the example below, decision trees learn from data to approximate a sine curve with a set
random forests, bagging, voting, of if-then-else decision rules. The deeper the tree, the more complex the decision rules and the fitter the
stacking
model.
1.12. Multiclass and multioutput
algorithms
1.13. Feature selection Decision Tree Regression
: . . 15 -
1.14. Semi-supervised learning ° 2 ::t: depth=2
. . —— max_depth=>5
1.15. Isotonic regression 104 s~
1.16. Probability calibration 05 -
1.17. Neural network models .
@ 0.0 -
(supervised) 5 °
2. Unsupervised learning v —0.5 1
L]
3. Model selection and evaluation v 1.0 - °
4. Inspection v
=1.5 4
5. Visualizations - : . T . .
0 1 2 3 4 5
-learn.org/stablefauto_examples/tree/plot_tree_regression.html data

//scikit-] / : les/


https://scikit-learn.org/stable/modules/tree.html
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sklearn. multioutput v # > APl Reference » sklearn.tree > DecisionTree...
sklearn.naive bayes v
sklearn.neighbors v
siieam.neural_newwork v DecisionTreeClassifier
sklearn.pipeline v
sklearn.preprocessing v class sklearn.tree.DecisionTreeClassifier(*, criterion='gini’,
sklearn.random_projection v splitter="best', max_depth=None, min_samples_split=2, min_samples_leaf=1,
: : min_weight_ fraction_leaf=0.0, max_features=None, random_state=None,
sklearn.semi_supervised v
max_leaf_nodes=None, min_impurity_decrease=0.0, class_weight=None,
sklearn.svm v )
ccp_alpha=0.0, monotonic_cst=None) [source]
| sklearn.tree ~
A decision tree classifier.

| DecisionTreeClassifier
Read more in the User Guide.

DecisionTreeRegressor

ExtraTreeClassifier Parameters:

ExtraTreeRegressor criterion : {“gini”, “entropy”, “log_loss”}, default="gini”

export_graphviz The function to measure the quality of a split. Supported criteria are “gini” for the Gini impurity

export_text and “log_loss” and “entropy” both for the Shannon information gain, see Mathematical

formulation.
plot_tree



https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
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. emn Install User Guide APl Examples Community(# More ~

-

AdaBoostRegressor # > APIReference > sklearn.ensemble > RandomForest...
BaggingClassifier

BaggingRegressor

RandomForestClassifier

ExtraTreesClassifier

ExtraTreesRegressor

. . . class sklearn.ensemble.RandomForestClassifier(n_estimators=100, *,

GradientBoostingClassifier
criterion="gini', max_depth=None, min_samples_split=2, min_samples_leaf=1,

GradientBoostingRegressor i i i

min_weight_fraction_leaf=0.0, max_features='sqrt', max_leaf_nodes=None,

HistGradientBoostingClassifier min_impurity_decrease=0.0, bootstrap=True, oob_score=False, n_jobs=None,

HistGradientBoostingRegressor random_state=None, verbose=0, warm_start=False, class_weight=None,

IsolationForest ccp_alpha=0.0, max_samples=None, monotonic_cst=None) [source]
RandomForestClassifier A random forest classifier.

RandomForestRegressor Arandom forest is a meta estimator that fits a number of decision tree classifiers on various sub-
RandomTreesEmbedding samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.
StackingClassifier Trees in the forest use the best split strategy, i.e. equivalent to passing splitter="best" to the

underlying DecisionTreeRegressor . The sub-sample size is controlled with the max_samples

StackingRegressor

parameter if bootstrap=True (default), otherwise the whole dataset is used to build each tree.



https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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sklearn.datasets

sklearn.decomposition

sklearn.discriminant_analysis

sklearn.dummy

| sklearn.ensemble

AdaBoostClassifier
AdaBoostRegressor
BaggingClassifier
BaggingRegressor
ExtraTreesClassifier
ExtraTreesRegressor
GradientBoostingClassifier
GradientBoostingRegressor
HistGradientBoostingClassifier
HistGradientBoostingRegressor
IsolationForest
RandomForestClassifier

RandomForestRegressor

MINISTRY OF EDUCATION

User Guide API

s
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AdaBoostClassifier

class sklearn.ensemble.AdaBoostClassifier (estimator=none, *,
n_estimators=50, learning rate=1.0, algorithm='SAMME.R', random_state=None)

An AdaBoost classifier. [source]

An AdaBoost [1] classifier is a meta-estimator that begins by fitting a classifier on the original dataset
and then fits additional copies of the classifier on the same dataset but where the weights of incorrectly
classified instances are adjusted such that subsequent classifiers focus more on difficult cases.

This class implements the algorithm based on [2].

Read more in the User Guide.

© Added in version 0.14.

Parameters:

estimator : object, default=None

The base estimator from which the boosted ensemble is built. Support for sample weighting is

required, as well as proper classes_ and n_classes_ attributes. If None , then the hase

estimator is DecisionTreeClassifier initialized with max_depth=1.

DEPARTMENT
OF COMPUTER
SCIENCE


https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html
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Topics to be discussed:
* Whatis Gini index?
* Can we use Random Forest or AdaBoost for feature selection?
* What can be used as estimator in AdaBoost?
 What is decision stump?
# Create and fit an AdaBoosted decision tree

bdt = AdaBoostClassifier(
DecisionTreeClassifier(max_depth=1), algorithm="SAMME", n_estimators=200

)

* let's see next slides with visualization for better understanding



https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.html
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Random Forest

Fig. 1 Simplified Random Forests method. (A) Features in the training data are divided into multiple subsets and used to train individual decision
trees in the forest. (B) When an unknown input X is introduced to the trained forest, each tree will make its own prediction. The final prediction is
decided by majority voting of all trees. (C) An example of how a decision tree makes a prediction, where blue squares represent samples in class A
while orange squares represent samples in class B, and tl1 and t2 are two example features used at nodes.

Tang, Jiayi & Henderson, Alex & Gardner, Peter. (2021). Exploring AdaBoost and Random Forests machine learning approaches for infrared pathology on unbalanced data sets. The Analyst. 146. 10.1039/DOAN02155E.
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Topics to be discussed:

* What is Gini index (Gini impurity)?
Gini impurity |[edit)

Gini impurity, Gini's diversity index,[?5 or Gini-Simpson Index in biodiversity research, is named
after Italian mathematician Corrado Gini and used by the CART (classification and regression tree)
algorithm for classification trees. Gini impurity measures how often a randomly chosen element of a set
would be incorrectly labeled if it were labeled randomly and independently according to the distribution of
labels in the set. It reaches its minimum (zero) when all cases in the node fall into a single target
category.

For a set of items with J classes and relative frequencies p;, 7 € {1,2,..., J}, the probability of

choosing an item with label 7 is p; , and the probability of miscategorizing that item is Z pr=1—p;.
k#i
The Gini impurity is computed by summing pairwise products of these probabilities for each class label:

J

J J J J J
o)=Y (P pe | =D pi(1=p)=> (pi—p) =D pi—> pP=1-> p
i=1 i=1 i=1 i=1 i=1

i—1 ki

The Gini impurity is also an information theoretic measure and corresponds to Tsallis Entropy with
deformation coefficient ¢ = 2, which in physics is associated with the lack of information in out-of-
equilibrium, non-extensive, dissipative and quantum systems. For the limit g — 1 one recovers the usual
Boltzmann-Gibbs or Shannon entropy. In this sense, the Gini impurity is nothing but a variation of the
usual entropy measure for decision trees.
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What is Gini Impurity?

Gini Impurity is a measurement used to build Decision Trees to determine how the features
of a dataset should split nodes to form the tree. More precisely, the Gini Impurity of a
dataset is a number between 0-0.5, which indicates the likelihood of new, random data
being misclassified if it were given a random class label according to the class distribution in
the dataset.

Age Income

Youth Middle age enior- Hig| Medium Low.
i ! R )
Yes 2 Yes 4 Yes 3 Yes 2 Yes 4 Yes
No 3 No | 0 | No 2 No 2 No | 2 | No
Gini 048 Gini 0 Gini = 0.48 Gini 05 Gini | 0.44 Gini

Gini Impurity for Age is 0.343

Gini Impurity for Income is 0.440

Student Credit Rating
Best
Yes No—— Fair. Excellent-,
5 : e )
Yes 6 Yes 3 Yes 3 | Yes 2
No 1 No 4 No 3 | No 6
Gini | 0.24 Gini o.4s| Gini | 05 | Gini | 0.37

Gini Impurity for Student is 0.367 Gini Impurity for Credit Rating is 0.429

For example, say you want to build a classifier that determines if someone will default on
their credit card. You have some labeled data with features, such as bins for age, income,
credit rating, and whether or not each person is a student. To find the best feature for the
first split of the tree — the root node - you could calculate how poorly each feature divided
the data into the correct class, default ("yes") or didn't default ("no"). This calculation would
measure the impurity of the split, and the feature with the lowest impurity would determine
the best feature for splitting the current node. This process would continue for each
subsequent node using the remaining features.


https://en.wikipedia.org/wiki/Decision_tree_learning
https://www.learndatasci.com/glossary/gini-impurity/
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Iteration 1 (weak) Iteration 2 (weak) Iteration 3 (weak)

Al A Bl A (®(la A =
A A A A A A
E m B g B
A A A

O 0O o o O o

H = sign (a x +bx 4+ ¢ x )

Al A |B
A A
B m

Final classifier (strong)

A
H o

Fig. 2 A schematic of the AdaBoost process. Blue triangles and orange
squares represent features, with the size of the features representing
weighting. Iteration 1, all features carry equal weight. Iteration 2, cor-
rectly classified features (in iteration 1) down-weighted, incorrectly
classified feature up-weighted. Iteration 3, correctly classified features
(in iteration 2) down-weighted, incorrectly classified feature up-
weighted. The combination of the iterations produces a final classifier
that is strong.
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Procedure: AdaBoost Learning Algorithm

Given: (xl =M ) ) '(‘xm s Vm ) s X E X, Vi e {—1,]}
Initialize weight D, (i) = i
m

For 1=1.--T
Call weak learn which returns weak classifier h, : X < {~1,1jwith minimum error w.r.t

Choose o, € R

Update weight

D, 4 (i)= Dy (i)exp(=ay;hy (x;))
+1 Z!.

When Z, is a normalization factor chosen so that D, is a distribution

Produce the strong classifier:

H(x) =5ig ia,kf (x}

Tang, Jiayi & Henderson, Alex & Gardner, Peter. (2021). Exploring AdaBoost and Random Forests machine learning approaches for infrared pathology on unbalanced data sets. The Analyst. 146. 10.1039/DOAN02155E.
Chun, Junchul & Kim, Wonggi. (2014). 3D face pose estimation by a robust real time tracking of facial features. Multimedia Tools and Applications. 75.10.1007/s11042-014-2356-9.
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Feature Selection
AdaBoost (Adaptive Boost) is an iterative learning
algorithm to construct a “strong” classifier as a linear
combination of weighted simple “weak” classifiers

weak classifier - each single rectangle feature
(features as weak classifiers)

during each iteration, each example/image receives a
weight determining its importance
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Feature Selection

O AdaBoost starts with a uniform
distribution of “weights” over training
examples.

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Feature Selection

O AdaBoost starts with a uniform
distribution of “weights” over training
examples.

O Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Feature Selection

O AdaBoost starts with a uniform
distribution of “weights” over training
examples.

O Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

O Increase the weights on the
training examples that were
misclassified.

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Feature Selection

O AdaBoost starts with a uniform
distribution of “weights” over training
examples.

O Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

O Increase the weights on the
training examples that were
misclassified.

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Feature Selection

O AdaBoost starts with a uniform
distribution of “weights” over training
examples.

O Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

O Increase the weights on the
training examples that were
misclassified.

O (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Feature Selection

O AdaBoost starts with a uniform
distribution of “weights” over training
examples.

+
O Select the classifier with the lowest ﬁ ﬁ
weighted error (i.e. a “weak” classifier) ‘% ‘@ ﬁ ﬁ

O Increase the weights on the
training examples that were

misclassified. gﬁ

O (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Feature Selection

O AdaBoost starts with a uniform
distribution of “weights” over training 5
examples.

O Select the classifier with the lowest
weighted error (i.e. a “weak” classifier) ‘9

"
0

O Increase the weights on the
training examples that were
misclassified.

O (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa



VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| ‘l UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER

EUROPEAN UNION = OF OSTRAVA SCIENCE SCIENCE
European Structural and Investment Funds

Operational Programme Research,
Development and Education

Feature Selection

O AdaBoost starts with a uniform
distribution of “weights” over training
examples.

h@ @
O Select the classifier with the lowest ﬁ
weighted error (i.e. a “weak” classifier) ﬁ ﬁ

O Increase the weights on the .
training examples that were
misclassified. H@

O (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Feature Selection

O AdaBoost starts with a uniform
distribution of “weights” over training
examples.

O Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

O Increase the weights on the
training examples that were
misclassified.

O (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Feature Selection

O AdaBoost starts with a uniform
distribution of “weights” over training
examples.

O Select the classifier with the lowest
weighted error (i.e. a “weak” classifier) @

O Increase the weights on the
training examples that were
misclassified.

O (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Feature Selection

[l At the end, carefully make a linear
combination of the weak classifiers
obtained at all iterations.

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Feature Selection

[l At the end, carefully make a linear
combination of the weak classifiers
obtained at all iterations.

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa
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Cascade of Classifier

The idea of cascade classifier is reject the non-face region as soon as possible

Stage 1 H Stage 2 H Stage 3 H Stage 4 }

y

Rejected Windows
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The idea of cascade
- r- classifier is reject the
Cascade of Classifier o tace region as soon
as possible

m 4{ Stage 1 H Stage 2 H Stage 3 H Stage 4 }—

Rejected Windows
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The idea of cascade
- r- classifier is reject the
Cascade of Classifier o tace region as soon
! as possible

m 4{ Stage 1 H Stage 2 H Stage 3 H Stage 4 }—

Rejected Windows
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The idea of cascade
- r- classifier is reject the
Cascade of Classifier ontace region as soon
A § as possible

m 4{ Stage 1 H Stage 2 H Stage 3 H Stage 4 }—

Rejected Windows
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Cascade of Classifier

y

m% Stage 1 H Stage 2 H Stage 3 H Stage 4
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The idea of cascade
classifier is reject the
non-face region as soon
as possible
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Cascade of Classifier o tace region as soon
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Cascade of Classifier . tace region as soon
as possible

Rejected Windows
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non-face region as soon
as possible
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Haar Features

OpenCV Face Detection: Visualized [online]. [cit. 2020-01-25]. Dostupné z: https://vimeo.com/12774628
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Face Detection (Object Detection) - Evaluation

Face Detection Data Set and Benchmark Home [online]. [cit. 2020-01-25]. Dostupné z: http://vis-www.cs.umass.edu/fddb/
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Face Detection - Evaluation

TP = number of true positives
FP = number of false positives
FN = number of false negatives
TN = number of true negatives

precision = TP/(TP+FP)
sensitivity = TP/(TP+FN)

F1 score (harmonic mean of precision and sensitivity) = 2 x precision x sensitivity/(precision + sensitivity)

What else?
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Face Detection - Evaluation

Figure 8. Matching detections and annotations. In this image, the
ellipses specify the face annotations and the five rectangles denote
a face detector’s output. Note that the second face from left has
two detections overlapping with it. We require a valid matching
to accept only one of these detections as the true match, and to
consider the other detection as a false positive. Also, note that the
third face from the left has no detection overlapping with it, so no
detection should be matched with this face. The blue rectangles
denote the true positives and yellow rectangles denote the false
positives in the desired matching.

Face Detection Data Set and Benchmark Home [online]. [cit. 2020-01-25]. Dostupné z: http://vis-www.cs.umass.edu/fddb/
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Haar Features

* Since Viola and Jones popularized the Haar-like features for face detection, the
Haarlike features and their modifcations were used in many detection tasks
(e.g. pedestrian, eye, vehicle).

* |n the area of pedestrian detection, in [1], the authors presented the
component-based person detector that is able to detect the occluded people
in clustered scenes in static images. The detector uses the Haar-like features to
describe the components of people (heads, legs, arms) combined with the SVM
classifer. The Viola and Jones detection framework was successfully extended
for moving-human detection in [2]. In [3], the authors proposed the method
for estimating the walking direction of pedestrian.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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* Haar Features

* The 3D Haar-like features for pedestrian detection were presented
in [4]. The authors extend the classical Haar-like features using the volume
flters in 3D space (instead of using rectangle flters in 2D space) to capture
motion information. The 3D features are then combined with the SVM classifer.
To compute the 3D Haar-like features using the integral image like the classical

2D features, the authors introduced Integral Volume that extends 2D integral
image to the three dimensions.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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Haar Features
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The modified version of Haar-like features that more
properly reflect the shape of the pedestrians than the
classical Haar-like features.
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The modified version of Haar-like features that more

properly reflect the shape of the pedestrians than the
classical Haar-like features. .
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Five most significant Haar features selected for the first stage of each of the 3 trained detectors
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What is Object Detection?

* Itis clear that the images contain many objects of interest. The goal of the
object detection
systems is to find the location of these objects in the images (e.g. cars,
faces, pedestrians).

* For example, the vehicle detection systems are crucial for traffic analysis or
intelligent scheduling, the people detection systems can be useful for
automotive safety, and the face detection systems are a key part of face
recognition systems.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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What is Object Detection?

= Qutput?
= position of the objects
" scale of the objects
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Pedestrian Detection - Challenges?
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Histograms of Oriented Gradients (HOG)

* |n recent years, the object detectors that are based on edge analysis that
provides valuable information about the objects of interest were used in
many detection tasks. In this area, the histograms of oriented gradients
(HOG) [1] are considered as the state-of-theart method.

* |n HOQG, asliding window is used for detection. The window is divided into
small connected cells in the process of obtaining HOG descriptors. The
histograms of gradient orientations are calculated in each cell. It is
desirable to normalize the histograms across a large block of image. As a
result, a vector of values is computed for each position of window. This
vector is then used for recognition, e.g. by the Support Vector Machine
classifier.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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Histograms of Oriented Gradients (HOG)

* Dalal and Trigs experimented with the size of detection window and they
suggested the rectangular window with the size 64 x 128 pixels. They also
tried to reduce the size of the window to 48 x 112 pixels. Nevertheless,
they obtained the best detection result with the size 64 x 128 pixels.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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Istograms of Oriented Gradients (HOG)

Input image

Basic Steps: +—— Detection
window

* In HOG, asliding window is used for detection.
Normalise gamma
e The window is divided into small connected

Compute gradients
cells.

I —
Weighted vote in spatial CE

* The histograms of gradient orientations are & orientation cells ——
calculated in each cell.

Contrast normalise over

overlapping spatial cells Overlap X
e Support Vector Machine (SVM) classifier. of Blocks *
Collect HOGs over
detection window Feature vector f =
[ ..., ..., ...]

Linear SVM

Navneet Dalal, Bill Triggs : Object Detection using
Histograms of Oriented Gradients [online]. [cit. 2020-01-25]. Dostupné z: http://host.robots.ox.ac.uk/pascal/VO/voc2006/slides/dalal.ppt
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 For gradient computation, the image without Gaussian smoothing is
filtered with the [1, O, -1] kernel to compute the horizontal and vertical

derivatives.
 Then the derivatives are used to compute the magnitude of the gradient

and orientation .

D,=[-1 0 1]and D,= 0 [,=1*D, and [, =1*D,

magnitude of the gradient 1s |G| =15 +1;
I

orientation of the gradient is given by: 6 = arctan ]—Y
X
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* |n the next step, the image is divided into the cells and the cell histograms
are constructed. The histogram bins are spread over 0 to 180 degrees or 0
to 360 degrees. The corresponding histogram bin is found for each pixel
inside the cell. Each pixel contributes a weighted vote for its corresponding
bin. The pixel contribution can be the gradient magnitude.

* Next step represents contrast normalization. For this purpose, the cells are
grouped into the large blocks (i.e. 2x2 cells are considered as blocks). The
histograms are normalized within the blocks (e.g. using L2-norm). In the
paper, the two main block geometries are presented; rectangular and

circular.

 The final HOG descriptor is represented by histogram vectors of all blocks
within the detection window

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophia Doctor Thesis, 2016
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 The classical HOG descriptors suffer from the large number of features,
which causes that the training and detection phases can be time
consuming. The sufficient amount of training data is also needed to find
a separating hyperplane by the SVM classifier.

 Sometimes, it is desirable to use the methods for the dimensionality
reduction of feature vector. In addition the that, the classical HOG
descriptors are not rotation invariant.

* These shortcomings became the motivation for creating many variations
of HOG-based detectors. Many methods and applications based on HOG
were presented in recent years.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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In [1], the authors applied the principal component analysis (PCA) to the HOG
feature vector to obtain the PCA-HOG vector. This vector contains the subset
of HOG features and the vector is used as an input for the SVM classifier. Their
method was used for pedestrian detection with the satisfactory results.

Felzenszwalb et al. proposed the part-based detector that is based on HOG. In
this method, the objects are represented using the mixtures of deformable

HOG part models and these models are trained using a discriminative method
(see following image). This method obtained excellent performance for object

detection tasks [2, 3].

[1] Kobayashi, T., Hidaka, A., Kurita, T.: Neural information processing. chap. Selection of Histograms of Oriented Gradients
Features for Pedestrian Detection, pp. 598-607. Springer-Verlag, Berlin, Heidelberg (2008)

[2] Felzenszwalb, P.F., McAllester, D.A., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR
(2008)

[3] Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 32(9), 1627-1645 (2010)
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An example of person detection using a part model. The model is defined by the coarse global template that covers the entire
object and higher resolution part templates. The templates represent the histogram of oriented gradient [2].

[1] Kobayashi, T., Hidaka, A., Kurita, T.: Neural information processing. chap. Selection of Histograms of Oriented Gradients
Features for Pedestrian Detection, pp. 598-607. Springer-Verlag, Berlin, Heidelberg (2008)

[2] Felzenszwalb, P.F., McAllester, D.A., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR
(2008)

[3] Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 32(9), 1627-1645 (2010)
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D. F. Llorca, R. Arroyo and M. A. Sotelo, "Vehicle logo recognition in traffic
images using HOG features and SVM," 16th International IEEE Conference on

Intelligent Transportation Systems (ITSC 2013), The Hague, 2013, pp. 2229-
2234,

doi: 10.1109/1TSC.2013.6728559
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L. Mao, M. Xie, Y. Huang and Y. Zhang, "Preceding vehicle detection using
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LBP - Local Binary Patterns

 Were introduced by Ojala et al. for the texture analysis.

 The local binary patterns (LBP) were introduced by Ojala et al. [2, 3] for
the texture analysis. The main idea behind LBP is that the local image
structures (micro patterns such as lines, edges, spots, and flat areas)
can be effciently encoded by comparing every pixel with its neighboring
pixels. In the basic form, every pixel is compared with its neighbors in
the 3 x 3 region. The result of comparison is the 8-bit binary number
for each pixel; in the 8-bit binary number, the value 0 means that the
value of center pixel is greater than the neighbor and vice versa. The
histogram of these binary numbers (that are usually converted to
decimal) is then used to encode the appearance of region.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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LBP - Local Binary Patterns

The important properties of LBP are the resistance to the lighting changes
and a low computational complexity.

Duo to their properties, LBP were used in many detection tasks, especially
in facial image analysis [1, 4].

inary: 00010011
' : 19

O @
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o

Local Binary Patterns Histograms [online]. [cit. 2020-01-25]. Dostupné z:
https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html#local-binary-patterns-histograms
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LBP - Local Binary Patterns

Spot/Flat  Line

Local Binary Patterns Histograms [online]. [cit. 2020-01-25]. Dostupné z:
https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html#local-binary-patterns-histograms
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LBP - Local Binary Patterns

* Robust to monotonic changes in illumination

Local Binary Patterns Histograms [online]. [cit. 2020-01-25]. Dostupné z:
https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html#local-binary-patterns-histograms
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LBP - Local Binary Patterns

[1] Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face
recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on 28(12), 2037-2041 (2006)

[2] Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classifcation based
on featured distributions. Pattern Recognition 29(1), 51-59 (Jan 1996), http://dx.doi.org/10.1016/0031-
3203(95)00067-4

[3] Ojala, T., Pietikainen, M., Maenpaa, T.: A generalized local binary pattern operator for multiresolution gray
scale and rotation invariant texture classifcation. In: Proceedings of the Second International Conference on
Advances in Pattern Recognition. pp. 397-406. ICAPR 01, Springer-Verlag, London, UK, UK (2001),
http://dl.acm.org/citation.cfm?id=646260.685274

[4] Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J.
(eds.) Computer Vision - ECCV 2004, Lecture Notes in Computer Science, vol. 3021, pp. 469—-481. Springer
Berlin Heidelberg (2004)
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LBP - Local Binary Patterns

In [1], LBP were used for solving the face detection problem in low-resolution
images. In this approach, the 19 x 19 face images are divided into the 9
overlapping regions in which the LBP descriptors are computed. Additionally, the
LBP descriptors are extracted from the whole 19 x 19 image. The descriptors are
then used to create the feature vector, and the SVM classifer with a polynomial
kernel is used for the fnal classifcation.

[1] Hadid, A., Pietikainen, M., Ahonen, T.: A discriminative feature space for detecting and recognizing faces. In: Computer Vision and Pattern Recognition, 2004. CVPR
2004. Proceedings of the 2004 IEEE Computer Society Conference on. vol. 2, pp. [I-797-11-804 Vol.2 (2004)
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[1] Hadid, A., Pietikainen, M., Ahonen, T.: A discriminative feature space for detecting and recognizing faces. In: Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. vol. 2, pp. |I-797-11-804 Vol.2 (2004)
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LBP - Local Binary Patterns

Multi-block local binary patterns (MB-LBP) for face detection and recognition
were proposed in [1, 2]. In this method, the authors encode the rectangular
regions by the local binary pattern operator and the Gentle AdaBoost is used for
feature selection. Their results showed that MBLBP are more distinctive than the

Haar-like features and the original LBP features.

[1] Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face detection based on multi-block Ibp representation. In: Proceedings of the
2007 international conference on Advances in Biometrics. pp. 11-18. ICB’07, Springer-Verlag, Berlin, Heidelberg (2007)

[2] Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: ICB. pp.
828-837 (2007)



VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER

EUROPEAN UNION = |||‘| OF OSTRAVA SCIENCE SCIENCE
European Structural and Investment Funds
Operational Programme Research,

Development and Education

LBP - Local Binary Patterns

Average gray-value

of Block: 7
T T
™ ™ : Thresholding Describing
F-r 8- -19+-+-rt+ -1 0 l
(. I | >
IR T 1 LB
b P f [ [
Average MB-LBP: 00111100
gray-value

[1] Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face detection based on multi-block Ibp representation. In: Proceedings of the
2007 international conference on Advances in Biometrics. pp. 11-18. ICB’07, Springer-Verlag, Berlin, Heidelberg (2007)

[2] Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: ICB. pp.
828-837 (2007)
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LBP - Local Binary Patterns

The paper of Tan and Triggs [2] proposed the face recognition method with
robust preprocessing based on the difference of Gaussian image filter combined

with LBP in which the binary LBP code is replaced by the ternary code to create
local ternary patterns (LTP).

LBP were also successfully used for the facial expression analysis. The coarse-
tofine classification scheme with LBP combined with the k-nearest neighbor
classifier that carries out the final classification was proposed in [1].

The comprehensive study of facial expression recognition using LBP was proposed
in [78], the survey of facial image analysis using LBP was presented in [38].

[1] Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under diffcult lighting conditions. Image Processing, IEEE Transactions on 19(6), 1635-1650 (2010)

[2] Feng, X., Hadid, A., Pietikainen, M.: A coarse-to-fne classifcation scheme for facial expression recognition. In: Campilho, A., Kamel, M. (eds.) Image Analysis and Recognition. Lecture Notes
in Computer Science, vol. 3212, pp. 668—675. Springer Berlin Heidelberg (2004)

[3] Shan, C.,, Gong, S., McOwan, PW.: Facial expression recognition based on local binary patterns: A comprehensive study. Image Vision Comput. 27(6), 803—816 (May 2009)

[4] Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: A survey. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on 41(6), 765-781 (Nov 2011)
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KeyPoints

The most of the previously mentioned methods for object description were
based on the fact that the descriptors were extracted over the whole image
(sliding window) that was usually divided into the overlap or non-overlap
regions. Inside these regions, the descriptors were calculated and combined to
the final feature vector that was used as an input for the classifier.

In this lecture, we present the state-of-the-art descriptors that are based on

the fact that the regions (within which the descriptors are extracted) are
selected using the keypoint detectors.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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KeyPoints - SIF

One of the most popular descriptors based on the interest points was
proposed by David Lowe [1, 2, 3]. The method is called scale invariant feature
transform (SIFT).

The idea of the SIFT descriptor is that the interesting points (keypoints) of the
objects can be extracted to provide the key information about the objects. The
gradient magnitude and orientation are computed around the keypoint
location; the histograms are then summarized over subregions (see following
image). The keypoints are extracted from the reference image (that contains
the object of interest) and also from the target image (that possibly contains
the object of interest). The extracted keypoints are matched to find similarity
between the images.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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An example of SIFT keypoint
descriptor in which the
gradient orientation

and gradient magnitude

around each interest point are
used [3].

[1] Brown, M., Lowe, D.: Invariant features from interest point groups. In: In British Machine Vision Conference. pp. 656—665

(2002)

[2] Lowe, D.: Object recognition from local scale-invariant features. In: Computer Vision, 1999. The Proceedings of the

Seventh IEEE International Conference on. vol. 2, pp. 1150-1157 vol.2 (1999)

[3] Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91-110 (Nov 2004),

http://dx.doi.org/10.1023/B: VISI.0000029664.99615.94
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KeyPoints - SURF

The speeded up robust feature (SURF) descriptor by Bay et al. [1, 2] is also one
of the widely used keypoint descriptors. In this method, the Hessian matrix-
based measure is used to find the points of interest. The sum of the Haar-
wavelet responses within the neighborhood of interest point is calculated. The

authors also use the fast calculation via the integral image thanks to which
SURF is faster than SIFT.

[1] Bay, H., Tuytelaars, T., Gool, L.J.V.: Surf: Speeded up robust features. In: ECCV (1). pp. 404—-417 (2006)

[2] Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346—
359 (Jun 2008)

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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KeyPoints — BRIEF/ORB

A very fast method called binary robust independent elementary features
(BRIEF) was proposed by Calonder et al. [1]. The authors reported that the
method outperforms SURF in the term of speed, and the recognition rate in
many cases. In BRIEF, a binary string that contains the results of intensity
differences of pixels are used and the descriptor similarity is evaluated using
the Hamming distance. In [2], the authors proposed another binary descriptor
with rotation and noise invariant properties called oriented fast and rotated
BRIEF (ORB).

[1] Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. In: Proceedings of
the 11th European conference on Computer vision: Part IV. pp. 778-792. ECCV’10, Springer-Verlag, Berlin, Heidelberg
(2010)

[2] Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An effcient alternative to sift or surf. In: Computer Vision (ICCV),
2011 IEEE International Conference on. pp. 2564-2571 (2011)
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KeyPoints — BRISK

Leutenegger et al. [1] proposed binary robust invariant scalable keypoints
(BRISK). The method provides both scale and rotation invariance. BRISK is a
binary descriptor like BRIEF and ORB, it means that the binary string that
represents a region around the keypoint is composed. In BRISK, a concentric
circle pattern of points near to the keypoint is used (see following image). In
this pattern, the blue circles represent the sampling locations and Gaussian
blurring is computed to be less sensitive to noise; the radius of red circles
denotes a standard deviation of blurring kernel. The standard deviation of the
Gaussian kernel is increased with the increasing distance from the feature
center to avoid aliasing effects. The final descriptor is determined by the
comparison of sample points.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiae Doctor Thesis, 2016
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[1] Leutenegger, S., Chli, M., Siegwart, R.: Brisk: Binary robust invariant scalable keypoints. In: Computer Vision (ICCV), 2011
IEEE International Conference on. pp. 2548-2555 (2011)
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KeyP0| nts — FREAK

In [1], the authors proposed the fast retina keypoint (FREAK) descriptor that also
uses the binary strings. The method is biologically inspired by a human visual
system; more exactly by the retina. In this paper, the authors proposed a retinal
sampling pattern; The following image shows the topology of this pattern. The
pattern is divided into the areas (foveal, fovea, parafoveal, and perifoveal) similar
to the human retina. In this pattern, the pixels are overlapped and concentrated
near to the center. The binary strings is computed by comparing the point pairs of
image intensities within the pattern.

[1] Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast Retina Keypoint. In: IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Conference on Computer Vision and Pattern Recognition, leee, New York (2012)
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KeyPoints — FREAK

FREAK sampling pattern [1]

[1] Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast Retina Keypoint. In: IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Conference on Computer Vision and Pattern Recognition, leee, New York (2012)
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KeyPoints - Example

The goal is to find image KeyPoints that are invariant in the terms of scale,
orientation, position, illumination, partially occlusion.
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