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ABSTRACT

While the Transformer architecture has become the de-facto standard for natural
language processing tasks, its applications to computer vision remain limited. In
vision, attention is either applied in conjunction with convolutional networks, or
used to replace certain components of convolutional networks while keeping their
overall structure in place. We show that this reliance on CNNs is not necessary
and a pure transformer applied directly to sequences of image patches can perform
very well on image classification tasks. When pre-trained on large amounts of
data and transferred to multiple mid-sized or small image recognition benchmarks
(ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent
results compared to state-of-the-art convolutional networks while requiring sub-
stantially fewer computational resources to train
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Part 1. Hight Level Overview
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
[Vaswani et al.|(2017).
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VIT divides an image into a grid of square patches. Each patch is flattened into a single vector by concatenating
the channels of all pixels in a patch and then linearly projecting it to the desired input dimension. Because
Transformers are agnostic to the structure of the input elements we add learnable position embeddings to each
patch, which allow the model to learn about the structure of the images. A priori, ViT does not know about the
relative location of patches in the image, or even that the image has a 2D structure — it must learn such relevant
information from the training data and encode structural information in the position embeddings.

MLP
Head

Transformer Encoder

%m%®*id“*@*d®

Linear Projection of Flattened Patches
T2

i“ rlv”mﬂ" | TP ".|T?s l'| ; | l | ,1|'

https://arxiv.org/abs/2010.11929



https://arxiv.org/abs/2010.11929
http://research.google/blog/transformers-for-image-recognition-at-scale/
https://1.bp.blogspot.com/-_mnVfmzvJWc/X8gMzhZ7SkI/AAAAAAAAG24/8gW2AHEoqUQrBwOqjhYB37A7OOjNyKuNgCLcBGAsYHQ/s1600/image1.gif

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT

e [ [
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
| OF OSTRAVA SCIENCE SCIENCE

High Level Overview

Vision Transformer (ViT) Transformer Encoder

1

I

|

MLP I
Head :

| :
Transformer Encoder } :

I

" |
vmmuﬁéﬁdﬁﬁéiéé |
I

|

|

I

|

1

* in general (not only for ViT) we create a network
from blocks that consists of several layers

* Extra learnable
[ Lmear Prolectlon of Flattened Patches

[class] embedding
l |
O I

HEE—
e

Embedded
Patches

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al.|(2017).
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al.|(2017).
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* |nthe case of ViT, we use fixed size patches Figure 1: Model overview| We split an image into fixed-size patches, linearly embed each of them,l
add position embeddings, and feed the resulting sequence of vectors to a standard Transtormer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

Vaswani et al.|(2017).
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al.|(2017).
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Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al.|(2017).
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classification tasks. Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al.|(2017).
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igure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
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Attention Is All You Need

Model Layers Hiddensize D MLPsize Heads Params

ViT-Base 12 768 3072 12 86M
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M
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Part 2. A Bit More Detail
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We split an image into fixed-size patches, linearly embed each of them

encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

Vaswani et al.|(2017).

X, € RN*(P*C) \where (H, W) is the resolution of the original
image, C'is the number of channels, (P, P) is the resolution of each image patch, and N = HW/P?
is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. . We refer to

the output of this projection as the patch embeddings.
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An overview of the model is depicted in Figure The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x € R*W*xC into a
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image, C'is the number of channels, (P, P) is the resolution of each image patch, and N = HW/P?

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we

ViT (Vision Transformer)

Model Layers | Hiddensize D | MLP size Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.

flatten the patches and map to|D dimensions [with a trainable linear projection (Eq. . We refer to

the output of this projection as the patch embeddings.
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An overview of the model is depicted in Figure The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x € R*W*xC into a
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Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to|D dimensions [with a trainable linear projection (Eq. . We refer to
the output of this projection as the patch embeddings.
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Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.
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Normalization

BatchNorm normalizes each feature within a batch of samples, while

S T gy N LayerNorm normalizes all features within each sample.
Zo = |Xclass; x, E; x E; -5 x, E]

7'y = MSA|
z; = MLP(LN(z
y = LN(z})

I.NI(7 /—1 ) ) + Zy_q, Let’s assume we have a two-dimensional input matrix, where the rows

/ represent the batch and the columns represent the sample features. The
T Zy y target of Batch Normalization is a batch of samples, and the target of Layer

Vision Tra Normalization is a single sample, Figure 1 illustrates this concept:

Batch Normalization Layer Normalization
Same for all
batch training examples batch

;—1—1 mean std r—*—\

[1][3][6] 3] [3] nisin

» 2 |[2]]2 2| o 2| 2]] 2]

Patch + Position 11— L -

Embedding 08 ninic 3l I3 il

* Extra learnabl e 2l 3] — =M1

[clﬁsz]za;l%af‘:dgjng i i i i l i_ E_ i

51(21]3 3 2 51112l 3

(1 {[o]]1] 1| |1 | [oll 1]

_ — — o mean |2 ||3|{3| |Same for all
https://medium.com/@florian algo/batchnorm-and-layernorm-2637f46a998b 4 [21[Z1[2] feature dimensions

S " bt R S—

23


https://arxiv.org/abs/2010.11929
https://medium.com/@florian_algo/batchnorm-and-layernorm-2637f46a998b

DEPADTMENMT —_— —_—- - —_— - - —_— - _a

OF C

< LayerNorm

VSB TECHNICAL FACULTY OF ELECTRICAL
|| || UNIVERSITY | ENGINEERING AND COMPUTER
I OF OSTRAVA | SCIENCE

CLASS torch.nn.LayerNorm(normalized_shape, eps=1e-05, elementwise_affine=True, bias=True,
1 device=None, dtype=None) [SOURCE]
Z) — [XclaSSS XpE§ |
!/
z v = MSA(LN(z,
/
z;, = MLP(LN(Z/,

y = LN(z}) y= 7+ B

Applies Layer Normalization over a mini-batch of inputs.

This layer implements the operation as described in the paper Layer Mormalization

)

The mean and standard-deviation are calculated over the last D dimensions, where D is the dimension of
normalized_shape. For example, if normalized_shape is (3, 5) (a 2-dimensional shape), the mean and standard-
deviation are computed over the last 2 dimensions of the input (i.e. input.mean((-2, -1))).7y and ,{3 are learnable
affine transform parameters of normalized_shape if elementwise_affine is True. The standard-deviation is calculated

via the biased estimator, equivalent to torch.var(input, unbiased=False).
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70 = [Xetass; Xp B X0B; 5 XV B + Bpos, B REOP Ey e RVIDXD ()

ng —=|MSA LN(Zg_l)) + Zy_1, ¢=1...L (2)
ZEZMLP( ))—I—Z!g, ¢t=1...L 3)
y = LN( Z% ) Vision Transformer (ViT) Transformer Encoder ( 4)

Transformer Encoder

Paich + Using the attention mechanism, we can describe the
mbec

mxa 1ol F€lationship between inputs (in the case of ViT, the

[class] €

relationship between patches of the input image)
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Self attention was proposed in https://arxiv.org/pdf/1706.03762

) c R(PQ'C)XD, Epo.s c R(N—i—l)XD (1)

Following text was taken from https://arxiv.org/pdf/2012.12556 | _ q L (2)

2.1 S;If-A.ttentioﬁ

In the self-attention layer, the input vector is first transformed into
three different vectors: the query vector q, the key vector k and the
value vector v with dimension d;, = dp, = dy, = dyoder = 912.
Vectors derived from different inputs are then packed together into
three different matrices, namely, Q, K and V. Subsequently, the
attention function between different input vectors is calculated as
follows (and shown in Figureleft):

o Step 1: Compute scores between different input vectors
withS =Q-K';

e Step 2: Normalize the scores for the stability of gradient
with S,, = S/\/dy;

o Step 3: Translate the scores into probabilities with softmax
function P = softmax(S,,);

o Step 4: Obtain the weighted value matrix with Z = V - P,

The process can be unified into a single function:
Q K'
Vdy

The logic behind Eq.is simple. Step 1 computes scores between
each pair of different vectors, and these scores determine the
degree of attention that we give other words when encoding
the word at the current position. Step 2 normalizes the scores
to enhance gradient stability for improved training, and step 3
translates the scores into probabilities. Finally, each value vector
is multiplied by the sum of the probabilities. Vectors with larger
probabilities receive additional focus from the following layers.

Attention(Q, K, V) = softmax(

)- V. ()
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20 = [Xelass; XoB; X2E; - s XVE] + Epos,  EeREOXD g e RVHDXD (1)
ng = MSA(LN(Zg_l)) + Zy_1, ¢=1...L (2)

MLP(LN(z,)) + 7, (=1...L 3)
y = LN(Z%) Vision Transformer (ViT)
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CLASS torchvision.ops.MLP (in_channels: int, hidden_channels: ~typing.List[int],

L . 1E' _ norm_layer: ~typing.Optional[~typing.Callable[[...],
Z) — [Xclass; Xpkus

~torch.nn.modules.module.Module]] = None, activation_layer:

/ - . . N . B _
7' ¢ MSA(LN(ZQ typing.Optional [~typing.Callablef[...], ~torch.nn.modules.module.Module]]

<class 'torch.nn.modules.activation.Rell'>, inplace: ~typing.0Optional[bool] =

|( !/
Zﬁ — MLP LN(Z / None, bias: bool = True, dropout: float = 0.0) [SOURCE]

Y — LN(ZOL) This block implements the multi-layer perceptron (MLP) module.

Parameters:

* in_channels (int) - Number of channels of the input

* hidden_channels (List[int]) - List of the hidden channel dimensions

The MLP contains two layers with a GELU -linearity.

|
|
e I
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“ MLP

CLASS torchvision.ops.MLP (in_channels: int, hidden_channels: ~typing.List[int],
L . 1E' norm_layer: ~typing.Optional[~typing.Callable[[...],
Z) — [Xclass; XpL;

~torch.nn.modules.module.Module]] = None, activation_layer:

, - [ [ = - ] & Lol a5 w - & - - . =
7 ) = MSA(LN(ZQ typing.Optional [~typing.Callablef[...], ~torch.nn.modules.module.Module]]
<class 'torch.nn.modules.activation.Rell'>, inplace: ~typing.0Optional[bool] =

ZE — MLPl{ LN(ZIf None, bias: bool = True, dropout: float = 0.0) [SOURCE]

Y — LN(Z%) This block implements the multi-layer perceptron (MLP) module.

Parameters:

)

* in_channels (int) - Number of channels of the input

* hidden_channels (List[int]) - List of the hidden channel dimensions
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The Transformer encoder (Vaswani et al.|[2017) consists of alternating layers of multiheaded self-
i Eg.[2][3). Layernorm (LN) is applied before
k [(Wang et al.|[2019][Baevski & Aulil[2019).

x)E] + Epos, EeREOXDIE e RIWFIXDT ()
¢=1...L (2)
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The Transformer encoder (Vaswani et al.|[2017) consists of alternating layers of multiheaded self-

attention (MSA, see Appendix[A) and MLP blocks (Eqg.[2] [3). Layernorm (LN) is applied before

every block, and

k [(Wang et al.|[2019][Baevski & Aulil[2019).

weight layer
]—“(X) ! relu

weight layer

- -D, Epos c R(N-‘—I)XD (1)

(2)
3)

Transformer Encoder ( 4)

Figure 2. Residual learning: a building block.

Deep Residual Learning for Image Recognition F | | | | | | | |

Kaiming He Xiangyu Zhang Shaoging Ren Jian Sun
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The Transformer encoder (Vaswani et al.|[2017) consists of altg
attention (MSA, see Appendix |A) and MLP blocks (Eq.
every block, and residual connections after every block

20 = [Xelass; XpB; X, B+ 5 X B + Epos, E € R(PZ'CW, Epos € RIWTDXE(T)
Z!g = MSA(LN(Zg_l)) + Zy_1, ¢=1...L (2)
Zy = MLP(LN(ZC@)) + Z!g, ¢{=1...L (3)
y Vision Transformer (ViT) 'Ir‘ransfornier Encodef' ( 4)
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P?.C)xD N+1)xD
Model Layersf Hiddensize D MLPsize Heads Params E S R( ) ’ Epos < R( ) (1)
ViT-Base 12 768 3072 12 86M (2)
ViT-Large 24 1024 4096 16 307M
ViT-Huge 32 1280 5120 16 632M (3)

: - . Transformer Encoder
Table 1: Details of Vision Transformer model variants. 4)
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ViT (Vision Transformer)

Params

Model Layers Hiddensize D  MLP size
ViT-Base 12 768 3072
ViT-Large 24 1024 4096
ViT-Huge 32 1280 5120

86M ¢=1...L
307M

632M t=1...L

Table 1: Details of Vision Transformer model variants.
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Ecl Multi-Head Attention

Linear

Model Layers Hiddensize D  MLP size

ViT-Base 12 768 3072
ViT-Large 24 1024 4096
ViT-Huge 32 1280 5120

Table 1: Details of Vision Transformer model variants.

MLP
Head
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Number of Multi-Head Atten‘t‘E)/n
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A  MULTIHEAD SELF-ATTENTION

Standard gkv self-attention (SA,|Vaswani et al.|(2017)) is a popular building block for neural archi-
tectures. For each element in an input sequence z € R *" we compute a weighted sum over all
values v in the sequence. The attention weights A;; are based on the pairwise similarity between

two elements of the sequence and their respective query q* and key k7 representations.

a,k, v] = zU g, U, € RP*3Pr (5)
A = softmax (qkT /\/Dh) A e RVXN, ©6)
SA(z) = Av . 7)

Multihead self-attention (MSA) is an extension of SA in which we run k self-attention operations,

called “heads”, in parallel, and project their concatenated outputs. To keep compute and number of
parameters constant when changing k, D), (Eq.

MSA(z) = [SA1(2);SA2(2); - -+ ; SAL(2)] Upsa U,,5q € RF-PrXD (8)
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VisionTransformer

The VisionTransformer model is based on the An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale paper.

Published as a conference paper at ICLR 2021

ViT (Vision Transformer)

Model builders

The following model builders can be used to instantiate a VisionTransformer model, with or without pre-trained weights. All the

model builders internally rely on the torchvision.models.vision_transformer.VisionTransformer base class. Please refer to the

source code for more details about this class.

Constructs a vit_b_16 architecture from An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale.

vit_b_16(*[, weights, progress])

Constructs a vit_b_32 architecture from An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale.

vit_b_32(*[, weights, progress])

Constructs a vit_|_16 architecture from An Image is Worth JFT-300M
16x16 Words: Transformers for Image Recognition at Scale.

vit_1_16(*[, weights, progress])

ViT-B/16  ViT-B/32 VIiT-L/16 ViT-L/32 ViT-H/14
TmageNet CIFAR-10 98.13 97.77 97.86 97.94 -
CIFAR-100 87.13 86.31 86.35 87.07 -
ImageNet 77.91 73.38 76.53 71.16 -
ImageNet RealL 83.57 79.56 82.19 7783 -
Oxford Flowers-102 89.49 85.43 89.66 86.36 -
Oxford-IIIT-Pets 93.81 92.04 93.64 91.35 -
ImageNet-21k  CIFAR-10 98.95 98.79 99.16 99.13 99.27
CIFAR-100 91.67 91.97 93.44 93.04 93.82
ImageNet 83.97 81.28 85.15 80.99 85.13
ImageNet RealL 88.35 86.63 88.40 85.65 88.70
Oxford Flowers-102 99.38 99.11 99.61 99.19 99.51
Oxford-IIIT-Pets 94.43 93.02 94.73 93.09 94.82
CIFAR-10 99.00 98.61 99.38 99.19 99.50
CIFAR-100 91.87 90.49 94,04 92.52 94.55
ImageNet 84.15 80.73 87.12 84.37 88.04
ImageNet RealL 88.85 86.27 89.99 88.28 90.33
Oxford Flowers-102 99.56 99.27 99.56 99.45 99.68
Oxford-IITT-Pets 95.80 93.40 97.11 95.83 97.56

vit_1_32(*[, weights, progress]) Constructs a vit_|_32 architecture from An Image is Worth

16x16 Words: Transformers for Image Recognition at Scale.

Table 5: Topl accuracy (in %) of Vision Transformer on various datasets when pre-trained on Im-
ageNet, ImageNet-21k or JFT300M. These values correspond to Figure 3 in the main text. Models
are fine-tuned at 384 resolution. Note that the ImageNet results are computed without additional
techniques (Polyak averaging and 512 resolution images) used to achieve results in Table 2.

Constructs a vit_h_14 architecture from An Image is Worth
16x16 Words: Transformers for Image Recognition at Scale.

vit_h_14(*[, weights, progress])

45


https://arxiv.org/abs/2010.11929
https://pytorch.org/vision/main/models/vision_transformer.html

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DEPARTMENT ° °® ®
|| || EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
II" oF osTRAvA | sczence | science

Part 3. Selected Implementation Details

46


https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1512.03385

VSB TECHNICAL FACULTY OF ELECTRICAL
” ” UNIVERSITY | ENGINEERING AND COMPUTER
| OF OSTRAVA SCIENCE

DEPARTMENT
OF COMPUTER
SCIENCE

ViT — Selected Implementation Details — Equation 1.

We can use the nn.Conv2d layer to split the input image into patches (blocks) and create
the embedding vector (with size = 768, in this example — ViT Base model) for each patch.

EEEEEEEEEEENF ]
EEEEEEEEEEEECT
AEEENEEEEEEENET
LU
EEENEEEEEEEEN] ]
AEEEREEEEEEEEED
EEEENEEEEEEEEr
EEEEEEEEEEEEED
EERCEEEEEEEEN ]
I
NEEEEEEEEEE
EEEEEEEEEEENF] |
EEEEEEEEEEEI | ][]
EEEEEEEEEEEL ) ][]

F

h = 224

w = 224

c =3

ps = 16

conv = nn.Conv2d( shape of input 224 x 244 x 3 image after nn.Conv2d:
in channels = 3, ([768, 14, 14])
out channels = 768,

kernel size = (ps,ps),

stride = ps,

padding = 0,

bias = False)
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e 768 feature maps of size 14 x 14 are generated
* |we can use flatten

on these 14 x 14 feature maps to obtain: ([batch_size, 768, 196])

ViT — Selected Implementation Details — Equation 1.

« it\is necessary to|switch dimensions|so that the number of patches is in the second place: ([batch_size, 196, 768])

block permute nn.Sequential(

nn.Conv2d (

in channels=3,

out channgls=768,
_size=(ps,ps),

0,

2 ),

nn.Flatt%n(start_dim=2, end dim=-1),
MyPermute( (0, 2, 1))

H=

>
>

T [N I N N N N N N

<
«
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Patch embedding layer

196
patches

Each patch has 768
dimensional embedding

< >
< >

3
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* z_0_with_class = torch.cat((class_token,{block_out_permute),|dim=1)

e position_embeddings = nn.Parameter(torch.ones(1, 197, 768))
* 7z 0 with_class_with_poss =z_0 with_class + position_embeddin

Z) — [XCIaSS; X}le; X?)E; Tty X;;IJVE]
Z,g — MSA(LN(Zg_l)) + Zy_1,

Zy = MLP(LN(ZQJ’)) + Zlg,

y = LN(z})

Each patch has 768
dimensional embedding
< >

196
patches

A-

EcRP™
(=1...L
(=1...L

'+_ ]E}IN385

ViT — Selected Implementation Details — Equation 1.

. class_token|= nn.Parameter(torch.ones(batch_size, 1, 768))

XD, Epos c R(N+1)XD (1)

(2)
3)

block permute = nn.Sequential(

Each patch has 768
dimensional embedding
< >

A
CLS token

Concat learnable

cls token 197
patches

nn.Conv2d(

in channels=3,

out channels=768,
kernel size=(ps,ps),
stride=ps,

padding = 0,
bias=False),

nn.Flatten(start _dim=2, end dim=-1),
MyPermute((0, 2, 1))
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* class_token = nn.Parameter(torch.ones(batch_size, 1, 768))

* z_0_with_class = torch.cat((class_token, block_out_permute), dim=1)
. Immn_embeddings = nn.Parameter(torch.ones(1, 197, 768))

* 2z 0 with_class_with _poss=z_0 with_class + position_embeddings

Z) — [Xclass§ X}le; X?)E; Ty Xj;VE] +
Z,g — MSA(LN(Zg_l)) + Zy_1,

Zy = MLP(LN(ZQ;)) + Zlg,

y = LN(z})

A learnable parameter
tensor of size 197x768

Position embedding

Element wise
addition

P?.C)x D N+1)xD
E,s,| EcREOXD g —cRNH (1)
(=1...L 2)
(=1...L (3)
98 dimensions Output of size 197x768
A
CLS token
Input to Vision
- - Transformer
197 — *
patches —

T .
Image patches with This is input into the
classification token vision transformer

ViT — Selected Implementation Details — Equation 1.
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* class_token = nn.Parameter(torch.ones(batch_size, 1, 768))
e z 0 with_class = torch.cat((class_token, block_out_permute), dim=1)
* position_embeddings = nn.Parameter(torch.ones(1, 197, 768))

* |z_0_with_class_with _poss|=z_0 with_class + position_embeddings

Z) —
Z,g —
Zy =

y:

Xetass; X0B; X2E; -+ 5 xVE] + Epos, | EeRITOXD E e RNFUXD (1)

MSA(LN(Zg_l)) —I—Zg_l, ¢=1...L
MLP(LN(zy)) + 7/, (=1...L
LN(zp)

A learnable parameter
tensor of size 197x768 <68 dimensions

A

Position embedding

CLS token

197
patches

Element wise

addition .
VI

Image patches with
classification token

(2)
3)

Output of size 197x768

—>

Input to Vision
Transformer

This is input into the
vision transformer

ViT — Selected Implementation Details — Equation 1.
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MultiheadAttention sformer)

CLASS torch.nn.MultiheadAttention ( embed_dim, num_heads, dropout=0.0, bias=True,

add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False,

device=None, dtype=None) [SOURCE] \ )OS 6 R(N+ 1) XD (1)
Allows the model to jointly attend to information from different Pepresentation subspaces. (2)
Method described in the paper: Attention Is All You MNeed. (3)
Multi-Head Attention is defined as: ansformer Encoder

4)

A
MultiHead(Q, K, V') = Concat(heady, . .., head;,)W™ L x @

where head; = Attention(QW?, KWX VIWY). MLP ]
nn.MultiHeadAttention will use the optimized implementations of scaled_dot_product_attention() when'sgssible. Norm ]
In addition to support for the new scaled_dot_product_attention() function, for speeding up Inference, MHA will uss o

fastpath inference with support for Nested Tensors, iff:

Multi-Head

* self attention is being computed (i.e., query, key,and value are the same tensor). Attention
L T 3

Norm

Embedded
Patches



https://arxiv.org/abs/2010.11929
https://pytorch.org/docs/stable/generated/torch.nn.MultiheadAttention.html

VSB TECHNICAL
|||| UNIVERSITY
| OF OSTRAVA

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DEPARTMENT
OF COMPUTER
SCIENCE

VIiT — Selected Implementation Details — Equation 2.

layer norm

layer norm_

= nn.LayerNorm(768)
out =

attn output weights = multihe

_attn(query =

layer norm(z 0 with class with poss)
multihead attn = nn.MultiheadAttention(embed dim = 768,
attn output,

num heads = 12,
layer norm out,
key = layer norm out,

value = layer norm out)

batch first =

Multi-Head Attention
True) f

Linear

~

Z0 = [Xclass; XpE; X E; -« ;
2t = MSA(LN(z¢—1))|+ 21,
z; = MLP(LN(z',)) + 2’4,

y = LN(z7)

You can continue in a similar way
with equations 3 and 4 during the
exercise (it is appropriate to
organise the ViT blocks into
individual classes)

MLP
Head

Vision Transformer (V4

Transformer Encoder

Pmmuﬁﬁﬁddﬁéiéé

* Extra lea
[clas ]embdd ng

- 8 O

Llnear PrOJectlon of Flattened Patches

PR

| ml
E A

| AN, o

| i iters

Concat

~N

Scaled Dot-Product

/2

Embedded
Patches

Attention
1l pl 1l
o o Vo
Linear Linear Linear
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https://github.com/lucidrains/vit-pytorch

[0 README  && MIT license

Table of Contents

= Vision Transformer - Pytorch

* Install

» Usage

* Parameters
* Simple ViT

* NaViT

e Distillation
* Deep ViT

» CaiT

* Token-to-Token ViT
o CCT

e Cross ViT

. PIT

. LeVil

. o7

e Twins SVT

e CrossFormer
* RegionViT

e ScalableViT
« SepViT

* MaxViT

* NesT

* MobileViT

. XCT

e Masked Autoencoder

o Simple Masked Image Modeling
s Masked Patch Prediction

https://arxiv.org/abs/2010.11929
-/ I ision/main/ ls/vision_ ‘

Where to go from here?

[0 README &[5 MIT license

MobileViT

I' Gl*fﬁ«lj =3

Plation e parhen Pt o g

i) Standard visunl trandformer (ViT)

Viakaie VT ok =

bi MshileVIT. Here, Conv-n % 5 in the MobdcViT block represents o standand 1 x n oonvolution sd
MV reffers to MobideNetv Block. Blocks that pesform dovwn-ssmpling sre masked walh | 2

This paper introduce MobileViT, a light-weight and general purpose vision transformer for mobile devices.
MobileViT presents a different perspective for the global processing of information with transformers.

You can use it with the following code (ex. mobilevit_xs)

import torch 1
from vit_pytorch.mobile_vit import MobileViT

mbvit_xs = MobileViT(
image_size = (256, 256),
dims = [96, 128, 1447,
channels = [16, 32, 48, 48, 64, 64, 80, 80, 96, 96, 384],
num_classes = 100600

img = torch.randn(i, 3, 256, 256)

pred = mbvit_xs(img) # (1, 1808@)
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