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ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al.|(2017).
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
'Vaswani et al.|(2017).
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
'Vaswani et al.|(2017).



https://arxiv.org/abs/2010.11929

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT

@ @ [
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
I"" oF osTrRAvA | scIENCE SCIENCE

High Level Overview

Transformer Encoder

'Lx e

Vision Transformer (ViT)

MLP
Head
MLP

. . . N
e e.g.inception blocks, residual blocks, Transformer Encoder

|
1
|
1
1
1
|
transformer encoder blocks ) ‘ : (®)
P mbetams ™ = (0 ll ) @) @06 28158 : Multi-Head
|
1
L 1
! N I
1

in general (not only for ViT) we create a network
from blocks that consists of several layers

* Extra learnable

.. class] embeddin Linear Projection of Flattened Patches
* what is input for these models (blocks)? -
SEE
* Inthe case of CNN, we use raw images h s

* Inthe case of ViT, we use fixed size patches Figure 1: Model overview| We split an image into fixed-size patches, linearly embed each of them,l
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable

“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
'Vaswani et al.|(2017).
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We split an image into fixed-size patches, linearly embed each of them

add position embeddings, and feed the resulting sequence of vectors to a standard Iransformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

|Vaswani et al.|(2017).

An overview of the model is depicted in Figure The standard Transformer receives as input a 1D

sequence of token embeddings. To handle 2D 1images, we reshape the image x €

sequence of flattened 2D patches

X, € RN*(P*C) \where (H, W) is the resolution of the original
image, C'is the number of channels, (P, P) is the resolution of each image patch, and N = HW/P?
is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq.. We refer to

the output of this projection as the patch embeddings.

RHX‘[‘VXC into a
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Step 1 - Input

* transform image into|16 x 16 size (patches)

* embed each patch into|768 dimensions

ViT (Vision Transformer)

Model Layers | Hiddensize D | MLP size Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

* ji.e.one patch can be described by|1 x 768 values

* Inthe case that we have 196 patches with size of 16 x

16, we obtain [14, 14, 768] tensor

Table 1: Details of Vision Transformer model variants.

» with the use of flatten, we obtain [196, 768] matrix

An overview of the model is depicted in Figure The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x € R*W*xC into a

sequence of flattened 2D patches

X, € RN*(P*C) \where (H, W) is the resolution of the original

image, C'is the number of channels, (P, P) is the resolution of each image patch, and N = HW/P?
is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
D dimensions [with a trainable linear projection (Eq. . We refer to
the output of this projection as the patch embeddings.

flatten the patches and map to
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Figure 1: Model overview.|We split an image into fixed-size patches, linearly embed each of them
add position embeddings, and feed the resulting sequence of vectors to a standard Iransformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

of 16 x

* with the use of flatten, we obtain [196, 768] matrix [Vaswani et al.|{2017).

An overview of the model is depicted in Figure The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D 1images, we reshape the image x €

sequence of flattened 2D patches

image, C'is the number of channels, (P, P) is the resolution of each image patch, and [V = HW/P?
is the resulting number of patches, which also serves as the effective input sequence Tength Tor the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we

REIXWXC jnto a

X, € RN*(P*C) \where (H, W) is the resolution of the original

flatten the patches and map to|D dimensions [with a trainable linear projection (Eq. . We refer to

the output of this projection as the patch embeddings. 7
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Figure 1: Model overview.|We split an image into fixed-size patches, linearly embed each of them

add position embeddings, and feed the resulting sequence of vectors to a standard Iransformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

* with the use of flatten, we obtainl [196, 768] matrix [Vaswani et al.|{2017).
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image, C' is the number of channels, (P, P) is the resolution of each image patch, and
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D dimensions [with a trainable linear projection (Eq. . We refer to

flatten the patches and map to
the output of this projection as

the patch embeddings.

RHXWXC

into a

{ the orieinal

N = HW/P?



https://arxiv.org/abs/2010.11929

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT

@ @ [
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
I"" oF osTrRAvA | scIENCE SCIENCE

70 = [Xetassi | Xp B X0B; 5 XV B+ Bpos, B REOP Ey e RVFDXD ()

ng = MSA(LN(Zg_l)) + Zy_1, ¢=1...L (2)
Zy = MLP(LN(Z’@)) + Z!g, ¢{=1...L (3)

Transformer Encoder (4)

A
L x (:>

0
y — LN (ZL) Vision Trapsformer (ViT)

MLP
Head

Transtormer Encoder

]
|
|
|
|
) |
|
|
|
g I 1 )
P e - J J @5 @5 | Attention.
|
|
|
|
1

* Extra learnable \ J

[class] embedding L1near PrOJectlon of Flattened Patches
Norm

Patches

' Embedded ]



https://arxiv.org/abs/2010.11929

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT

@ @ [
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
I"" oF osTrRAvA | scIENCE SCIENCE

2E; - xVE| + Epos, EeRIOXP R e RVFDXD ()
ng = MS (LN(Zg_l)) + Zy_1, ¢=1...L (2)
7z, = MLP LN(ZC@)) + Z!g, ¢{=1...L (3)

Transformer Encoder (4)

A
L x (:>

y — LN( Vision Transformer (ViT)

MLP
Head

Transformer Encoder ‘

[
|
|
|
ves I
. |
|
|
I
Patch + Position ( f I i- ]
Serrrrrrrrrl
|
|
| i I
|
[

* Extra learnable
Linear PI‘OJeCtIOIl of Flattened Patches A $ A

[class] embedding
| | | Norm
| : @
) i

)

Patches

' Embedded ]



https://arxiv.org/abs/2010.11929

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT

@ @ [
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
I"" oF osTrRAvA | scIENCE SCIENCE

Zo = |Xclass; X;,E; X?)E; e XNE] + [Epos, E € R(PQ'C)XD, E,.s € RN+DXD (1)
ng = MSA(LN(Zg_l)) + Zy_1, ¢=1...L (2)
= MLP(LN(z'y)) + 2’4, ¢{=1...L (3)

_ 0
Yy — LN (ZL) Vision Transformer (ViT) 1 Transformer Encoder (4)
I A
| L x
LP I
ead
! MLP ]
| I
Transformer Encoder ‘ : e ]
|
I - -
Palg:*:;eﬁgf::;“{» @ [@)[E)ED [EDED D B8 @]l . Mult-Head
[El s a]l?}n?;%lg ng [ L1near PrOJectlon of Flattened Patches I L A $ A J
I x
_ . | | | | . | I Norm
nEm -OEEEEmEEs | L
E w E | Embedded ]
[ Patches



https://arxiv.org/abs/2010.11929

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT

@ @ [
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
I"" oF osTrRAvA | scIENCE SCIENCE

20 = [Xelass; XL E; x2E;- - ; EcRPOXD | e RNTUXD (1)
7'y = MSA| (=1...L 2)
z¢ = MLP(LN(Z / f=1...L 3)
y = LN(z)

Transformer Encoder
A 4)

Norm

Transformer Enco

ags I [ )
e > EIS EﬁIS 3 9' | Ctention

* Extra learnable
[class] embedding Linear PrOJecuon of Flattened Patches

SHE 1 N |
b R———N . . m m E w_ E
s E

[ Embedded
Patches



https://arxiv.org/abs/2010.11929

DEPADTMENMT —_— —_—- - —_— - - —_— - _a

OF C

< LayerNorm

VSB TECHNICAL FACULTY OF ELECTRICAL
|| || UNIVERSITY | ENGINEERING AND COMPUTER
I OF OSTRAVA | SCIENCE

CLASS torch.nn.LayerNorm(normalized_shape, eps=1e-05, elementwise_affine=True, bias=True,
1 device=None, dtype=None) [SOURCE]
Z) — [XclaSSS XpE§ |
!/
z v = MSA(LN(z,
/
z;, = MLP(LN(Z/,

y = LN(z}) y= 7+ B

Applies Layer Normalization over a mini-batch of inputs.

This layer implements the operation as described in the paper Layer Mormalization

)

The mean and standard-deviation are calculated over the last D dimensions, where D is the dimension of
normalized_shape. For example, if normalized_shape is (3, 5) (a 2-dimensional shape), the mean and standard-
deviation are computed over the last 2 dimensions of the input (i.e. input.mean((-2, -1))).7y and ,{3 are learnable
affine transform parameters of normalized_shape if elementwise_affine is True. The standard-deviation is calculated

via the biased estimator, equivalent to torch.var(input, unbiased=False).
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CLASS torch.nn.MultiheadAttention ( embed_dim, num_heads, dropout=0.0, bias=True,
add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False,

device=None, dtype=None) [SOURCE]
Allows the model to jointly attend to information from different representation subspaces.
Method described in the paper: Attention Is All You MNeed.
Multi-Head Attention is defined as:
MultiHead(Q, K, V') = Concat(head,, ..., head;,)W°
where head; = Attention(QW?, KWX VIWY).
nn.MultiHeadAttention will use the optimized implementations of scaled_dot_product_attention() when possible.

In addition to support for the new scaled_dot_product_attention() function, for speeding up Inference, MHA will use

fastpath inference with support for Nested Tensors, iff:

* self attention is being computed (i.e., query, key,and value are the same tensor).
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Standard qkv self-attention (SA,|Vaswani et al. (]2017b) 1s a popular building block for neural archi-
tectures. For each element in an input sequence z € RY*? we compute a weighted sum over all
values v in the sequence. The attention weights A;; are based on the pairwise similarity between [IN+1)XxD (1)
two elements of the sequence and their respective query ' and key k’ representations.
2
.k, v] = 2Ugp, Ugro € RPXO, (5) )
A = softmax (qkT /\/Dh) A e RV*N, 6) | 3)
r Encoder ( 4)
SA(z) = Av. (7)

Multihead self-attention (MSA) is an extension of SA in which we run £ self-attention operations,
called “heads”, in parallel, and project their concatenated outputs. To keep compute and number of
parameters constant when changing &, Dy, (Eq. 5) is typically set to D / k.
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CLASS torchvision.ops.MLP (in_channels: int, hidden_channels: ~typing.List[int],
L . 1E' norm_layer: ~typing.Optional[~typing.Callable[[...],
Z) — [Xclass; XpL;

~torch.nn.modules.module.Module]] = None, activation_layer:

, - [ [ = - ] & Lol a5 w - & - - . =
7 ) = MSA(LN(ZQ typing.Optional [~typing.Callablef[...], ~torch.nn.modules.module.Module]]
<class 'torch.nn.modules.activation.Rell'>, inplace: ~typing.0Optional[bool] =

ZE — MLPl{ LN(ZIf None, bias: bool = True, dropout: float = 0.0) [SOURCE]

Y — LN(Z%) This block implements the multi-layer perceptron (MLP) module.

Parameters:

)

* in_channels (int) - Number of channels of the input

* hidden_channels (List[int]) - List of the hidden channel dimensions
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The Transformer encoder (Vaswani et al.|[2017) consists of alternating layers of multiheaded self-
i Eg.[2][3). Layernorm (LN) is applied before
k [(Wang et al.|[2019][Baevski & Aulil[2019).
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The Transformer encoder (Vaswani et al.|[2017) consists of alternating layers of multiheaded self-

attention (MSA, see Appendix[A) and MLP blocks (Eqg.[2] [3). Layernorm (LN) is applied before

every block, and

k [(Wang et al.|[2019][Baevski & Aulil[2019).
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Figure 2. Residual learning: a building block.
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The Transformer encoder (Vaswani et al.|[2017) consists of altg
attention (MSA, see Appendix |A) and MLP blocks (Eq.
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P?.C)xD N+1)xD
Model Layersf Hiddensize D MLPsize Heads Params E S R( ) ’ Epos < R( ) (1)
ViT-Base 12 768 3072 12 86M (2)
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M (3)

: - . Transformer Encoder
Table 1: Details of Vision Transformer model variants. 4)
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Model Layers Hidden size D § MLP size

ViT-Base 12 768 12 86M ! =1...L (2)
ViT-Large 24 1024 16 307M

ViT-Huge 32 1280 16 632M {=1...L (3)
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ViT (Vision Transformer)

Params

Model Layers Hiddensize D  MLP size
ViT-Base 12 768 3072
ViT-Large 24 1024 4096
ViT-Huge 32 1280 5120
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| OF OSTRAVA SCIENCE SCIENCE

Ecl Multi-Head Attention

Linear

Model Layers Hiddensize D  MLP size

ViT-Base 12 768 3072
ViT-Large 24 1024 4096
ViT-Huge 32 1280 5120

Table 1: Details of Vision Transformer model variants.

MLP
Head

Scaled Dot-Produc -I

Attention 4

Number of Multi-Head Atten‘t‘E)/n

Transformer Encoder

o) 8,6) 8 &) )

Attention Is All You Need

Ashish Vaswani”® Noam Shazeer* Niki Parmar* Jakob Uszkoreit*

Google Brain Google Brain Google Research Google Research Llnear PrOJ ectlon Of F].attencd PE
avaswani@google.com noam@google.com nikip@google.com usz@google.com
Llion Jones* Aidan N. Gomez* T Lukasz Kaiser* | | | | | | ‘
Google Research University of Toronto Google Brain N.E
1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com ; A & : i
141 imirs
= J )

Tllia Polosukhin* *
illia.polosukhin@gmail.com

https://arxiv.org/pdf/1706.03762
T

SN N N N’



https://arxiv.org/pdf/1706.03762
https://arxiv.org/abs/2010.11929
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e [ ]
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
I OF OSTRAVA SCIENCE SCIENCE I I I

P?.C)xD N+1)xD
Model Layers idden size D § MLP size E S R( ) ’ Epos < R( ) (1)
ViT-Base 12 768 3072

| ¢=1...L (2)
ViT-Large 24 1024
ViT-Huge 32 | 1...L (3)

MLP CLASS torch.nn.MultiheadAttention( embed_dim, num_heads, dropout=0.0, bias=True,
Tiadl add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False,
— device=None, dtype=None) [SOURCE]
[ Allows the model to jointly attend to information from different representation subspaces.
Num ber‘ of Mu |t|_Hea d Attention Method described in the paper: Attention Is All You Need.
Multi-Head Attention is defined as:
Patch + Position __ ma MultiHead(@, K, V) = Concat(head,, . .., head),)W°
Embedding
* Extra learnable where head; = Attention(Q‘[-ﬂQ, K I-Vt-K , VI‘VI-V}.
[class] embedding

nn.MultiHeadAttention will use the optimized implementations of scaled_dot_product_attention() when possible.

In addition to support for the new scaled_dot_product_attention() function, for speeding up Inference, MHA will use

fastpath inference with support for Nested Tensors, iff:

s self attention is being computed (i.e., query, key,and value are the same tensor). 28
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VisionTransformer

The VisionTransformer model is based on the An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale paper.

Published as a conference paper at ICLR 2021

ViT (Vision Transformer)

Model builders

The following model builders can be used to instantiate a VisionTransformer model, with or without pre-trained weights. All the

model builders internally rely on the torchvision.models.vision_transformer.VisionTransformer base class. Please refer to the

source code for more details about this class.

Constructs a vit_b_16 architecture from An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale.

vit_b_16(*[, weights, progress])

Constructs a vit_b_32 architecture from An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale.

vit_b_32(*[, weights, progress])

Constructs a vit_|_16 architecture from An Image is Worth JFT-300M
16x16 Words: Transformers for Image Recognition at Scale.

vit_1_16(*[, weights, progress])

ViT-B/16  ViT-B/32 VIiT-L/16 ViT-L/32 ViT-H/14
TmageNet CIFAR-10 98.13 97.77 97.86 97.94 -
CIFAR-100 87.13 86.31 86.35 87.07 -
ImageNet 77.91 73.38 76.53 71.16 -
ImageNet RealL 83.57 79.56 82.19 7783 -
Oxford Flowers-102 89.49 85.43 89.66 86.36 -
Oxford-IIIT-Pets 93.81 92.04 93.64 91.35 -
ImageNet-21k  CIFAR-10 98.95 98.79 99.16 99.13 99.27
CIFAR-100 91.67 91.97 93.44 93.04 93.82
ImageNet 83.97 81.28 85.15 80.99 85.13
ImageNet RealL 88.35 86.63 88.40 85.65 88.70
Oxford Flowers-102 99.38 99.11 99.61 99.19 99.51
Oxford-IIIT-Pets 94.43 93.02 94.73 93.09 94.82
CIFAR-10 99.00 98.61 99.38 99.19 99.50
CIFAR-100 91.87 90.49 94,04 92.52 94.55
ImageNet 84.15 80.73 87.12 84.37 88.04
ImageNet RealL 88.85 86.27 89.99 88.28 90.33
Oxford Flowers-102 99.56 99.27 99.56 99.45 99.68
Oxford-IITT-Pets 95.80 93.40 97.11 95.83 97.56

vit_1_32(*[, weights, progress]) Constructs a vit_|_32 architecture from An Image is Worth

16x16 Words: Transformers for Image Recognition at Scale.

Table 5: Topl accuracy (in %) of Vision Transformer on various datasets when pre-trained on Im-
ageNet, ImageNet-21k or JFT300M. These values correspond to Figure 3 in the main text. Models
are fine-tuned at 384 resolution. Note that the ImageNet results are computed without additional
techniques (Polyak averaging and 512 resolution images) used to achieve results in Table 2.

Constructs a vit_h_14 architecture from An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale.

vit_h_14(*[, weights, progress])

29
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