| Unversiry Convolutional Neural Networks for Image Segmentation

|||| OF OSTRAVA

* Image segmentation: the process of dividing a visual input into segments.

« For example, in an image containing cars and trees, segmentation would classify all pixels
belonging to trees as a single "tree” class and all pixels for cars as a “car” class.

« |t is important to note that semantic segmentation does not distinguish between separate
instances of the same object class; that task is handled by a different method called instance

segmentation.

https://pytorch.org/hub/pytorch_vision_fcn_resnet101/

https://pytorch.org/hub/pytorch_vision_fcn_resnet101/

VSB TECHNICAL FACULTY OF ELECTRICAL
” “ UNIVERSITY | ENGINEERING AND COMPUTER
| OF OSTRAVA | SCIENCE

DEPARTMENT

oF conpuTER Convolutional Neural Networks for Image Segmentation

SCIENCE

Backbone Semantic Segmentation Instance Segmentation

|o

I>

One-stage Two-stage

Detection-
based
Methods

CNN
Backbone

Detection-
free
Methods

Detection- Cell-DETR

~based ‘
Methods ISTR

Transformer
Backbone

FIGURE 2 | The overview of automatic segmentation algorithms. (A) For the backbone network, there are CNN-based and Transformer-based methods, the former
includes AlexNet, VGG, GooglLeNet, ResNet, DenseNet, MobileNet, ShuffleNet, and EfficientNet, and the latter includes ViT, Data-efficient image Transformers (DeiT),
Convolutional vision Transformer (CvT), and Swin-Transformer. (B) For the semantic segmentation, the CNN-based methods include FCN, SegNet, PSPNet, DeeplLab
(v1, v2, v3, v3+), UNet, VNet, and UNet++, and the Transformer-based methods include SETR, Segmenter, SegFormer, Swin-UNet, Medical Transformer (MedT),
UNETR, MBT-Net, TransUNet, and TransFuse. (C) The instance segmentation task also can be categorized into CNN-based and Transformer-based methods.
Meanwhile, it can be divided into the detection-based and the detection-free instance segmentation methods, the former is divided into the single-stage (YOLCAT,
YOLO, and SSD) and two-stage methods (Mask R-CNN, PANet, Cascade R-CNN, and HTC), and the latter includes SOLO, DWT, and DeepMask. The
Transformer-based methods, such as cell-DETR, ISTR, belong to detection-based methods.

https://www.frontiersin.org/journals/medical-technology/articles/10.3389/fmedt.2021.767836/full 1
https://arxiv.org/abs/2001.05566

https://arxiv.org/abs/2001.05566
https://www.frontiersin.org/journals/medical-technology/articles/10.3389/fmedt.2021.767836/full

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
||||| UNIVERSITY [ENGINEERING AND COMPUTER | OF COMPUTER

OF OSTRAVA | SCIENCE SCIENCE

Convolutional Neural Networks for Image Segmentation

Semantic Segmentation

DeepLabV1

FCN U-Net

Instance Segmentation

DeepLabV2 DeepLabV3

3D U-Net

YOLO

V-Net

SegNet

PSPNet

Mask RCNN

DWT

UNet++
DeepLabV3+

Cascade RCNN
PANet
SSD

HTC

DeepMask

YOLACT

SETR
UNETR SegFormer
MBT-Net
Swin-UNet
MedT | Segmenter

SOLO ISTR
Cell-DETR

FIGURE 3 | The development of automatic image segmentation. The black represents CNN-based methods and the red shows Transformer-based methods.

https://www.frontiersin.org/journals/medical-technology/articles/10.3389/fmedt.2021.767836/full

https://arxiv.org/abs/2001.05566

https://arxiv.org/abs/2001.05566
https://www.frontiersin.org/journals/medical-technology/articles/10.3389/fmedt.2021.767836/full

] DIVERSIT | ENGOueeRinc Avp conpuren | F computer Convolutional Neural Networks for Image Segmentation

e https://docs.pytorch.org/vision/0.22/models.html#semantic-segmentation

Semantic Segmentation

* WARNING

The segmentation module is in Beta stage, and backward compatibility is not guaranteed.

The following semantic segmentation models are available, with or without pre-trained weights:

s DeeplabV3
* FCN
* LRASPP

Here is an example of how to use the pre-trained semantic segmentation models:

from torchvision.io.image import decode_image
from torchvision.models.segmentation import fcn_resnet50, FCN_ResNet50_Weights
from torchvision.transforms.functional import to_pil_image

img = decode_image("gallery/assets/dogl.jpg")

Step 1: Initialize model with the best available weights
weights = FCN_ResNet50_Weights.DEFAULT

model = fcn_resnet50 (weights=weights)

model.eval()

Step 2: Initialize the inference transforms
preprocess = weights.transforms()

Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)

Step 4: Use the model and visualize the prediction

prediction = model(batch)["out"]

normalized_masks = prediction.softmax(dim=1)

class_to_idx = fcls: idx for (idx, cls) in enumerate(weights.meta["categories"])?}
mask = normalized_masks[0, class_to_idx["dog"]]

to_pil_image (mask) .show()

https://pytorch.org/hub/pytorch_vision_fcn_resnet101/

https://docs.pytorch.org/vision/0.22/models.html#semantic-segmentation
https://pytorch.org/hub/pytorch_vision_fcn_resnet101/

VSB TECHNICAL
“ ” UNIVERSITY
| OF OSTRAVA

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DEPARTMENT

Convolutional Neural Networks for Image Segmentation

SCIENCE

Fully Convolutional Network (FCN) - the first deep learning model developed specifically for this purpose

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long* Evan Shelhamer* Trevor Darrell
UC Berkeley

{jonlong, shelhamer, trevor}@cs.berkeley.edu

forward /inference

We show that a fully convolutional network (FCN),
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
Figure 1. Fully convolutional networks can efficiently learn to gation. In-network upsampling layers enable pixelwise pre-

make dense predictions for per-pixel tasks like semantic segmen- diction and learning in nets with subsampled pooling.
tation.

backward/learning

http://arxiv.org/pdf/1411.4038

http://arxiv.org/pdf/1411.4038

VSB TECHNICAL
” ” UNIVERSITY
| OF OSTRAVA

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DEPARTMENT

oF ConpuTER Convolutional Neural Networks for Image Segmentation

SCIENCE

Fully Convolutional Network (FCN) - the first deep learning model developed specifically for this purpose

4.1. From classifier to dense FCN

We begin by convolutionalizing proven classification ar-
chitectures as in Section 3. We consider the AlexNet® ar-
chitecture [19] that won ILSVRCI12, as well as the VGG
nets [3 1] and the GoogLe:Net4 [22] which did exception-
ally well in ILSVRCI14. We pick the VGG 16-layer net’,
which we found to be equivalent to the 19-layer net on this
task. For GoogleNet, we use only the final loss layer, and
improve performance by discarding the final average pool-
ing layer. We decapitate each net by discarding the final
classifier layer, and convert all fully connected layers to
convolutions. We append a 1 x 1 convolution with chan-
nel dimension 21 to predict scores for each of the PAS-
CAL classes (including background) at each of the coarse
output locations, followed by a deconvolution layer to bi-
linearly upsample the coarse outputs to pixel-dense outputs
as described in Section 3.3. Table | compares the prelim-
inary validation results along with the basic characteristics
of each net. We report the best results achieved after con-
vergence at a fixed learning rate (at least 175 epochs).

http://arxiv.org/pdf/1411.4038

3.3. Upsampling is backwards strided convolution

Another way to connect coarse outputs to dense pixels
is interpolation. For instance, simple bilinear interpolation
computes each output y;; from the nearest four inputs by a
linear map that depends only on the relative positions of the
input and output cells.

In a sense, upsampling with factor f is convolution with
a fractional input stride of 1/f. So long as f is integral, a
natural way to upsample is therefore backwards convolution
(sometimes called deconvolution) with an output stride of
f. Such an operation is trivial to implement, since it simply
reverses the forward and backward passes of convolution.

http://arxiv.org/pdf/1411.4038

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DEPARTMENT

Convolutional Neural Networks for Image Segmentation

SCIENCE

VSB TECHNICAL
|||| UNIVERSITY
| OF OSTRAVA

Fully Convolutional Network (FCN) - the first deep learning model developed specifically for this purpose

32x upsampled
image convl pooll convZ pool2 conv3 pool3 conv4 pool4 convd pool conv6-7 prediction (FCN-32s)

16x upsampled

2x conv7
prediction (FCN-16s)
poold
8x upsampled
4x conv7 prediction (FCN-8s)
2x poold | | |

L T

poold | | |

Fig. 3. Our DAG nets learn to combine coarse, high layer information with fine, low layer information. Pooling and prediction layers are shown
as grids that reveal relative spatial coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our single-stream net,
described in Section 4.1, upsamples stride 32 predictions back to pixels in a single step. Second row (FCN-16s): Combining predictions from both
the final layer and the poo14 layer, at stride 16, lets our net predict finer details, while retaining high-level semantic information. Third row (FCN-8s):
Additional predictions from poo13, at stride 8, provide further precision.

http://arxiv.org/pdf/1411.4038 6
https://arxiv.org/pdf/1605.06211

http://arxiv.org/pdf/1411.4038
https://arxiv.org/pdf/1605.06211

I DuzveRszry | caveeane auo conpuree | oF conpurer Convolutional Neural Networks for Image Segmentation

Fully Convolutional Network (FCN) - the first deep learning model developed specifically for this purpose

FCN

The FCN model is based on the Fully Convolutional Networks for Semantic Segmentation paper.

The segmentation module is in Beta stage, and backward compatibility is not guaranteed.

Model builders

The following model builders can be used to instantiate a FCN model, with or without pre-trained weights. All the model builders
internally rely on the torchvision.models.segmentation.FCN base class. Please refer to the source code for more details about
this class.

Fully-Convolutional Network model with a ResNet-50
fcn_resnet50(*[, weights, progress, ...]) backbone from the Fully Convolutional Networks for
Semantic Segmentation paper.

Fully-Convolutional Network model with a ResNet-101

f t101(*[, weights, progress, ...
En, spnmtII([, weights; progress,) backbone from the Fully Convolutional Networks for

Semantic Segmentation paper.

https://docs.pytorch.org/vision/0.22/models/fcn.html

https://docs.pytorch.org/vision/0.22/models/fcn.html

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DEPARTMENT

Convolutional Neural Networks for Image Segmentation

SCIENCE

VSB TECHNICAL
|| |I UNIVERSITY
| OF OSTRAVA

DeepLabV1, DeepLabV2, DeepLabV3, DeepLabV3+

https://arxiv.org/pdf/1412.7062
https://arxiv.org/pdf/1606.00915

DeepLabv1 + DeeplLabv2
It was the first to introduce atrous (or dilated) convolution. This technique allows for explicit control over the resolution of
computed features and effectively enlarges the field of view of filters without increasing the number of parameters or
computational cost. This enables the model to capture context at multiple scales.

» |t uses a Deep Convolutional Neural Network (DCNN), specifically VGG-16 or ResNet-101, as its feature extractor.

» The Atrous Spatial Pyramid Pooling (ASPP) module. ASPP probes a convolutional feature layer with filters at multiple sampling rates,
which allows for robust segmentation of objects at various scales.

» To sharpen the boundaries of segmented objects, it uses Conditional Random Fields (CRF) as a post-processing step.

Input DCNN Aeroplane Coarse
= core ma
Atrous Convolution ﬁ - -
= < | v > v viv ’ ; o
R rate
. = rate = 18 -—
‘o e ag=s ey =
[gom| .
bmg g = c
bmd i [J
Final Output Fully Connected CRF Bi-linear Imerpolatlon A SR
~— —
2 ‘7 \‘\ h ') Y Atrous Spatial Pyramid Pooling

Fig. 4: Atrous Spatial Pyramid Pooling (ASPP). To classify
the center pixel (orange), ASPP exploits multi-scale features
by employing multiple parallel filters with different rates.
The effective Field-Of-Views are shown in different colors.

Fig. 1: Model Illustration. A Deep Convolutional Neural Network such as VGG-16 or ResNet-101 is employed in a fully
convolutional fashion, using atrous convolution to reduce the degree of signal downsampling (from 32x down 8x). A
bilinear interpolation stage enlarges the feature maps to the original image resolution. A fully connected CRF is then
applied to refine the segmentation result and better capture the object boundaries.

https://arxiv.org/pdf/1412.7062
https://arxiv.org/pdf/1606.00915

| DEPARTMENT

oF COonPUTER Convolutional Neural Networks for Image Segmentation

SCIENCE

VSB TECHNICAL
|| || UNIVERSITY
| OF OSTRAVA

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DeepLabV1, DeepLabV2, DeepLabV3, DeepLabV3+

https://arxiv.org/pdf/1706.05587
https://arxiv.org/abs/1802.02611

DeepLabv3 + DeepLabv3+

- (DeepLabv3) It improved the ASPP module by incorporating batch normalization and image-level features (via global average pooling)
for even better multi-scale feature extraction. This refines the segmentation of objects of different sizes. Architecture: It utilizes
deeper and more efficient backbone networks, such as a modified ResNet or Xception.

» (DeepLabv3+) It extends DeeplLabv3 with a simple yet effective decoder module to refine segmentation results, particularly along
object boundaries. This creates an encoder-decoder style architecture.

“Encoder 7
([ixl Conv] —» 3\

3x3 Conv |
p DCNN . rate 6 J Q
Atrous Conv -
: x3 Conv |
| FRRE 5 ‘ < rate 12 | ﬁ — 1x1 Cnnv
- - £ 3x3 Conv é
rate 18 |

Image) ‘ﬁ
\ Poulmg

“Decoder

‘ Upsample

Low-Level [4 J

Features

Prediction

7 H
‘1xl Conv| Q—b Concat —» —>3x3 Conv — Upi?";ple) i

Fig.2. Our proposed DeepLabv3+ extends DeepLabv3 by employing a encoder-
decoder structure. The encoder module encodes multi-scale contextual information by
applying atrous convolution at multiple scales, while the simple yet effective decoder
module refines the segmentation results along object boundaries.

https://arxiv.org/pdf/1706.05587
https://arxiv.org/abs/1802.02611

I DuzveRszry | caveeane auo conpuree | oF conpurer Convolutional Neural Networks for Image Segmentation

DeepLabV1, DeepLabV2, DeepLabV3, DeepLabV3+

Docs > Models and pre-trained weights > DeepLabV3

DeepLabV3

The DeepLabV3 model is based on the Rethinking Atrous Convolution for Semantic Image Segmentation paper.

* WARNING

The segmentation module is in Beta stage, and backward compatibility is not guaranteed.

Model builders

The following model builders can be used to instantiate a DeepLabV3 model with different backbones, with or without pre-trained
weights. All the model builders internally rely on the torchvision.models.segmentation.deeplabv3.DeeplLabV3 base class. Please
refer to the source code for more details about this class.

Constructs a DeepLabV3 model with a MobileNetV3-Large

deeplabv3_mobilenet_v3_large(*[, weights,...]) backb
ackbone.

deeplabv3_resnet50(*[, weights, progress,...]) Constructs a DeepLabV3 model with a ResNet-50 backbone.

Constructs a DeepLabV3 model with a ResNet-101
backbone.

deeplabv3_resnet101(*[, weights, progress, ...])

https://docs.pytorch.org/vision/main/models/deeplabv3.html

10

https://docs.pytorch.org/vision/main/models/deeplabv3.html

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|||] UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
I'" oF osTRAVA | scIENCE SCIENCE
https://arxiv.org/pdf/1505.04597
64 64
128 64 64 2
input
' output
image || »)
t?le i i i ': segmentation
g £ map
55| 8 2 g
ol o) &
5| 5] 8
'128 128
256 128
M
S E B g gl@
NIl o 1
' 256 256 512 256
" »> >
0% £| 3 Elg =» conv 3x3, ReLU
el ¥ = = = copy and crop
512 512 1024 512
%IE.E- — > ?N- ¥ max pool 2x2
e ¥ 100 & @ 4 up-conv 2x2
¢ I - I -
- S & = CcONnv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

Convolutional Neural Networks for Image Segmentation

2 Network Architecture

The network architecture is illustrated in Figure 1. It consists of a contracting
path (left side) and an expansive path (right side). The contracting path follows
the typical architecture of a convolutional network. It consists of the repeated
application of two 3x3 convolutions (unpadded convolutions), each followed by
a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2
for downsampling. At each downsampling step we double the number of feature
channels. Every step in the expansive path consists of an upsampling of the
feature map followed by a 2x2 convolution (“up-convolution”) that halves the
number of feature channels, a concatenation with the correspondingly cropped
feature map from the contracting path, and two 3x3 convolutions, each fol-
lowed by a ReLLU. The cropping is necessary due to the loss of border pixels in
every convolution. At the final layer a 1x1 convolution is used to map each 64-
component feature vector to the desired number of classes. In total the network
has 23 convolutional layers.

To allow a seamless tiling of the output segmentation map (see Figure 2), it
is important to select the input tile size such that all 2x2 max-pooling operations
are applied to a layer with an even x- and y-size.

11

https://arxiv.org/pdf/1505.04597
https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

I DuzveRszry | caveeane auo conpuree | oF conpurer Convolutional Neural Networks for Image Segmentation

U-Net

https://arxiv.org/pdf/1505.04597

164 64
T T8 2 Network Architecture
| r:lna;gg AN ol l,l outPUt The network architecture is illustrated in Figure 1. It consists of a contracting
tile . 2 sr;:agpmentatnon path (left side)jand an expansive path (right side). The contracting path follows
o o 5 : = the typical architecture of a convolutional network. It consists of the repeated
HE E : = application of two 3x3 convolutions (unpadded convolutions), each followed by
ol g' ‘ a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2
T 256 128 for downsampling. At each downsampling step we double the number of feature
channels. Every step in the expansive path consists of an upsampling of the
gl e feature map followed by a 2x2 convolution (“up-convolution”) that halves the
HE E e number of feature channels, a concatenation with the correspondingly cropped
256 256 _ ' feature map from the contracting path, and two 3x3 convolutions, each fol-
o bt et > 3 -:I—DI = conv 3x3, ReLU lowed by a ReLLU. The cropping is necessary due to the loss of border pixels in
W R s aw oo Sl;_t A H =+ copy and crop every convolution. At the final layer a 1x1 convolution is used to map each 64-
glt.:. — g_--:-—- ¥ max pool 2x2 component feature vector to the desired number of classes. In total the network
N :; [- u # up-conv 2x2 has 23 convolutional layers.

== & SR To allow a seamless tiling of the output segmentation map (see Figure 2), it

is important to select the input tile size such that all 2x2 max-pooling operations

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue are applied to a layer with an even x- and y-size.

box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

12

https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

https://arxiv.org/pdf/1505.04597
https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY [ENGINEERING AND COMPUTER | OF COMPUTER
| OF OSTRAVA | SCIENCE SCIENCE

U-Net

https://arxiv.org/pdf/1505.04597

164 64
128 64 64 2
input
. output
Image |& & .
t?le N i i ': segmentation
2 2 map
ol of @ & ad
5| 5|8 a @
ol of 2
~ sl @ 3
n| o w
¥ 106 128
256 128
= E SUE 2l
N N o

' 256 256 512 256 1

=»conv 3x3, ReLU
S 8 = copy and crop

& E.E. — > ?- ¥ max pool 2x2
€ 3§ iom 3 8 4 up-conv 2x2
ﬁ-;_fs_ = CONV 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

Convolutional Neural Networks for Image Segmentation

2 Network Architecture

The network architecture is illustrated in Figure 1. It consists of a contracting
path (left side) and anjexpansive path (right side).] The contracting path follows
the typical architecture of a convolutional network. It consists of the repeated
application of two 3x3 convolutions (unpadded convolutions), each followed by
a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2
for downsampling. At each downsampling step we double the number of feature
channels. Every step in the expansive path consists of an upsampling of the
feature map followed by a 2x2 convolution (“up-convolution”) that halves the
number of feature channels, a concatenation with the correspondingly cropped
feature map from the contracting path, and two 3x3 convolutions, each fol-
lowed by a ReLLU. The cropping is necessary due to the loss of border pixels in
every convolution. At the final layer a 1x1 convolution is used to map each 64-
component feature vector to the desired number of classes. In total the network
has 23 convolutional layers.

To allow a seamless tiling of the output segmentation map (see Figure 2), it
is important to select the input tile size such that all 2x2 max-pooling operations
are applied to a layer with an even x- and y-size.

13

https://arxiv.org/pdf/1505.04597
https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY [ENGINEERING AND COMPUTER | OF COMPUTER
| OF OSTRAVA | SCIENCE SCIENCE

U-Net

https://arxiv.org/pdf/1505.04597

128 64 64 2
input
. output
'mat%g bl bl segmentation
map

392 x 392
388 x 388

128 128
256 128

?n\?o
ofl o
—

' 256 256 512 256 1

=)
<]
«

284
2822
2802

=p-conv 3x3, ReLU

S 8 = copy and crop
512 512 1024 512
% .:’..E. —_— - > ¥ max pool 2x2
e ¥ 100 & @ 4 up-conv 2x2
. = conv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

Convolutional Neural Networks for Image Segmentation

2 Network Architecture

The network architecture is illustrated in Figure 1. It consists of a contracting
path (left side) and an expansive path (right side). The contracting path follows
the typical architecture of a convolutional network, It consists of the repeated
application of [two 3x3 convolutions (unpadded convolutions)| each followed by
a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2
for downsampling. At each downsampling step we double the number of feature
channels. Every step in the expansive path consists of an upsampling of the
feature map followed by a 2x2 convolution (“up-convolution”) that halves the
number of feature channels, a concatenation with the correspondingly cropped
feature map from the contracting path, and two 3x3 convolutions, each fol-
lowed by a ReLLU. The cropping is necessary due to the loss of border pixels in
every convolution. At the final layer a 1x1 convolution is used to map each 64-
component feature vector to the desired number of classes. In total the network
has 23 convolutional layers.

To allow a seamless tiling of the output segmentation map (see Figure 2), it
is important to select the input tile size such that all 2x2 max-pooling operations
are applied to a layer with an even x- and y-size.

14

https://arxiv.org/pdf/1505.04597
https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY [ENGINEERING AND COMPUTER | OF COMPUTER
| OF OSTRAVA | SCIENCE SCIENCE

U-Net

https://arxiv.org/pdf/1505.04597

1 64 64

input
image

¥
¥

572 x 572
570 x 570
568 x 568

¥ 128128
256 128
" ’L
el s SLEZRS
N N o
MBI 512 256 '
& D| > =
offl o o S o
¥ 502 s 1024 512
il — : -
o & 3 E &N
= \d 1024 0 o
=, -
°8 &

392 x 392

128 64 64 2

output
segmentation
map

> >

388 x 388

¥ max pool 2x2
4 up-conv 2x2
=» cONnv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue

box corresponds to a multi-channel feature map. The number

of channels is denoted

on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

Convolutional Neural Networks for Image Segmentation

2 Network Architecture

The network architecture is illustrated in Figure 1. It consists of a contracting
path (left side) and an expansive path (right side). The contracting path follows
the typical architecture of a convolutional network. It consists of the repeated
application of two 3x3 convolutions (unpadded convolutions), each followed by
a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2
for downsampling. At each downsampling step we double the number of feature
channels. Every step in the expansive path consists of an upsampling of the
feature map followed by a 2x2 convolution (“up-convolution”) that halves the
number of feature channels, a|concatenation|with the correspondingly cropped
feature map from the contracting path, and two 3x3 convolutions, each fol-
lowed by a ReLLU. The cropping is necessary due to the loss of border pixels in
every convolution. At the final layer a 1x1 convolution is used to map each 64-
component feature vector to the desired number of classes. In total the network
has 23 convolutional layers.

To allow a seamless tiling of the output segmentation map (see Figure 2), it
is important to select the input tile size such that all 2x2 max-pooling operations
are applied to a layer with an even x- and y-size.

15

https://arxiv.org/pdf/1505.04597
https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY [ENGINEERING AND COMPUTER | OF COMPUTER
| OF OSTRAVA | SCIENCE SCIENCE

U-Net

https://arxiv.org/pdf/1505.04597

1 64 64

input
image

¥
¥

572 x 572
570 x 570
568 x 568

¥ 128128
256 128
" ’L
el s SLEZRS
N N o
MBI 512 256 '
& D| > =
offl o o S o
¥ 502 s 1024 512
il — : -
o & 3 E &N
= \d 1024 0 o
=, -
°8 &

392 x 392

128 64 64 2

output
segmentation
map

> >

388 x 388

¥ max pool 2x2
4 up-conv 2x2
=» cONnv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue

box corresponds to a multi-channel feature map. The number

of channels is denoted

on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

Convolutional Neural Networks for Image Segmentation

2 Network Architecture

The network architecture is illustrated in Figure 1. It consists of a contracting
path (left side) and an expansive path (right side). The contracting path follows
the typical architecture of a convolutional network. It consists of the repeated
application of two 3x3 convolutions (unpadded convolutions), each followed by
a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2
for downsampling. At each downsampling step we double the number of feature
channels. Every step in the expansive path consists of an upsampling of the
feature map followed by a 2x2 convolution (“up-convolution”) that halves the
number of feature channels, a|concatenation|with the correspondingly cropped
feature map from the contracting path, and two 3x3 convolutions, each fol-
lowed by a ReLLU. The cropping is necessary due to the loss of border pixels in
every convolution. At the final layer a 1x1 convolution is used to map each 64-
component feature vector to the desired number of classes. In total the network
has 23 convolutional layers.

To allow a seamless tiling of the output segmentation map (see Figure 2), it
is important to select the input tile size such that all 2x2 max-pooling operations
are applied to a layer with an even x- and y-size.

16

https://arxiv.org/pdf/1505.04597
https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

Convolutional Neural Networks for Image Segmentation

392 x 392

256 128

?n\?o
ofl o
—

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
| OF OSTRAVA SCIENCE SCIENCE
U-Net
https://arxiv.org/pdf/1505.04597
164 64
input
image & |»
tile
o Of @
5| 5 8
& of @
5| B) 8
'128 128
M - =
slzl 8 ‘“'
MBI 512 256
b] 1
M3 %' aas
' 512 512 1024 512 t
-l — i I
= / 1024 s i
= [I -
°8 &

=p-conv 3x3, ReLU

= copy and crop

¥ max pool 2x2
4 up-conv 2x2
=» cONnv 1x1

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

2 Network Architecture

The network architecture is illustrated in Figure 1. It consists of a contracting
path (left side) and an expansive path (right side). The contracting path follows
the typical architecture of a convolutional network. It consists of the repeated
application of two 3x3 convolutions (unpadded convolutions), each followed by
a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2
for downsampling. At each downsampling step we double the number of feature
channels. Every step in the expansive path consists of an upsampling of the
feature map followed by a 2x2 convolution (“up-convolution”) that halves the
number of feature channels, a concatenation with the correspondingly cropped
feature map from the contracting path, and two 3x3 convolutions, each fol-
lowed by a ReLLU. The cropping is necessary due to the loss of border pixels in
every convolution.JAt the final layer a 1x1 convolution is used [to map each 64-
component feature vector to the desired number of classes. In total the network
has 23 convolutional layers.

To allow a seamless tiling of the output segmentation map (see Figure 2), it
is important to select the input tile size such that all 2x2 max-pooling operations
are applied to a layer with an even x- and y-size.

17

https://arxiv.org/pdf/1505.04597
https://pytorch.org/hub/mateuszbuda_brain-segmentation-pytorch_unet/

] DIVERSIT | ENGOueeRinc Avp conpuren | F computer Convolutional Neural Networks for Image Segmentation

U-Net ++

https://arxiv.org/abs/1807.10165

Fig.1: (a) UNet++ consists of an encoder and decoder that are connected
through a series of nested dense convolutional blocks. The main idea behind
UNet++ is to bridge the semantic gap between the feature maps of the encoder
and decoder prior to fusion. For example, the semantic gap between (X% X1:3)
is bridged using a dense convolution block with three convolution layers. In the
graphical abstract, black indicates the original U-Net, green and blue show dense
convolution blocks on the skip pathways, and red indicates deep supervision.
Red, green, and blue components distinguish UNet++ from U-Net. (b) Detailed
analysis of the first skip pathway of UNet++. (c) UNet++ can be pruned at
inference time, if trained with deep supervision.

N Down-sampling
A Up-sampling
> Skip connection

NI X" Convolution

X0l = H[XU'“, U(XIAU)] x02= H[x().(J‘ x().l’ U(X]'I)] x03= H[x().(l‘ X"'l, x(l.Z‘ U(xl..")]

U(x!'9) U(x') U(x'?) U(x')
(b) x04= H[XO‘U, X0 x02 x03 U(X"3)]

18

https://arxiv.org/abs/1807.10165

] DIVERSIT | ENGOueeRinc Avp conpuren | F computer Convolutional Neural Networks for Image Segmentation

U-Net ++

https://arxiv.org/abs/1807.10165

...........
1] w11 Leatsenn] 12 1t

3.1 Re-designed skip pathways

Re-designed skip pathways transform the connectivity of the encoder and de- [SO o0 Veewwl o0 Yo
coder sub-networks. In U-Net, the feature maps of the encoder are directly re-
ceived in the decoder; however, in UNet++4, they undergo a dense convolution
block whose number of convolution layers depends on the pyramid level. For
example, the skip pathway between nodes X" and X'? consists of a dense
convolution block with three convolution layers where each convolution layer
is preceded by a concatenation layer that fuses the output from the previous
convolution layer of the same dense block with the corresponding up-sampled
output of the lower dense block. Essentially, the dense convolution block brings
the semantic level of the encoder feature maps closer to that of the feature maps
awaiting in the decoder. The hypothesis is that the optimizer would face an
easier optimization problem when the received encoder feature maps and the
corresponding decoder feature maps are semantically similar.

Down-sampling
A Up-sampling
=> Skip connection

N X" Convolution

X0l = H[XU'“, U(XIAU)] x02= H[x().(J‘ X().l1 U(X]'I)] x03= H[x().(l‘ X"'l, X“'Z, U(XI.Z)]

U(x'9 Ux!h U(x'?) Ux!'?)
(b) x04 = H[x00, x01, x02, x03 U(x!3)]

19

https://arxiv.org/abs/1807.10165

I uTveRszry | Evcoueenong avo conruren | oF coneurer Convolutional Neural Networks for Image Segmentation

No New-Net

https://arxiv.org/pdf/1809.10483

2.2 Network architecture

U-Net [14] is a successful encoder-decoder network that has received a lot of
attention in the recent years. Its encoder part works similarly to a traditional
classification CNN in that it successively aggregates semantic information at the
expense of reduced spatial information. Since in segmentation, both semantic as
well as spatial information are crucial for the success of a network, the missing
spatial information must somehow be recovered. U-Net does this through the
decoder, which receives semantic information from the bottom of the 'U’ (see
Fig. 1) and recombines it with higher resolution feature maps obtained directly
from the encoder through skip connections. Unlike other segmentation networks,
such as FCN [12] and previous iterations of DeepLab [13] this allows U-Net to
segment fine structures particularly well.

Our network architecture is an instantiation of the 3D U-Net [15] with minor
modifications. Following our successful participation in 2017 [6], we stick with
our design choice to process patches of size 128x128x128 with a batch size of two.
Due to the high memory consumption of 3D convolutions with large patch sizes,
we implemented our network carefully to still allow for an adequate number of
feature maps. By reducing the number of filters right before upsampling and
by using inplace operations whenever possible, this results in a network with 30
feature channels at the highest resolution, which is nearly double the number we
could train with in our previous model (using the same 12 GB NVIDIA Titan X
GPU). Due to our choice of loss function, traditional ReLU activation functions

30x128x128x128

i 3x3x3 Conv — in - IReLU P 2x2x2 Trilinear upsampling l 1x1x1 Conv + softmax

¥ 2x2x2 Maxpool H Input (4x128x128x128)

Fig. 1. We use a 3D U-Net architecture with minor modifications. It uses instance
normalization [23] and leaky ReLU nonlinearities and reduces the number of feature
maps before upsampling. Feature map dimensionality is noted next to the convolutional
blocks, with the first number being the number of feature channels.

did not reliably produce the desired results, which is why we replaced them with
leaky ReL.Us (leakiness 10~2) throughout the entire network. With a small batch
size of 2, the exponential moving averages of mean and variance within a batch
learned by batch normalization [24] are unstable and do not reflect the feature
map activations at test time very well. We found instance normalization [23]
to provide more consistent results and therefore used it to normalize all feature
map activations (between convolution and nonlinearity). For an overview over
our segmentation architecture, please refer to Fig. 1.

20

https://arxiv.org/pdf/1809.10483

I vsveRszy | encoveerzuc o conpurer | oF conpurer Convolutional Neural Networks for Image Segmentation

SegFormer
https://arxiv.org/pdf/2105.15203

SegFormer: Simple and Efficient Design for Semantic

52

4 L3
Segmentation with Transformers
SegFormer-B5
B4)
B3 TNl SETR
e /\fin Transformer
Enze Xie'!, Wenhai Wang?, Zhiding Yu?, Anima Anandkumar?*, Jose M. Alvarez’, Ping Luo' 2
!The University of Hong Kong ?Nanjing University *NVIDIA “Caltech 4
- DeepLabV3+/R101
< - "HRNet-W48 + OCR
] PVT
Abstract a
< 40 SemFPN
. . . . mioU | Params | FLOPs | FPS
We present SegForm&.:r, a simple, efﬁment‘ yet.power'ful semantic segmentation Sastormarel w4 | ama| eas | o8
framework which unifies Transformers with lightweight multilayer perceptron B0, FCN-R50 36.1 | 49.6M | 198.0G | 23.5
(MLP) decoders. SegFormer has two appealing features: 1) SegFormer comprises - . SegFormer-B2 265 | 27.5M | 62.4G | 245
a novel hierarchically structured Transformer encoder which outputs multiscale FCN-RSO DeeplabV3+/R101 | 44.1 | 62.7M | 255.1G | 14.1
features. It does not need positional encoding, thereby avoiding the interpolation of it ianial Il Wit Mo | i
positional codes which leads to decreased performance when the testing resolution SegFormer-B4 503 | 64.1M | 957G | 15.4
: i : SETR 486 | 3183M | 362.1G | 5.4
differs from training. 2) SegFormer avoids complex decoders. The proposed B
MLP decoder aggregates information from different layers, and thus combining 0 0 100 150 200 250 300 350

both local attention and global attention to render powerful representations. We
show that this simple and lightweight design is the key to efficient segmentation
on Transformers. We scale our approach up to obtain a series of models from
SegFormer-B0 to SegFormer-BS5, reaching significantly better performance and
efficiency than previous counterparts. For example, SegFormer-B4 achieves 50.3%
mloU on ADE20K with 64M parameters, being 5x smaller and 2.2% better than
the previous best method. Our best model, SegFormer-B5, achieves 84.0% mloU on
Cityscapes validation set and shows excellent zero-shot robustness on Cityscapes-C.
Code will be released at: github.com/NVlabs/SegFormer.

Params (Millions)
Figure 1: Performance vs. model efficiency on ADE20K. All results
are reported with single model and single-scale inference. SegFormer
achieves a new state-of-the-art 51.0% mloU while being significantly
more efficient than previous methods.

21

https://arxiv.org/pdf/2105.15203

ENGINEERTNG AND CONFUTER | OF CONPUTER Convolutional Neural Networks for Image Segmentation

SCIENCE SCIENCE

VSB TECHNICAL
“ ” UNIVERSITY
| OF OSTRAVA

SegFormer
https://arxiv.org/pdf/2105.15203

| Encoder . Decoder |
") 'I
H w H w H w H w H w H w
7 X :_xC1 3X g X0 X pxC X% 7 X 5 x4C 7 X :_deS
O —
m<
5 @ — =~ = =
O - w o w9 mo w
o3| o3 5 3 o a 52 . 2%
o sa FPloesH Fles o > 1 [
= 2) = x — -
S5 o =3 v 3 w3 » 3 o < >
Qg e = | . o T‘D = R
L ®© T "
H w H w H W
9 Zl-—,H.le-TXCi ZIT_XTTXC ZX?'XC
W m < =ZQ i : m
o 3 & i :
AN Jg 2 : : =
SINEIINEE = B
=
g2 Z @ ;;'E = = L4 . R
8 0 3
= =
@
XN —

Figure 2: The proposed SegFormer framework consists of two main modules: A hierarchical Transformer
encoder to extract coarse and fine features; and a lightweight All-MLP decoder to directly fuse these multi-level
features and predict the semantic segmentation mask. “FFN” indicates feed-forward network.

22

https://arxiv.org/pdf/2105.15203

I vsveRszy | encoveerzuc o conpurer | oF conpurer Convolutional Neural Networks for Image Segmentation

Where to go from here?

https://github.com/qubvel-org/segmentation _models.pytorch

https://pypi.org/project/segmentation-models-pytorch/

segmentation-models-pytorch 0.5.0 o | st |

pip install segmentation-models—pytorch @ Released: Apr 17, 2025 & Models and encoders

Architectures

Image segmentation models with pre-trained backbones. PyTorch.

Architecture Paper Documentation Checkpoints
Navigation Project description Unet Raper docs
pnes = m
D Release history MAnet Raper docs
& Download files Segl I Iel Itatl DI I Linknet Raper docs
FPN paper docs
Verified details @ D e S
These details have been verified by PyPl PSPNet paper docs
Project links
PAN paper docs
A Homepage Python library with Neural Networks for Image Semantic
Segmentation based on PyTorch.
GitHub Statistics E = DeeplLabV3 paper docs
O Repository BUILD PASSING COVERAGE iE DOCs PASSING
@ PYPI Vo0.5.0 PYTORCH 1.9+ é PYTHON 3.9+ DeepLabV3+ p_apﬂ m
* Stars:l0624 LICENSE MIT DOWNLOADS 257K/MONTH
¥ Forks: 1758 UPerNet paper docs checkpoints
The main features of the library are:
© Openissues: 59
© Super simple high-level API (just two lines to create a neural network) Segformer Raper socs checkpoints
I3 OpenPRs:6 * 12 encoder-decoder model architectures (Unet, Unet++, Segformer, DPT, ...)
))) - DPT Raper docs checkpoints
Maintainers * 800+ pretrained convolution- and transform-based encoders, including timm support
e Popular metrics and losses for training routines (Dice, Jaccard, Tversky, ...)
E qubvel * ONNX export and torch script/trace/compile friendly 2 3

https://github.com/qubvel-org/segmentation_models.pytorch
https://pypi.org/project/segmentation-models-pytorch/

