Image Analysis |l
Object Detection — RCNN/YOLO/SSD

Radovan Fusek o e, e

EVROPSKA UNIE
Evropské strukturalni a investicni fondy
Operaéni program Vyzkum, vyvoj a vzdélavani

Classic
Sliding Window

l}@r Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs

INRIA Rhone-Alps, 655 avenue de I’Burope, Montbonnot 38334, France
{Navneet.Dalal,Bill. Triggs } @inrialpes.fr, http://lear.inrialpes.fr

Robust Real-Time Face Detection

PAUL VIOLA
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA . . . *
viola@microsoft.com Cascade Object Detection with Deformable Part Models
MICHAEL J. JONES
Mitsubishi Electric Research Laboratory, 201 Broadway, Cambridge, MA 02139, USA Pedro F. Felzenszwalb Ross B. Girshick David McAllester
mjones@merl.com University of Chicago University of Chicago TTI at Chicago
Reccived September 10, 2001; Revised July 10, 2003; Accepted July 11, 2003 pffecs.uchicago.edu rbgles.uchicago.edu mcallester@ttic.edu

Two Stage

Rich feature hierarchies for accurate object detection and semantic segmentation
Tech report (v5)

Fast R-CNN

Ross Girshick Jeff Donahue Trevor Darrell Jitendra Malik
UC Berkeley

{rbg, jdonahue, trevor,malik}@eecs.berkeley.edu

Ross Girshick
Microsoft Research

rbg@microsoft.com

Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks

Shaoging Ren, Kaiming He, Ross Girshick, and Jian Sun

One Stage

SSD: Single Shot MultiBox Detector

You Only Look Once:
Unified, Real-Time Object Detection

Wei Liu!, Dragomir AnguelovZ, Dumitru Erhan®, Christian Szegedy?,
Scott Reed*, Cheng-Yang Fu!, Alexander C. Berg!
5 . *1. . . 1'[. . *1.
Joseph Redmon®, Santosh Divvala®, Ross Girshick, Ali Farhadi "UNC Chapel Hill >Zoox Inc. *Google Inc. *University of Michigan, Ann-Arbor

. . * . t 9
University of Washington®, Allen Institute for AI', Facebook AI Research lyliu@cs .unc.edu, Zdrago@zoox. com, 3{dumitru, szegedy}@google .com,
http://pjreddie.com/yolo/ 4reedscot@umich.edu, '{cyfu,aberg}@cs.unc.edu

DEPARTMENT
II ‘I UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | SCTENCE SCIENCE

EVROPSKA UNIE
Evropské strukturalni a investicni fondy =
ST Region-Based CNNs (R-CNNs

* Classical way (how to localize/detect object) is based on sliding window technique

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| H UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | SCIENCE SCIENCE

EVROPSKA UNIE '\’<§
Evropské strukturalni a investicni fondy 'r]
T REREE. e R egion- Based CNNs (R-CNNs

Disadvantages of sliding window with the use off very deep CNNs for object detection

* many different image regions

e each region is used as an input for CNNs

* computational cost — overlapping regions (stride parameters)

* duplicated operations

:> CNNs @

VSB TECHNICAL FACU

|| ” UNIVERSITY | ENGI
‘ OF OSTRAVA | SCTE

F ELECTRICAL DEPARTMENT
ING AND COMPUTER TER

https://arxiv.org/abs/1506.02640 | naverszTy
‘ OF OSTRAVA

EVROPSKA UNIE '\’<§
Evropské strukturalni a investicni fondy 'r
Operacni program Vyzkum, vyvoj a vzdélavani TERST KOLSTV

Figure 3: Non-Maximum Suppression (NMS). a) Shows the typical output of an object detection model containing
multiple overlapping boxes. b) Shows the output after NMS.

https://arxiv.org/abs/2305.17786 VS8 TECHNICAL | FACULTY 0F ELECTRTCAL S
NG AND COMPUTE MPUTER
CE

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640

EVROPSKA UNIE e et
Evropské strukturalni a investicni fondy
Operaéni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTV ’

Union Intersection loU =" loU ="

_ICHESE

loU = Area of Overlap / Area of Union

VSB TECHNICAL FACULTY OF ELECTRICAL
GINEERING AND COMPUTER

I|‘|I Y

DEPARTMENT
NIVERSITY | ENGIN OF COMPUTER
OF OSTRAVA | SCIENCE

P
SCIENCE

EVROPSKA UNIE |\’<§ b
Evropské strukturalni a investi¢ni fondy]'
Operacni program Vyzkum, vyvoj a vzdélavani MINIE Y -

How select only one box?

VSB TECHNICAL FACULTY OF ELEC
‘| ” UNIVERSITY | ENGINEERING AN
‘ OF OSTRAVA | SCIEN

- Non-max Suppresion
How select only one box?

1. Discard all boxes with confidence smaller or
equal to 0.6

2. Select the box with largest confidence

3. Discard all remaining box with loU greater or
equal to 0.5

10

VSB TECHNICAL | FACULTY OF ELECTRIC DE V
| |‘ UNIVERSITY NGINEERING AND COMPUTER | OF COMPU R
11" oF osTRAVA

e, T Non-max Suppresion
How select only one box?

1. Discard all boxes with confidence smaller or
equal to 0.6

0.8 0.9 0.55

11

VSB TECHNICAL FACU 0 C CA \RTMEN
‘| ” UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | SC

[Non-max Suppresion
How select only one box?

1. Discard all boxes with confidence smaller or
equal to 0.6

2. Select the box with largest confidence

0.8 0.9

VSB TECHNICAL FACU
‘| ” UNIVERSITY | ENGINEE
‘ OF OSTRAVA | §

sl EVROPSKA UNIE bl
* Evropské strukturalni a investicni fondy
Operacni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTV -

How select only one box?

1. Discard all boxes with confidence smaller or
equal to 0.6

2. Select the box with largest confidence

3. Discard all remaining box with loU greater or
equal to 0.5

VSB TECHNICAL FACULTY OF ELECTRICAL
i1 A

[Non-max Suppresion
How select only one box?

1. Discard all boxes with confidence smaller or
equal to 0.6

2. Select the box with largest confidence

3. Discard all remaining box with loU greater or
equal to 0.5

14

VSB TECHNICAL FACU OF ELECTRIC D \ ‘
‘| ” UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | §

EVROPSKA UNIE W
Evropskeé strukturalni a investicni fondy | =
Re gion- Based CNNs (R-CNNs

R-CNN
* Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection

and semantic segmentation. Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 580-587).

Fast R-CNN

® Girshick, R. (2015). Fast r-cnn. Proceedings of the IEEE international conference on computer vision (pp. 1440—
1448).

Faster R-CNN

 Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: towards real-time object detection with region
proposal networks. Advances in neural information processing systems (pp. 91-99).

Mask R-CNN

* He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask r-cnn. Proceedings of the IEEE international conference
on computer vision (pp. 2961-2969).

sl EVROPSKA UNIE
* * Evropské strukturalni a investicni fondy =
Bl S B i Region-Based CNNs (R-CNNs

* R-CNN - 2014

* (1) takes an input image

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
image proposals (~2k) CNN features regions

EVROPSKA UNIE
Evropské strukturalni a investicni fondy =
S Region-Based CNNs (R-CNNs

* R-CNN - 2014

* (1) takes an input image
* (2) extracts around 2000 bottom-up regions using selective search
e J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions

JLTY OF ELECTRICAL DEPARTMENT
1 A OMPUTER | OF COMPU

EVROPSKA UNIE |\’<§
Evropskeé strukturalni a investicni fondy T [
N | Reg lon-Based CNNSs (R-CN NS)

* R-CNN - 2014

* (1)takesan inputimage
* (2) extracts around 2000 bottom-up regions using selective search
e J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013

2. Extract region
proposals (~2k)

SCIENCE

EVROPSKA UNIE V\’<§
Evropské strukturalni a investicni fondy 'r]
T REREE. e Re gion- Based CNNs (R-CNNs

R-CNN - 2014

(1) takes an input image
(2) extracts around 2000 bottom-up regions using selective search
e J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013

(3) computes features for each region using a large convolutional neural network (CNN)
* AlexNet is used to compute the features

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
image proposals (~2k) CNN features regions

‘| ” UNIVERSITY | ENGINE
‘ OF OSTRAVA M

EVROPSKA UNIE |\’<§
Evropské strukturalni a investicni fondy 'r]
T REREE. e Re gion- Based CNNs (R-CNNs

R-CNN - 2014

(1) takes an input image
(2) extracts around 2000 bottom-up regions using selective search
e J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013

(3) computes features for each region using a large convolutional neural network (CNN)
* AlexNet is used to compute the features (227x227 pixels)

warped region

aeroplane? no.

person? yes.

2 i//liu\\% s = , tvmoni.tor? no.
1. Input 2. Extract region 3. Compute 4. Classity
image proposals (~2k) CNN features regions

|| ” UNIVERSITY | ENGINEE
‘ OF OSTRAVA M

EVROPSKA UNIE V\Kﬁ
Evropskeé strukturalni a investicni fondy r [
R e Re gion- Based CNNs (R-CNNs

* R-CNN - 2014

* (1)takesan inputimage
e (2)extracts around 2000 bottom-up regions using selective search
e J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders. Selective search for object recognition. IJCV, 2013
* (3) computes features for each region using a large convolutional neural network (CNN)
» AlexNet is used to compute the features (227x227 pixels)
* (4) classifies each region using class-specific linear SVMs

warped region

aeroplane? no.

person? yes.

tvmonitor? no.

1. Input 2. Extract region 3. Compute 4. Classity
Image proposals (~2k) CNN features regions

‘| ” UNIVERSITY | ENGINEE
‘ OF OSTRAVA | SCIEN

S el s Y Wr R eg I on- B as ed C N N S (FaSt R _C N N S)

* R-CNN vs. Fast R-CNN - 2015

» different shapes of regions > fully connected layers require fixed shape

—] warped region

aeroplane? no.

.......

R-CNN person? yes.
tvmonitor? no.
1. Input 2. Extract region 3. Compute 4. Classify
image proposals (~2k) CNN features regions
: Outputs: beX
_ UEED softmax regressor
| [ConvNet el !
' Rol L chrc
pooling
Fast R-CNN JRol | eyer §
projection_
Conv X[Rol feature
feature map NECE

[1] https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af i
[2] https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44 || SNEVERSTTY | ENGINEERING AND COMPUTER | OF cOMPUTER

https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af
https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44

e e Region-Based CNNs (Fast R-CNNSs)

 Fast R-CNN - 2015

» different shapes of regions > fully connected layers require fixed shape

* ROI Pooling (Region of interest pooling) solves the problem
» for every ROI (proposal) from the input, feature map which corresponds to that ROl is selected

e transform this feature-map into a fixed dimension map

: Outputs: bbox
Desu N softmax regressor
1 | |ConvNet| | > = e
|F Rol L:l;”:c =23 FC
i ? pooling
= | FCs
Rol | [| | SET
—projection~_ | :
| Conv X Rol feature
feature map vector For eehiRa]

[1] https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af
[2] https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44

https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af
https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44

e '\@ Re g i on-Base d CNNs (|: ast R-CNN S)

Outputs: bb ox
softmax regressor
mmnan o

 Fast R-CNN - 2015

» different shapes of regions > fully connected layers require fixed shape

=5 FC

Rol feature
vector For each Rol

* Example ([1, 2]):
* inputimage size is 1056x640
» after several conv and pool operations the output feature map size is reduced to 66x40

e this feature map is used by ROI pooling layer

66x40 feature map

1056x640

[1] https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af
VSB TECHNICAL FAC.liIr_'LY :;NELEELREE:‘:I;_”ER

|| || UNIVERSITY | ENGINEE
‘ OF OSTRAVA | SCIENCE

[2] https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44

DEPARTMENT
OF COMPUTER

MP
SCIENCE

https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af
https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44

Dot Dl e o '\@ Re g ion-Based CNNSs (|: ast R-CNN S)

Outputs: bb ox
softmax regressor
mmnan o

 Fast R-CNN - 2015

» different shapes of regions > fully connected layers require fixed shape

=5 FC

Rol feature

s Example ([1, 2]) VECtOr 1 coch rol
* inputimage size is 1056x640
» after several conv and pool operations the output feature map size is reduced to 66x40
e this feature map is used by ROI pooling layer
* Get Rols from the feature map?
1056x640 66x40 feature map
[1] https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af e

|| || UNIVERSITY | ENGINEE
‘ OF OSTRAVA | SCIENCE

[2] https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44

DEPARTMENT
OF COMPUTER

P
SCIENCE

https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af
https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44

B e I\’@T Re g | on-Base d CNNs (F ast R-CNN S)

Outputs: bb ox
softmax regressor

 Fast R-CNN - 2015

» different shapes of regions > fully connected layers require fixed shape

Rol feature
featu re ma p vector For each Rol

* Example ([1, 2]): input image size is 1056x640 :
after several conv and pool operations the output feature map size is reduced to 66x40
this feature map is used by ROI pooling layer

Get Rols from the feature map?

The extracted regions of interest (proposal) are generated based on input image size, so we need to rescale
these regions to feature map size. In this particular case by 16 (1056/66=16 or 640/40=16).

1056x640 66x40 feature map

[1] https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af i
[2] https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44 || SNEVERSTTY | ENGINEERING AND COMPUTER | OF cOMPUTER

ER PU
SCIENCE

https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af
https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44

Region-Based CNNs (Fast R-CNNs)

Outputs: beX
softmax regressor

 Fast R-CNN - 2015

» different shapes of regions > fully connected layers require fixed shape

Rol
pooling

FC

Rol feature
vector

 Example ([1, 2]):

* inputimage size is 1056x640

e after several conv and pool operations the output feature map size is reduced to 66x40

e this feature map is used by ROI pooling layer

e Get Rols from the feature map?

* The extracted regions of interest (proposal) are generated based on input image size, so we need to rescale
these regions to feature map size. In this particular case by 16 (1056/66=16 or 640/40=16).

* For every proposal in the input proposals, we take the corresponding feature map section and divide that
section into W*H. After that take the maximum element of each block and copy to the output. So as the
output we obtain fixed dimension feature map irrespective of the various sizes of the input proposals.

For each Rol

Scaled Proposals = Proposals * spatial_scale

for every ROI in Scaled Proposals:
fmap subset = feature map[ROI] (Feature map for that ROI)
Divide fmap subset into P wxP h blocks (ex: 6%*6 blocks)
Take the maximum element of each block and copy to output block

[1] https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af e
[2] https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44 Il

https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af
https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44

el e g e PO 'X%r R eg | on- B as ed C N N S (F ast R _C N N S)

 Fast R-CNN - 2015

» different shapes of regions > fully connected layers require fixed shape

* ROI Pooling (Region of interest pooling) solves the problem

il 3x3 Rol Pooling (full size)

0.86 0.88

After the pooling process, (for example) the
3x3x512 matrixes can be used as input for FC
layers for further processing. For each region we

[1] https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af obtain fixed size of vector. R
[2] https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44 [

source: https://miro.medium.com/max/840/1*5V5myclRNu-mK-rPywL57 w.gif

FACULTY OF ELECTRICAL DEPARTMENT
I ING AND COMPUTER TER

ENGI
SCIE

https://towardsdatascience.com/region-of-interest-pooling-f7c637f409af
https://towardsdatascience.com/understanding-region-of-interest-part-1-roi-pooling-e4f5dd65bb44
https://miro.medium.com/max/840/1*5V5mycIRNu-mK-rPywL57w.gif

Rt et Region-Based CNNs (Faster R-CNNSs)
* Faster R-CNN - 2015

* Selective search in R-CNN and Fast R-CNN is replaced by Region Proposal Network

. classifier
4

* two modules:
* 1. module is a deep fully convolutional network that proposes regions
2. module is the Fast R-CNN detector that uses the proposed regions

Rol pooling

3 Y

| 2k scores | | 4k coordinates | « k anchor boxes

cls layer ‘ ’ reg layer

| 256-d |
t intermediate layer

proposy

Region Proposal Networkk

feature maps

sliding window

2 st | 0.738 = “
- | =) 1
4 1 o ' U 0 !
& b’ ' # / e AV A L - rwon : 0.089)
e 7 conv layers
conv feature map . 0 /

Figure 3: Left: Region Proposal Network (RPN). Right: Example detections using RPN proposals on PASCAL e A — £
VOC 2007 test. Our method detects objects in a wide range of scales and aspect ratios. — —

VSB TECHNICAL ACULTY OF ELECTRICAL
D COMF

https://arxiv.org/abs/1506.01497 i vEsstre

SCIENCE

sl EVROPSKA UNIE
* * Evropské strukturalni a investicni fondy

B T e Region-Based CNNs (Faster R-CNNSs)

 Faster R-CNN - 2015

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
IMPUTER

httpS://arXiV.Org/a bS/l 506.01497 |”H UNIVERSITY | ENGINEERING AND COMPUTER t_t 1PU

OF OSTRAVA | SCTENCE E

EVROPSKA UNIE
Evropské strukturalni a investicni fondy
Operacni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTV

Region-Based CNNs (Mask R-CNNS)

Mask R-CNN

Kaiming He Georgia Gkioxari Piotr Dollar Ross Girshick

Facebook Al Research (FAIR)

Our method, called Mask R-CNN, extends Faster R-CNN |
[36] by adding a branch for predicting segmentation masks
on each Region of Interest (Rol), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1).| The mask branch is a small FCN applied
to each Rol, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the mask branch only adds a small computational overhead,
ling a fast system and rapid experimentation.

RolAlign
|,

https://arxiv.org/abs/1506.01497
htt DS'//arXiV o) rg/a bS/l 703 068 70 VSB TECHNICAL | FACULTY OF ELECTRICAL DEPARTMENT
L - - I”ll UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER

OF OSTRAVA | SCIENCE SCIENCE

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870

Our method, called Mask R-CNN, extends Faster R-CNN |

EVROPSKA UNIE
Evropské strukturalni a investicni fondy
Operacni program Vyzkum, vyvoj a vzdélavani

Mask R-CNN

Kaiming He Georgia Gkioxari Piotr Dollar Ross Girshick
Facebook Al Research (FAIR)

[36] by adding a branch for predicting segmentation masks
on each Region of Interest (Rol), in parallel with the ex-
isting branch for classification and bounding box regres-
sion (Figure 1).| The mask branch is a small FCN applied

to each Rol, predicting a segmentation mask in a pixel-to-
pixel manner. Mask R-CNN is simple to implement and
train given the Faster R-CNN framework, which facilitates
a wide range of flexible architecture designs. Additionally,
the

mask branch only adds a small computational overhead,

ling a fast system and rapid experimentation.

RolAlign
—>

https://arxiv.org/abs/1506.01497

https://arxiv.org/abs/1703.06870

. Mask R-CNNs

— e
Rol fES::-

Figure 4. Head Architecture: We extend two existing Faster R-

We denote the [backbone architecture |usi11g the nomen-
clature network-depth-features. We evaluate []9]
and [ResNeXt|[45] networks of depth 50 or 101 layers. The
original implementation of Faster R-CNN with ResNets
[19] extracted features from the final convolutional layer
of the 4-th stage, which we call C4. This backbone with
ResNet-50, for example, is denoted by ResNet-50-C4. This
1s a common choice used in [19, 10, 21, 39].

We also explore another more effective backbone re-
cently proposed by Lin er al. [27], called a Feature Pyra-
mid|Network (FPN). FPN juses a top-down architecture with
lateral connections to build an in-network feature pyramid
from a single-scale input. Faster R-CNN with an FPN back-
bone extracts Rol features from different levels of the fea-
ture pyramid according to their scale, but otherwise the
rest of the approach 1s similar to vanilla ResNet. Using a
ResNet-FPN backbone for feature extraction with Mask R-
CNN gives excellent gains in both accuracy and speed. For
further details on FPN, we refer readers to [27].

wid || w256 w258

L

Faster B-CMMN Faster B-CWMN
w EesNet [19] wi! FPN [27]
._|,3_¢_5_ o class
of| 27 — -
xzuqﬁ[2048 Rol|| x256 T 1024 IEI_P 0241: |:: box
14x14 14:-:14 : [14x14] | 14x14 | |28x28
%256 Tl %256 5eq ” I
rnask /

f OF OSTRAVA | SCTENCE

2Bx28
O

mask

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870

EVROPSKA UNIE
Evropské strukturalni a investicni fondy 'r

SR et s Region-Based CNNs (Mask R-CNNS)

* Mask R-CNN - 2017

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870

e e Region-Based CNNs (Faster R-CNNSs)

« EXAMPLE Faster R-CNN - PyTorch

https://pytorch.org/vision/main/generated/torchvision.models.detection.fasterrcnn resnet50 fpn.html

def main():

cv2.namedWindow("detection”, ©)
print("main”

test images = [img for img in glob.glob("test images/*.jpg")]
test_images.sort()

model = torchvision.models.detection.fasterrcnn_resnet50 fpn(pretrained=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model.eval().to(device)

transformRCNN = transforms.Compose([
transforms.ToTensor(),

D

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870

SCIENCE

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870
https://pytorch.org/vision/main/generated/torchvision.models.detection.fasterrcnn_resnet50_fpn.html

AR =\VROPSKA UNIE V\Kﬁ
* Evropské strukturalni a investi¢ni fondy I i

Bl T e T Region-Based CNNs (Faster R-CNNSs)

coco_names = ['__background__', 'person’, 'bicycle’, 'car', 'motorcycle’, 'airplane’, 'bus’, 'train’, 'truck’,
¢ EXAM PI.E Fa Ster R'CN N - PVTO rCh 'boat, 'traffic light', 'fire hydrant', 'N/A', 'stop sign', 'parking meter’, 'bench’, 'bird’, 'cat’, 'dog’, 'horse’, 'sheep’,

'cow', 'elephant, 'bear’, 'zebra’, 'giraffe', 'N/A’, 'backpack’, 'umbrella’, 'N/A', 'N/A’, 'handbag', 'tie’, 'suitcase’,

*
* %

'tennis racket', 'bottle’, 'N/A', 'wine glass', 'cup', 'fork’, 'knife', 'spoon’, 'bowl’, 'banana’, 'apple’, 'sandwich’,
‘orange’, 'broccoli', 'carrot’, 'hot dog', 'pizza’, 'donut’, 'cake’, 'chair', ‘couch’, 'potted plant’, 'bed’, 'N/A', 'dining
table', 'N/A', 'N/A', 'toilet’, 'N/A', 'tV', 'laptop’, 'mouse’, 'remote’, 'keyboard', 'cell phone', 'microwave', 'oven’,
'toaster', 'sink’, 'refrigerator’, 'N/A', 'book’, 'clock’, 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
for img in test_images:
one_img = cv2.imread(img)
one_img paint = one_img.copy()

one_img rgb = cv2.cvtColor(one_img, cv2.COLOR_BGR2RGB)

img_pil = Image.fromarray(one_img_rgb)

imageRCNN = transformRCNN(img pil).to(device)

imageRCNN = imageRCNN.unsqueeze(90)

outputsRCNN = model(imageRCNN)

pred classes = [coco names[1] for 1 in outputsRCNN[@]['labels'].cpu().numpy()]
pred_scores = outputsRCNN[@]['scores'].detach().cpu().numpy()

pred _bboxes = outputsRCNN[@]['boxes'].detach().cpu().numpy()

print(pred_scores)
print(pred_classes)

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870 VS8 TECHNICAL | FACULTY OF ELECTRICAL

”" OF DSTRAVA | SCTENCE

UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870

EVROPSKA UNIE
Evropské strukturalni a investicni fondy
Operacni program Vyzkum, vyvoj a vzdélavani

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870

it

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT

EEEEEEEEEEEEEEEEEEEEEEE

https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1703.06870

EVROPSKA UNIE
Evropské strukturalni a investicni fondy
Operacni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTV

* YOLO - You Only Look Once

YOLOX
YOLOv1 YOLOv3 YOLOR

PP-YOLOv2

YOLOv8
YOLO-NAS

Scaled
YOLOv4
m"f: 000 PP-YOLO
YOLOvS
YOLOv6

Figure 1: A timeline of YOLO versions.

Terven, J.R, & Cérdova-Esparza, D. (2023). A Comprehensive Review of YOLO: From YOLOv1 and Beyond. https://arxiv.org/abs/2304.00501

https://arxiv.org/abs/1506.02640

DAMO YOLO
PP-YOLOE
YOLOvV7?
YOLOve

VSB T

I|‘|I Y

[+]

ECHNICAL FACULTY OF ELECTRICAL
GINEERING AND COMPUTER

NIVERSITY | ENGINEE
F OSTRAVA | SCIENCE

DEPARTMENT
OF COMPUTER

P
SCIENCE

https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/2304.00501

L2t 2 EVROPSKA UNIE
* * Evropské strukturalni a investicni fondy
S Operaéni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTY

* YOLOV1 - You Only Look Once

You Only Look Once:
Unified, Real-Time Object Detection

S x S grid on input 17 Final detections

Joseph Redmon*, Santosh Divvala*f, Ross GirshickY, Ali Farhadi*f
University of Washington®, Allen Institute for AIT, Facebook AI Research
http://pjreddie.com/yolo/

Class probability map

448 s
gure 2: The Model. Our system models detection as a regres-
7 . o % . . .
7@ sion problem. It divides the image into an S x S grid and for each
grid cell predicts B bounding boxes, confidence for those boxes,
n2 g, . - -
T | and C class probabilities. These predictions are encoded as an
3
448 aﬂé 28 3ﬁ SKS X (B %D + C) tensor.
3 14]3 A 7| 7 7
nz 56 2 3 3 g >< H ><
14
3 192 256 512 1024 ’ 1024 g 1024 4096 ! 30
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer :: . ::E i
7x7x64-52 3x3x192 1x1x128 1x1x256 7 . 4 1x1x512 7,5 3x3x1024 T L
Maxpool Layer ~ Maxpool Layer 3x3x256 3x3x512 3x3x1024 3x3x1024 1. Resize image.
2x252 2x2:52 1x1x256 1x1x512 3x3x1024 2. Run convolutional network.
3x3x512 3x3x1024 3x3x1024-s-2 3. Non-max suppression.
Maxpool Layer ~ Maxpool Layer
2x2-s-2 2x2-s-2

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1 Figure 1: The YOLO Detection System. Processing images

convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification with YOLO is simple and straightforward. Our system (1) resizes
task at half the resolution (224 x 224 input image) and then double the resolution for detection. the input image to 448 x 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
https://arxiv.org/abs/2304.00501 the model’s confidence.
https://arxiv.org/abs/2305.17786 VSB TECHNICAL | EACULTY 0F ELeciTcAL | pEeamTHELT

ENGINEERING AND COMPUTER
SCIENCE

OF COMPUTER
SCIENCE

https://arxiv.org/abs/1506.02640) Unvesszry
‘ OF OSTRAVA

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640

nput
GooglLeNet
mage' modification
(20 layers)
448x448x3
7
| N —
70
b 30
~ ~e o 7
grid cell~~-___

{ deepsystems.io

¥

CR

14x14x1024 14x14x1024

h
Bk

nmm A\‘_g ,_2‘_‘_

CR

Inference

14x14x1024

CR

7x7x1024

Tensor values interpretation

CR

7x7x1024

Detection =8
Procedure |}
FC,R FC Reshape
— — —
7x7%x30
4096x1 1470x1

YOLOv1 - You Only Look Once
- divide image into grid cells

18

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | SCIENCE SCIENCE

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640
https://github.com/watersink/yolov1_tutorial
https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/edit

\ Inference

nput Detection |
\ Procedure |}
mage| GoogleNet CR CR CR CR FC.R FC Reshape
modification > > > — . o P
(20 layers) ! ’ ;
. 7x7%30
\ 14x14x1024 14x14x1024 14x14x1024 x7x1024 Txrx1024
- 4096x1 1470x1
448x448x3
Tensor values interpretation
] 1x30
AN 7
B N
3 5

_ YOLOv1 - You Only Look Once
two bboxes for each grid cell - divide image into grid cells
- for each cell -> bounding box predictions

22

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | SCIENCE SCIENCE

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640
https://github.com/watersink/yolov1_tutorial
https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/edit

\ Inference

Input
mage mocifaton =, = = sl = A rEE
(20 layers) 7x7x30
\ 14x14x1024 14x14x1024 14x14x1024 Txpxa024 Tx7x1024 | |
o 4096x1 1470x1
448x448x3 .
Tensor values interpretation
_______________ I | 1x30
_______________ TJ
7 ,"’ 1. x - coordinate of bbox center inside cell ([0; 1] wrt grid cell size)
Y — 2. y-coordinate of bbox center inside cell ([0; 1] wrt grid cell size)
X 3. w - bbox width ([0; 1] wrt image
™ - dth ([_] wrt image) YOLOV1 - You Only Look Once
X 4. h-bbox height ([0; 1] wrt image) divide i into erid cell
5. c-bbox confidence ~ P(obj in bbox1)) Ivide image Into gr .ce S L.
7 - for each cell -> bounding box predictions
grid cell~~-___

- each box is described by x, y, w, h, Pc

- based on the middle point of each object,
the responsible cell is selected

- each cell is responsible for one object

20

{ deepsystems.io

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| H UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | SCIENCE SCIENCE

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640
https://github.com/watersink/yolov1_tutorial
https://docs.google.com/presentation/d/1aeRvtKG21KHdD5lg6Hgyhx5rPq_ZOsGjG5rJ1HP7BbA/edit

* Nk EVROPSKA UNIE
* * Evropské strukturalni a investicni fondy Ima ge G r|d
S Operaéni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTY

Image Grid Size (S)=7
» 7 Bounding Boxes (B)=2
,ﬁj Number of Classes (C)=20
") N 7 Note: bounding boxes are encoded to be relative to cell
2 56| 1
s 1/ N — — size instead of image size
14| 7|
N NS Eeaer
14
3 92 256 512 oz § 1024 § 1024 4096 § 30 Bounding Box 1 Bounding Box 2
Conv. Layer Conv. Layer Conv. Layers Conv. Layers Conv. Layers Conv. Layers Conn. Layer Conn. Layer 7
7x7x6452 3x3x192 1x1x128 1x1x2567 4 Ix1x512 1,5 3x3x1024 N [M i e .
MO NIRRT Mok aen o ‘—«.r.w,—*.,»:,r --------------- Xy wh Xywh Class probabilities
3x3x|5'|2 3x3x1|024 3x3x1024-5:2 e A L R e e
Maxpool L Maxpool L
a: 2p:2c;2ayer a: ;:2?&2uyer l ' l l l '
Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1 7 5 5 20
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification 30
task at half the resolution (224 x 224 input image) and then double the resolution for detection.

Fig. 3. YOLO Tensor Structure

. . Real-Time Detectors Train mAP FPS |
——Existance of object 100Hz DPM [31] 2007 160 100
—_ 30Hz DPM [31] 2007 26.1 30

Fast YOLO 200742012 527 155
YOLO 200742012 634 45

— Boundmg box Less Than Real-Time
Fastest DPM [37] 2007 304 15
R-CNN Minus R [20] 2007 535 6

Fast R-CNN [14] 200742012 70.0 0.5
- (IUSS I(]bels Faster R-CNN VGG-16[28] 2007+2012 73.2 7

Faster R-CNN ZF [2£8] 2007+2012 62.1 18
YOLO VGG-16 200742012 66.4 21

Table 1: Real-Time Systems on PAScAL VOC 2007. Compar-
ing the performance and speed of fast detectors. Fast YOLO is
the fastest detector on record for PASCAL VOC detection and is
still twice as accurate as any other real-time detector. YOLO is
10 mAP more accurate than the fast version while still well above
real-time in speed.

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT

Il H UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
1" oF osTrava | scrence SCTENCE

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640

Watiaftck EVROPSKA UNIE =
* * Evropské strukturalni a investicni fondy I
x Operacni program Vyzkum, vyvoj a vzdélavani

* YOLOv1 — multi-part loss function

s?2 B
Acoord Z Z]lObJ [(mz — Cﬁi)z + (yi — @%)2]
1=0 5=
s?2 B 0 —\ 2
x50 [(v - V) + (Vi - Vi)]
1=0 7=
s? B 5
(e
=0 3=
s? B .
e 3301 (00 1)
1=0 5=

+lebj > ile) —Bile)® @)

c Eclasses

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

Operacni program Vyzkum, vyvoj a vzdélavani

M. YOLO

YOLOv1 — multi-part loss function

localization loss

Acoord Z Z 137 e

1=0 53=0

2:)? + (yi — 337:)2]

+Acoordz Z 157 [(\/’w_— Vi) + (\/h_"'_ i”)?

=0 5=0

(e e)

1=0 5=0

+ Auoob Z S (0, -)

1=0 7=0

s
+>° 17 3" (pi(e) — pile))?

c Eclasses

Sum of Square Error (SSE) of how
close is the position (and size) of
bounding box to the ground truth

3)

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

Operacni program Vyzkum, vyvoj a vzdélavani

i

YOLO

* YOLOv1 — multi-part loss function

localization loss

s?2 B
)\coord Z Z 1

i=0 j=0

s? B ‘
+)\coord Z Z]]-(Zl;]

i=0 j=0

obj
)

(@i — 2)% + (yi — 53)°]

(o= i)« (Vi i)

confidence loss

s? B
noobj
+)\noobj E g 1 ij

s? B _
SBRL

i=0 j=0

i=0 =0

(-

(e e

Cn-)Q

SZ
+> 1
+1=0

S (pile) = $i(e)?

c Eclasses

Sum of Square Error (SSE) of how
close is the position (and size) of
bounding box to the ground truth

SSE of how close is the confidence
score to the ground truth

3)

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640

EVROPSKA UNIE
Evropské strukturalni a investicni fondy I

Operacni program Vyzkum, vyvoj a vzdélavani

YOLOv1 — multi-part loss function

YOLO

. . 1=0 3=0
localization loss

2=0 57=0

+ Acoord Z Z 1) [(\/w_ — \/w_)2

Acoord Z Z 157 |([@z — #4)° + (va — @i)2]

confidence loss

+)\noobj Z Z]anObJ (

1=0 57=0

PE (e e

=0 /=0

Ci)Q

classification loss

s
+3°1 ST (pie) — pile)?
=0

c Eclasses

Sum of Square Error (SSE) of how
close is the position (and size) of
bounding box to the ground truth

SSE of how close is the confidence
score to the ground truth

SSE of how close is the predicted
class probabilities to the ground
truth

VSB TECH
|\|‘ UNIV
OF 0

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640

EVROPSKA UNIE

Evropské strukturalni a investicni fondy

T REREE. e YOLO vs. Fast R-CNN
]

, Fast R-CNN YOLO
Figure 4 shows the breakdown of each error type aver-

aged across all 20 classes. Background: 13.6% Background: 4.75%
YOLO struggles to localize objects correctly. Localiza- Other: 4.0%

tion errors account for more of YOLQO’s errors than all other Other: 1.9% Sim: 6.75%,
sources combined. Fast R-CNN makes much fewer local-
ization errors but far more background errors. 13.6% of Sim: 4.3%
it’s top detections are false positives that don’t contain any
objects. Fast R-CNN is almost 3x more likely to predict
background detections than YOLO.

2.4. Limitations of YOLO

YOLO imposes strong spatial constraints on bounding
box predictions since each grid cell only predicts two boxes
and can only have one class. This spatial constraint lim-

its the number of nearby objects that our model can pre- Figure 4: Error Analysis: Fast R-CNN vs. YOLO These

dict. Our model struggles with small objects that appear in .

groups, such as flocks of birds. charts show the percentage of localization and background errors
in the top N detections for various categories (N = # objects in that
category).

https://arxiv.org/abs/1506.02640

DEPARTMENT
TER OMPUTER

https://arxiv.org/abs/1506.02640

EVROPSKA UNIE =
Evropské strukturalni a investicni fondy '
Operacni program Vyzkum, vyvoj a vzdélavani Y O I O

https://voutu.be/NM®6IrxyObxs?si=vlaZzezBOguAgra7

You Only Look Once: Unified, Real-Time Object Detection

ROSS SANTOSH Al

josern
REDMON GIRSHICK DIVVALA FARHADI

MoOSsT *"‘
\((URAI
Olo

=) R
R .

“YUU ONIY LUUK ON(,'F

REAL-TIME CVYPR2016

DETECTION

G/F

<« 0:00/13:06

https://arxiv.org/abs/1506.02640

https://arxiv.org/abs/1506.02640
https://youtu.be/NM6lrxy0bxs?si=v1aZzezBOguAgra7

~

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

Operacni program Vyzkum, vyvoj a vzdélavani M‘3"fff.ﬁsﬁv;o«if?::?ﬂw
Input Image Backbone Neck Head
4 > * b
r A
! \
I |
| I
\ /
\ /
N\ 7
Fd » - b Y
/ \
] \
| |
| |
\]
\ F
\ 7
- - »>
Feature extraction Multi-resolution Generates final
feature agregation predictions

Figure 10: The architecture of modern object detectors can be described as the backbone, the neck, and the head. The
backbone, usually a convolutional neural network (CNN), extracts vital features from the image at different scales. The
neck refines these features, enhancing spatial and semantic information. Lastly, the head uses these refined features to
make object detection predictions.

mmm&mm VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT

|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | SCIENCE SCIENCE

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640

D.08242v1 [cs.CV] 25 Dec 2016

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

YOLO09000:
Better, Faster, Stronger

Joseph Redmon*!, Ali Farhadi*!

University of

http://p3j

Abstract

We introduce YOLO9000, a state-of-the-art, real-time
object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOV2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2

model can run at varying sizes, offering an easy tradeoff

between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
Jaster. Finally we propose a method to jointly train on ob-
Jject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don't have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

Operacni program Vyzkum, vyvoj a vzdélavani

shington®, Allen Institute for Al

yolo9000/

eddie.com/

K YOLOVZ2

The YOLO framework uses a custom network based on
the [Googlenet architecture|[19]. This network is faster than
VGG-16, only using 8.52 billion operations for a forward
pass. However, it’s accuracy is slightly worse than VGG-
16. For single-crop, top-3 accuracy at 224 x 224, YOLO's
custom model gets 88.0% ImageNet compared to 90.0% for
VGG-16.

Darknet-19. We propose a new classification model to
be used as the base of YOLOv2. Our model builds off of
prior work on network design as well as common knowl-
edge in the field. Similar to the VGG models we use mostly
3 x 3 filters and double the number of channels after ev-
ery pooling step [17]. Following the work on Network in
Network (NIN) we use global average pooling to make pre-
dictions as well as 1 x 1 filters to compress the feature rep-
resentation between 3 x 3 convolutions [Y]. We use batch
normalization to stabilize training, speed up convergence,
and regularize the model [7].

Detection Frameworks Train mAP FPS |
Fast R-CNN [5] 200742012 70.0 0.5
Faster R-CNN VGG-16[15] 2007+2012 73.2 7
Faster R-CNN ResNet[6] 2007+2012 764 5
YOLO [14] 200742012 63.4 45
SSD300 [11] 200742012 743 46
SSD500[11] 200742012 76.8 19
YOLOv2 288 x 288 200742012 69.0 91
YOLOV2 352 x 352 200742012 73.7 81
YOLOvV2 416 x 416 200742012 76.8 67
YOLOV2 480 x 480 200742012 77.8 59
YOLOV2 544 x 544 200742012 78.6 40

Table 3: Detection frameworks on PASCAL VOC 2007.
YOLOV2 is faster and more accurate than prior detection meth-
ods. It can also run at different resolutions for an easy tradeoff
between speed and accuracy. Each YOLOV2 entry is actually the
same trained model with the same weights, just evaluated at a dif-
ferent size. All timing information is on a Geforce GTX Titan X
(original, not Pascal model).

Batch Normalization. Batch normalization leads to sig-

nificant improvements in convergence while eliminating the
need for other forms of regularization [7]. By adding batch
normalization on all of the convolutional layers in YOLO
we get more than 2% improvement in mAP. Batch normal-
ization also helps regularize the model. With batch nor-
malization we can remove dropout from the model without

overfitting.

Multi-Scale Training. The original YOLO uses an input
resolution of 448 x 448. With the addition of anchor boxes
we changed the resolution to 416 x 416. However, since our
model only uses convolutional and pooling layers it can be
resized on the fly. We want YOLOvV2 to be robust to running
on images of different sizes so we train this into the model.

Instead of fixing the input image size we change the net-
work every few iterations. Every 10 batches our network
randomly chooses a new image dimension size. Since our
model downsamples by a factor of 32, we pull from the
following multiples of 32: {320,352, ...,608}. Thus the
smallest option is 320 x 320 and the largest is 608 x 608.
We resize the network to that dimension and continue train-

ing.
L

VSB TECHNICAL

| UNIVERSITY
OF OSTRAVA

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DEPARTMENT
OF COMPUTER
SCIENCE

https://arxiv.org/abs/1612.08242

D.08242v1 [cs.CV] 25 Dec 2016

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

YOLO09000:
Better, Faster, Stronger

Joseph Redmon*!, Ali Farhadi*!

University of
http://pjred

Abstract

We introduce YOLO9000, a state-of-the-art, real-time
object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOV2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2

model can run at varying sizes, offering an easy tradeoff

between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
Jaster. Finally we propose a method to jointly train on ob-
Jject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don't have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

Operacni program Vyzkum, vyvoj a vzdélavani

shington®, Allen Institute for Al
/y0109000/

die.com/

K YOLOvV2

The YOLO framework uses a custom network based on
the [Googlenet architecture|[19]. This network is faster than
VGG-16, only using 8.52 billion operations for a forward
pass. However, it’s accuracy is slightly worse than VGG-
16. For single-crop, top-3 accuracy at 224 x 224, YOLO's
custom model gets 88.0% ImageNet compared to 90.0% for
VGG-16.

| Darknet-19. |We propose a new classification model to
be used as the base of YOLOv2. Our model builds off of
prior work on network design as well as common knowl-
edge in the field. Similar to the VGG models we use mostly
3 x 3 filters and double the number of channels after ev-
ery pooling step [17]. Following the work on Network in
Network (NIN) we use global average pooling to make pre-
dictions as well as 1 x 1 filters to compress the feature rep-
resentation between 3 x 3 convolutions [Y]. We use batch
normalization to stabilize training, speed up convergence,
and regularize the model [7].

Detection Frameworks Train mAP FPS |
Fast R-CNN [5] 200742012 70.0 0.5
Faster R-CNN VGG-16[15] 2007+2012 73.2 7
Faster R-CNN ResNet[6] 2007+2012 764 5
YOLO [14] 200742012 63.4 45
SSD300 [11] 200742012 743 46
SSD500[11] 200742012 76.8 19
YOLOv2 288 x 288 200742012 69.0 91
YOLOv2 352 x 352 200742012 73.7 81
YOLOvV2 416 x 416 200742012 76.8 67
YOLOV2 480 x 480 200742012 77.8 59
YOLOV2 544 x 544 200742012 78.6 40

Table 3: Detection frameworks on PASCAL VOC 2007.
YOLOV2 is faster and more accurate than prior detection meth-
ods. It can also run at different resolutions for an easy tradeoff
between speed and accuracy. Each YOLOV2 entry is actually the
same trained model with the same weights, just evaluated at a dif-
ferent size. All timing information is on a Geforce GTX Titan X
(original, not Pascal model).

Batch Normalization. Batch normalization leads to sig-

nificant improvements in convergence while eliminating the
need for other forms of regularization [7]. By adding batch
normalization on all of the convolutional layers in YOLO
we get more than 2% improvement in mAP. Batch normal-
ization also helps regularize the model. With batch nor-
malization we can remove dropout from the model without

overfitting.

ing.
L

VSB TECHNICAL

| UNIVERSITY
OF OSTRAVA

Multi-Scale Training. The original YOLO uses an input
resolution of 448 x 448. With the addition of anchor boxes
we changed the resolution to 416 x 416. However, since our
model only uses convolutional and pooling layers it can be
resized on the fly. We want YOLOvV2 to be robust to running
on images of different sizes so we train this into the model.

Instead of fixing the input image size we change the net-
work every few iterations. Every 10 batches our network
randomly chooses a new image dimension size. Since our
model downsamples by a factor of 32, we pull from the
following multiples of 32: {320,352, ...,608}. Thus the
smallest option is 320 x 320 and the largest is 608 x 608.
We resize the network to that dimension and continue train-

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DEPARTMENT
OF COMPUTER
SCIENCE

https://arxiv.org/abs/1612.08242

D.08242v1 [cs.CV] 25 Dec 2016

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

YOLO09000:
Better, Faster, Stronger

Joseph Redmon*!, Ali Farhadi*!

University of
http://pjred

Abstract

We introduce YOLO9000, a state-of-the-art, real-time
object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOV2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2

model can run at varying sizes, offering an easy tradeoff

between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
Jaster. Finally we propose a method to jointly train on ob-
Jject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don't have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

Operacni program Vyzkum, vyvoj a vzdélavani

shington®, Allen Institute for Al
/y0109000/

die.com/

K YOLOvV2

The YOLO framework uses a custom network based on
the [Googlenet architecture|[19]. This network is faster than
VGG-16, only using 8.52 billion operations for a forward
pass. However, it’s accuracy is slightly worse than VGG-
16. For single-crop, top-3 accuracy at 224 x 224, YOLO's
custom model gets 88.0% ImageNet compared to 90.0% for
VGG-16.

| Darknet-19. |We propose a new classification model to

prior work on network design as well as common knowl-
edge in the field. Similar to the VGG models we use mostly
3 x 3 filters and double the number of channels after ev-
ery pooling step [17]. Following the work on Network in
Network (NIN) we use global average pooling to make pre-
dictions as well as[l x 1 filters [to compress the feature rep-
resentation between |3 x 3 Convolutions|[9]. ‘We use batch
normalization to stabilize training, speed up convergence,
and regularize the model [7].

be used as the base of YOLOv2. Our model builds off of

Batch Normalization. Batch normalization leads to sig-
nificant improvements in convergence while eliminating the
need for other forms of regularization [7]. By adding batch
normalization on all of the convolutional layers in YOLO
we get more than 2% improvement in mAP. Batch normal-
ization also helps regularize the model. With batch nor-
malization we can remove dropout from the model without
overfitting.

Multi-Scale Training. The original YOLO uses an input
resolution of 448 x 448. With the addition of anchor boxes
we changed the resolution to 416 x 416. However, since our
model only uses convolutional and pooling layers it can be
resized on the fly. We want YOLOvV2 to be robust to running
on images of different sizes so we train this into the model.

Instead of fixing the input image size we change the net-
work every few iterations. Every 10 batches our network
randomly chooses a new image dimension size. Since our
model downsamples by a factor of 32, we pull from the
following multiples of 32: {320,352, ...,608}. Thus the
smallest option is 320 x 320 and the largest is 608 x 608.

We resize the network to that dimension and continue train-
ing.

Detection Frameworks Train mAP FPS
Fast R-CNN [5] 200742012 70.0 0.5
Faster R-CNN VGG-16[15] 2007+2012 73.2 7
Faster R-CNN ResNet[6] 2007+2012 764 5
YOLO [14] 200742012 63.4 45
SSD300 [11] 200742012 743 46
SSD500[11] 200742012 76.8 19
YOLOv2 288 x 288 200742012 69.0 91
YOLOv2 352 x 352 200742012 73.7 81
YOLOvV2 416 x 416 200742012 76.8 67
YOLOV2 480 x 480 200742012 77.8 59
YOLOV2 544 x 544 200742012 78.6 40

Table 3: Detection frameworks on PASCAL VOC 2007.
YOLOV2 is faster and more accurate than prior detection meth-
ods. It can also run at different resolutions for an easy tradeoff
between speed and accuracy. Each YOLOV2 entry is actually the
same trained model with the same weights, just evaluated at a dif-
ferent size. All timing information is on a Geforce GTX Titan X
(original, not Pascal model).

VSB TECHNICAL

FACULTY OF ELECTRICAL
|”|‘ UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER

DEPARTMENT

OF OSTRAVA | SCIENCE SCIENCE

https://arxiv.org/abs/1612.08242

D.08242v1 [cs.CV] 25 Dec 2016

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

YOLO09000:
Better, Faster, Stronger

Joseph Redmon*!, Ali Farhadi*!

University of
http://pjred

Abstract

We introduce YOLO9000, a state-of-the-art, real-time
object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOV2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2

model can run at varying sizes, offering an easy tradeoff

between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
Jaster. Finally we propose a method to jointly train on ob-
Jject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don't have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

Operacni program Vyzkum, vyvoj a vzdélavani

shington®, Allen Institute for Al
/y0109000/

die.com/

K YOLOvV2

The YOLO framework uses a custom network based on
the [Googlenet architecture|[19]. This network is faster than
VGG-16, only using 8.52 billion operations for a forward
pass. However, it’s accuracy is slightly worse than VGG-
16. For single-crop, top-3 accuracy at 224 x 224, YOLO's
custom model gets 88.0% ImageNet compared to 90.0% for
VGG-16.

| Darknet-19. |We propose a new classification model to

prior work on network design as well as common knowl-
edge in the field. Similar to the VGG models we use mostly
3 x 3 filters and double the number of channels after ev-
ery pooling step [17]. Following the work on Network in
Network (NIN) we use global average pooling to make pre-
dictions as well as[l x 1 filters [to compress the feature rep-
resentation between |3 x 3 Convolutions|[9]. ‘We use batch
normalization to stabilize training, speed up convergence,
and regularize the model [7].

be used as the base of YOLOv2. Our model builds off of

| Batch Normalization. Batch normalization leads to sig-
nificant improvements in convergence while eliminating the
need for other forms of regularization [7]. By adding batch
normalization on all of the convolutional layers in YOLO
we get more than 2% improvement in mAP. Batch normal-
ization also helps regularize the model. With batch nor-
malization we can remove dropout from the model without
overfitting.

Multi-Scale Training. The original YOLO uses an input
resolution of 448 x 448. With the addition of anchor boxes
we changed the resolution to 416 x 416. However, since our
model only uses convolutional and pooling layers it can be
resized on the fly. We want YOLOvV2 to be robust to running
on images of different sizes so we train this into the model.

Instead of fixing the input image size we change the net-
work every few iterations. Every 10 batches our network
randomly chooses a new image dimension size. Since our
model downsamples by a factor of 32, we pull from the
following multiples of 32: {320,352, ...,608}. Thus the
smallest option is 320 x 320 and the largest is 608 x 608.

We resize the network to that dimension and continue train-
ing.

Detection Frameworks Train mAP FPS
Fast R-CNN [5] 200742012 70.0 0.5
Faster R-CNN VGG-16[15] 2007+2012 73.2 7
Faster R-CNN ResNet[6] 2007+2012 764 5
YOLO [14] 200742012 63.4 45
SSD300 [11] 200742012 743 46
SSD500[11] 200742012 76.8 19
YOLOv2 288 x 288 200742012 69.0 91
YOLOv2 352 x 352 200742012 73.7 81
YOLOvV2 416 x 416 200742012 76.8 67
YOLOV2 480 x 480 200742012 77.8 59
YOLOV2 544 x 544 200742012 78.6 40

Table 3: Detection frameworks on PASCAL VOC 2007.
YOLOV2 is faster and more accurate than prior detection meth-
ods. It can also run at different resolutions for an easy tradeoff
between speed and accuracy. Each YOLOV2 entry is actually the
same trained model with the same weights, just evaluated at a dif-
ferent size. All timing information is on a Geforce GTX Titan X
(original, not Pascal model).

VSB TECHNICAL

FACULTY OF ELECTRICAL
|”|‘ UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER

DEPARTMENT

OF OSTRAVA | SCIENCE SCIENCE

https://arxiv.org/abs/1612.08242

D.08242v1 [cs.CV] 25 Dec 2016

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

YOLO09000:
Better, Faster, Stronger

Joseph Redmon*!, Ali Farhadi*!

University of
http://pjred

Abstract

We introduce YOLO9000, a state-of-the-art, real-time
object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOV2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2

model can run at varying sizes, offering an easy tradeoff

between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
Jaster. Finally we propose a method to jointly train on ob-
Jject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don't have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

Operacni program Vyzkum, vyvoj a vzdélavani

shington®, Allen Institute for Al
/y0109000/

die.com/

K YOLOvV2

The YOLO framework uses a custom network based on
the [Googlenet architecture|[19]. This network is faster than
VGG-16, only using 8.52 billion operations for a forward
pass. However, it’s accuracy is slightly worse than VGG-
16. For single-crop, top-3 accuracy at 224 x 224, YOLO's
custom model gets 88.0% ImageNet compared to 90.0% for
VGG-16.

| Darknet-19. |We propose a new classification model to

prior work on network design as well as common knowl-
edge in the field. Similar to the VGG models we use mostly
3 x 3 filters and double the number of channels after ev-
ery pooling step [17]. Following the work on Network in
Network (NIN) we use global average pooling to make pre-
dictions as well as[l x 1 filters [to compress the feature rep-
resentation between |3 x 3 Convolutions|[9]. ‘We use batch
normalization to stabilize training, speed up convergence,
and regularize the model [7].

be used as the base of YOLOv2. Our model builds off of

| Batch Normalization. Batch normalization leads to sig-
nificant improvements in convergence while eliminating the
need for other forms of regularization [7]. By adding batch
normalization on all of the convolutional layers in YOLO
we get more than 2% improvement in mAP. Batch normal-
ization also helps regularize the model. With batch nor-
malization|we can remove dropout [from the model without
overfitting.

Multi-Scale Training. The original YOLO uses an input
resolution of 448 x 448. With the addition of anchor boxes
we changed the resolution to 416 x 416. However, since our
model only uses convolutional and pooling layers it can be
resized on the fly. We want YOLOvV2 to be robust to running
on images of different sizes so we train this into the model.

Instead of fixing the input image size we change the net-
work every few iterations. Every 10 batches our network
randomly chooses a new image dimension size. Since our
model downsamples by a factor of 32, we pull from the
following multiples of 32: {320,352, ...,608}. Thus the
smallest option is 320 x 320 and the largest is 608 x 608.

We resize the network to that dimension and continue train-
ing.

Detection Frameworks Train mAP FPS
Fast R-CNN [5] 200742012 70.0 0.5
Faster R-CNN VGG-16[15] 2007+2012 73.2 7
Faster R-CNN ResNet[6] 2007+2012 764 5
YOLO [14] 200742012 63.4 45
SSD300 [11] 200742012 743 46
SSD500[11] 200742012 76.8 19
YOLOv2 288 x 288 200742012 69.0 91
YOLOv2 352 x 352 200742012 73.7 81
YOLOvV2 416 x 416 200742012 76.8 67
YOLOV2 480 x 480 200742012 77.8 59
YOLOV2 544 x 544 200742012 78.6 40

Table 3: Detection frameworks on PASCAL VOC 2007.
YOLOV2 is faster and more accurate than prior detection meth-
ods. It can also run at different resolutions for an easy tradeoff
between speed and accuracy. Each YOLOV2 entry is actually the
same trained model with the same weights, just evaluated at a dif-
ferent size. All timing information is on a Geforce GTX Titan X
(original, not Pascal model).

VSB TECHNICAL

FACULTY OF ELECTRICAL
|”|‘ UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER

DEPARTMENT

OF OSTRAVA | SCIENCE SCIENCE

https://arxiv.org/abs/1612.08242

D.08242v1 [cs.CV] 25 Dec 2016

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

YOLO09000:
Better, Faster, Stronger

Joseph Redmon*!, Ali Farhadi*!

University of
http://pjred

Abstract

We introduce YOLO9000, a state-of-the-art, real-time
object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOV2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2

model can run at varying sizes, offering an easy tradeoff

between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
Jaster. Finally we propose a method to jointly train on ob-
Jject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don't have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

Operacni program Vyzkum, vyvoj a vzdélavani

shington®, Allen Institute for Al
/y0109000/

die.com/

K YOLOvV2

The YOLO framework uses a custom network based on
the [Googlenet architecture|[19]. This network is faster than
VGG-16, only using 8.52 billion operations for a forward
pass. However, it’s accuracy is slightly worse than VGG-
16. For single-crop, top-3 accuracy at 224 x 224, YOLO's
custom model gets 88.0% ImageNet compared to 90.0% for
VGG-16.

| Darknet-19. |We propose a new classification model to
be used as the base of YOLOv2. Our model builds off of
prior work on network design as well as common knowl-
edge in the field. Similar to the VGG models we use mostly
3 x 3 filters and double the number of channels after ev-
ery pooling step [17]. Following the work on Network in
Network (NIN) we use global average pooling to make pre-
dictions as well as[l x 1 filters [to compress the feature rep-
resentation between |3 x 3 Convolutions|[9]. ‘We use batch
normalization to stabilize training, speed up convergence,
and regularize the model [7].

| Batch Normalization. Batch normalization leads to sig-
nificant improvements in convergence while eliminating the
need for other forms of regularization [7]. By adding batch
normalization on all of the convolutional layers in YOLO
we get more than 2% improvement in mAP. Batch normal-
ization also helps regularize the model. With batch nor-
malization|we can remove dropout [from the model without
overfitting.

| Multi-Scale Training. |The original YOLO uses an input
resolution of 448 x 448. With the addition of anchor boxes
we changed the resolution to 416 x 416. However, since our
model only uses convolutional and pooling layers it can be
resized on the fly. We want YOLOvV2 to be robust to running
on images of different sizes so we train this into the model.

Instead of fixing the input image size we change the net-
work every few iterations. Every 10 batches our network
randomly chooses a new image dimension size. Since our
model downsamples by a factor of 32, we pull from the
following multiples of 32: {320,352, ...,608}. Thus the
smallest option is 320 x 320 and the largest is 608 x 608.

We resize the network to that dimension and continue train-
ing.

Detection Frameworks Train mAP FPS
Fast R-CNN [5] 200742012 70.0 0.5
Faster R-CNN VGG-16[15] 2007+2012 73.2 7
Faster R-CNN ResNet[6] 2007+2012 764 5
YOLO [14] 200742012 63.4 45
SSD300 [11] 200742012 743 46
SSD500[11] 200742012 76.8 19
YOLOv2 288 x 288 200742012 69.0 91
YOLOv2 352 x 352 200742012 73.7 81
YOLOvV2 416 x 416 200742012 76.8 67
YOLOV2 480 x 480 200742012 77.8 59
YOLOV2 544 x 544 200742012 78.6 40

Table 3: Detection frameworks on PASCAL VOC 2007.
YOLOV2 is faster and more accurate than prior detection meth-
ods. It can also run at different resolutions for an easy tradeoff
between speed and accuracy. Each YOLOV2 entry is actually the
same trained model with the same weights, just evaluated at a dif-
ferent size. All timing information is on a Geforce GTX Titan X
(original, not Pascal model).

VS8 TECHNICAL
Il H UNIVERSITY
1" oF 0sTRAVA

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DEPARTMENT
OF COMPUTER
SCIENCE

https://arxiv.org/abs/1612.08242

D.08242v1 [cs.CV] 25 Dec 2016

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

YOLO09000:
Better, Faster, Stronger

Joseph Redmon*!, Ali Farhadi*!
University of Washington®, Allen Institute for AI'

yolo9000/

http://p

Abstract

We introduce YOLO9000, a state-of-the-art, real-time
object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOV2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
Jaster. Finally we propose a method to jointly train on ob-
Jject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don't have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

Operacni program Vyzkum, vyvoj a vzdélavani

jreddie.com/

K YOLOVZ2

The YOLO framework uses a custom network based on
the [Googlenet architecture|[19]. This network is faster than
VGG-16, only using 8.52 billion operations for a forward
pass. However, it’s accuracy is slightly worse than VGG-
16. For single-crop, top-3 accuracy at 224 x 224, YOLO's
custom model gets 88.0% ImageNet compared to 90.0% for
VGG-16.

| Darknet-19. |We propose a new classification model to
be used as the base of YOLOv2. Our model builds off of
prior work on network design as well as common knowl-
edge in the field. Similar to the VGG models we use mostly
3 x 3 filters and double the number of channels after ev-
ery pooling step [17]. Following the work on Network in
Network (NIN) we use global average pooling to make pre-
dictions as well as[l x 1 filters [to compress the feature rep-
resentation between |3 x 3 Convolutions|[9]. ‘We use batch
normalization to stabilize training, speed up convergence,
and regularize the model [7].

Detection Frameworks Train mAP FPS |
Fast R-CNN [5] 200742012 700 05
Faster R-CNN VGG-16[15] 2007+2012 73.2 7
Faster R-CNN ResNet[6] 2007+2012 764 5
YOLO [14] 200742012 634 45
° 1 i SSD300 [11] 200742012 743 46
BatCh normallzatlon SSD500[11] 200742012 76.8 19
YOLOvV2 288 x 288 2007+2012 69.0 91
* Darknet-19 backbone YOLOV2 352 x 352 200742012 737 8l
YOLOv2 416 x 416 2007+2012 76.8 67
i An Cho r boxes YOLOV2 480 x 480 200742012 77.8 59
. .. YOLOV2 544 x 544 200742012 78.6 40
* Multiscale training
. . Table 3: Detection frameworks on PASCAL VOC 2007.
i Fl n n e r-g ra |n ed featu res YOLOV2 is faster and more accurate than prior detection meth-
ods. It can also run at different resolutions for an easy tradeoff
between speed and accuracy. Each YOLOV2 entry is actually the
same trained model with the same weights, just evaluated at a dif-
ferent size. All timing information is on a Geforce GTX Titan X
. . (original, not Pascal model).
https://arxiv.org/abs/1612.08242

| Batch Normalization. Batch normalization leads to sig-
nificant improvements in convergence while eliminating the
need for other forms of regularization [7]. By adding batch
normalization on all of the convolutional layers in YOLO
we get more than 2% improvement in mAP. Batch normal-
ization also helps regularize the model. With batch nor-
malization|we can remove dropout [from the model without
overfitting.

| Multi-Scale Training. |The original YOLO uses an input
resolution of 448 x 448. With the addition of anchor boxes
we changed the resolution to 416 x 416. However, since our
model only uses convolutional and pooling layers it can be
resized on the fly. We want YOLOvV2 to be robust to running
on images of different sizes so we train this into the model.
Instead of fixing the input image size we change the net-
work every few iterations. Every 10 batches our network
randomly chooses a new image dimension size. Since our
model downsamples by a factor of 32, we pull from the
following multiples of 32: {320,352, ...,608}. Thus the
smallest option is 320 x 320 and the largest is 608 x 608.
We resize the network to that dimension and continue train-
ing.

VSB TECHNICAL

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DEPARTMENT
OF COMPUTER

” H UNIVERSITY
I SCIENCE

OF OSTRAVA

https://arxiv.org/abs/1612.08242

.08242v1 [cs.CV] 25 Dec 2016

AN £\ROPSKA UNIE P}<§?
* * Evropské strukturalni a investicni fondy 'r V
¥* o R Operacni program Vyzkum, vyvoj a vzdélavani MINISTERST KOLSTY

YOLO09000:
Better, Faster, Stronger

Joseph Redmon*!, Ali Farhadi*!

University of Washington®, Allen Institute for AI'

Abstract

We introduce YOLO9000, a state-of-the-art, real-time
object detection system that can detect over 9000 object
categories. First we propose various improvements to the
YOLO detection method, both novel and drawn from prior
work. The improved model, YOLOV2, is state-of-the-art on
standard detection tasks like PASCAL VOC and COCO. Us-
ing a novel, multi-scale training method the same YOLOv2
model can run at varying sizes, offering an easy tradeoff
between speed and accuracy. At 67 FPS, YOLOv2 gets
76.8 mAP on VOC 2007. At 40 FPS, YOLOv2 gets 78.6
mAP, outperforming state-of-the-art methods like Faster R-
CNN with ResNet and SSD while still running significantly
Jaster. Finally we propose a method to jointly train on ob-
Jject detection and classification. Using this method we train
YOLO9000 simultaneously on the COCO detection dataset
and the ImageNet classification dataset. Our joint training
allows YOLO9000 to predict detections for object classes
that don't have labelled detection data. We validate our
approach on the ImageNet detection task. YOLO9000 gets
19.7 mAP on the ImageNet detection validation set despite
only having detection data for 44 of the 200 classes. On the
156 classes not in COCO, YOLO9000 gets 16.0 mAP. But
YOLO can detect more than just 200 classes; it predicts de-
tections for more than 9000 different object categories. And
it still runs in real-time.

Batch normalization
Darknet-19 backbone
Anchor boxes
Multiscale training
Finner-grained features

We remove the fully connected layers from YOLO and
use [anchor boxes|to predict bounding boxes. First we
eliminate one pooling layer to make the output of the net-
work’s convolutional layers higher resolution. We also
shrink the network to operate on 416 input images instead
of 448 x 448. We do this because we want an odd number of
locations in our feature map so there is a single center cell.
Objects, especially large objects, tend to occupy the center
of the image so it’s good to have a single location right at
the center to predict these objects instead of four locations
that are all nearby. YOLO’s convolutional layers downsam-
ple the image by a factor of 32 so by using an input image

of 416 we Eet an outEut feature map of 13 x 13.

Avg IOU

123456 7 8 9101112 13 14 15 |'
Clusters

Figure 2: Clustering box dimensions on VOC and COCO. We
run k-means clustering on the dimensions of bounding boxes to get
good priors for our model. The left image shows the average IOU
we get with various choices for k. We find that k = 5 gives a good
tradeoff for recall vs. complexity of the model. The right image
shows the relative centroids for VOC and COCO. Both sets of pri-
ors favor thinner, taller boxes while COCO has greater variation in
size than VOC.

VsB

TECHNICAL FACULTY OF ELECTRICAL

UNIVERSITY | ENGINE

OF OSTRAVA | SCT

ERING AND COMPUTER | O

https://arxiv.org/abs/1612.08242

AN £\ROPSKA UNIE |\’<§
* * Evropské strukturalni a investicni fondy 'r

¥ ¥ % Operacni program Vyzkum, vyvoj a vzdélavani

YOLOv3: An Incremental Improvement

Joseph Redmon Ali Farhadi
University of Washington

Abstract

g

BEEREREEIRER
2BNESAIERAEY

H
g

- YOLOvV3

2.4. Feature Extractor

We use a new network for performing feature extraction.
Our new network is a hybrid approach between the network
used in YOLOV2,[Darknet-19,/and that newfangled residual
network stuff. Our network uses successive 3 x 3and 1 x 1
convolutional layers but now has some shortcut connections
as well and is significantly larger. It has 53 convolutional
layers so we call it.... wait for it.....|Darknet-53!|

2.3. Predictions Across Scales

YOLOV3 predicts boxes at 3 different scales. Our sys-
tem extracts features from those scales using a similar con-
cept to feature pyramid networks [8]. From our base fea-
ture extractor we add several convolutional layers. The last
of these predicts a 3-d tensor encoding bounding box, ob-
jectness, and class predictions. In our experiments with
COCO [10] we predict 3 boxes at each scale so the tensor is
N x N x [3%(4+ 1+ 80)] for the 4 bounding box offsets,
1 objectness prediction, and 80 class predictions.

VSB TECHNICAL FACULTY OF ELECTRICAL
|| ” UNIVERSITY | ENGINE
‘ OF OSTRAVA | SCT

ERING AND COMPUTER | O

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2304.00501

sl EVROPSKA UNIE

* * Evropské strukturalni a investicni fondy V

bl Operacni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTV

/ / V/

s) ' s i i -

4 7 Predicting scale 2
Up-sample
®

Concatenation

Predicting scale 3

Fig. 2. The framework of YOLOvV3 neural network for ship detection.

https://arxiv.org/abs/1804.02767 X. Nie, M. Yang and R. W. Liu, "Deep Neural Network-Based Robust Ship Detection Under Different Weather Conditions," 2019 IEEE
https://arxiv.org/abs/2304.00501 Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 2019, pp. 47-52, doi: 10.1109/ITSC.2019.8917475.

2.3. Predictions Across Scales

[YOLOV3 predicts boxes at 3 different scales.| Our sys-
tem extracts features from those scales using a similar con-
cept to feature pyramid networks [¢]. From our base fea-
ture extractor we add several convolutional layers. The last
of these predicts a 3-d tensor encoding bounding box, ob-
jectness, and class predictions. In our experiments with
COCO [10] we predict 3 boxes at each scale so the tensor is
N x N x [3%(4+ 1+ 80)] for the 4 bounding box offsets,
1 objectness prediction, and 80 class predictions.

Type Filters Size Qutput
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128x 128
Convolutional 32 1x1

1x| Convolutional 64 3x3

Residual 128 x 128
Convolutional 128 3x3/2 64 x64
Convolutional 64 1x1

2x| Convolutional 128 3x3

Residual 64 x 64
Convolutional 256 3x3/2 32x32
Convolutional 128 1 x 1

8x| Convolutional 256 3x3

Residual 32 x 32
Convolutional 512 3x3/2 16x 16
Convolutional 256 1 x 1

8x| Convolutional 512 3x3

Residual 16 x 16
Convolutional 1024 3x3/2 8x8
Convolutional 512 1 x1

4x| Convolutional 1024 3 x 3

Residual 8x8
Avgpool Global
Connected 1000

Softmax

Table 1. Darknet-53.

DEPARTMENT
II || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | SCTENCE SCIENCE

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2304.00501

* X EVROPSKA UNIE
Evropské strukturalni a investicni fondy
¥* o o Operacni program Vyzkum, vyvoj a vzdélavani

. YOLOvV3

2.4. Feature Extractor 2.3. Predictions Across Scales

| YOLOV3 predicts boxes at 3 different scales.| Our sys-
tem extracts features from those scales using a similar con-
cept t0|feature pyramid networks [].| From our base fea-
ture extractor we add several convolutional layers. The last

YOLOv3: An Incremental Improvement

We use a new network for performing feature extraction.
Our new network is a hybrid approach between the network

Joseph Redmon Ali Farhadi

University of Washington

I|‘|1

UNIVERSITY
OF OSTRAVA | SCTENCE

Abstract - e BER used in YOLOv2,|Darknet-19.|and that newfangled residual
We present some updates to }fr),'_f:;; rwc‘ ;:fuftarn,:::::a 8 A e .; . . _ . . _
LESSMELUTANSY o 0 g network stuff. Our network uses successive 3 x 3 and 1 x 1 of these Preg“:tls a3d gfns,or enc‘l)dmg bounding box, Cfbh
wors 40350 x 32 TOLOy .. = . . ectness, and class predictions. In our experiments wit
Bl g g f CO convolutional layers but now has some shortcut connections y ’ P p .
ot 1 et 123 AP 51 i T X com. K3 B : 11 and is sienifi Iv 1 Ith luti 1 00 [10] we preclct J bowes at each scale 30 the tensor is
g S as well and is significantly larger. It has 53 convolutiona N x N x [3% (4 +1+80)] for the 4 bounding box offsets,
layel'S SO WE Call it.... wait fOl‘ 1t..... |Darknet‘53! | 1 ObjCCtHCSS prediction, and 80 class predictionS.
Type Filters Size Output
Convolutional 32 3x3 256 x 256
Convolutional 64 3x3/2 128 x 128
Convolutional 32 1x1
1x| Convolutional 64 3x3
backbone AP AP50 AP7:, APS APA.; APL, | Hes@ual 128 X 128
Two-stage methods Convolutional 128 3x3/2 64 x64
Faster R-CNN+++ [5] ResNet-101-C4 349 557 374 | 156 387 509 Convolutional 64 1 x 1
Faster R-CNN w FPN [£] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2 2% | Convolutional 128 3 x3
e Darknet-53 Faster R-CNN by G-RMI [6] | Inception-ResNetv2[21] | 347 555 367 | 135 381 520 HFesiauar | 64 % 64
Faster R-CNN w TDM [20] | Inception-ResNet-v2-TDM | 36.8 57.7 39.2 16.2 39.8 52.1 Convolutional 256 3x3/2 32x32
° H One-stage methods :
ReSId u al b IOCkS YOLOv2 [15] DarkNet-19 [15] 216 440 192 | 50 224 355 A gonvo:u?ona: ;gg ; x ;
. SSD513[11, 3] ResNet-101-SSD 312 504 333 | 102 345 498 & | onvorutiona x
e 3 different scales DSSDS13 [3] ResNet-101-DSSD 332 533 352 | 130 354 511 Residual 32 x 32
. RetinaNet [V] ResNet-101-FPN 39.1 59.1 423 21.8 427 50.2 COFIVO|LIT!DFI&| 512 3x3/2 16x16
e Feature pyra mid net. RetinaNet [9] ResNeXt-101-FPN 408 6L1 441 | 241 442 512 Convolutional 256 1 x 1
YOLOv3 608 x 608 Darknet-53 33.0 57.9 34.4 18.3 354 41.9 BX‘ Convolutional 512 3x3
Table 3. I'm seriously just stealing all these tables from [9] they take soooo long to make from scratch. Ok, YOLOV3 is doing alright. Residual] 16 x 16
Keep in mind that RetinaNet has like 3.8 longer to process an image. YOLOv3 is much better than SSD variants and comparable to Convolut!onal 1024 3x3/2 8x8
state-of-the-art models on the APso metric. , gonvo:u?ona: 15;;4 ; x ;
x| Convolutiona x
[Hesidual | 8x8
Avgpool Global
Connected 1000
Softmax
https://arxiv.org/abs/1804.02767 Table 1. Darknet-53.
mmmmmm VSB TECHNICAL FACULTY OF ELECTRICAL

D
ENGINEERING AND COMPUTER | O

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2304.00501

sl EVROPSKA UNIE
* * Evropské strukturalni a investicni fondy
bl Operacni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTV

*

Anchor Box 1

Hetsteietsletetetots :
i AnchorBoxdl_. Grid cell Grid cellGrid cell
B safans
fli . B AvhorBox2 < |Grid cellGrid cell (Grid cel
« YOLOv1 B S N
L RLRERRRRLE Ha Grid cell Grid cell |Grid cell
e 98 boxes ;

» 7x7 cells, 2 boxes per cell

* YOLOV2
* 845 boxes
* 13x13 cells, 5 anchor boxes

parameters

nc: 80 # number of classes
depth multiple: 0.33 # model depth multiple

1
2
=
* YOLOv3 :
* 10647 boxes Z
?
8
9

width multiple: ©.50 # layer channel multiple

anchors

anchors:
- [116,90, 156,198, 373,326] # P5/32
- [30,61, 62,45, 59,119] # P4/16

16 - [10,13, 16,30, 33,23] # P3/8

* 13x13, 26x26, 52x52 cells, 3 anchor boxes

12| # YOLOvS5 backbone

YOLOv5 anchor box configuration

hmmmmmmm VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT

|| H UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | SCIENCE SCIENCE

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2304.00501
https://blog.roboflow.com/what-is-an-anchor-box/
https://community.ultralytics.com/t/anchor-boxes-interpretation/146/5

EVROPSKA UNIE

Evropské strukturalni a investicni fondy Wr Y O I OV 5
Operacni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTV

https://github.com/ultralytics/yolov5/issues/280

https://docs.ultralytics.com/yolov5/tutorials/architecture description/#1-model-structure

https://github.com/ultralytics/yolov5/issues/6998

0 Focus
¥

1 Conv
+

2 C3
{

3 Conv
i

4 C3

5 Conv
{

6 C3
¥

7 Conv
{

8 SPP
|

9 C3

backbone

18
17

15
14

13

1

—_

YOLOvS employs various data augmentation techniques to improve the model's ability to generalize and
reduce overfitting. These techniques include:

« Mosaic Augmentation: An image processing technique that combines four training images into one
in ways that encourage object detection models to better handle various object scales and
translations.

Cony —
t

C3 { Convzad

t

Concat
t
Upsample
t
Conv —+19Concat
t i
c3 20 C3 { Conv2d
t ¥
Concat 21 Conv
t
Upsample

Conv —22Concat ~23 C3

head

https://github.com/ultralytics/yolov5/issues/280#issuecomment-1000948444

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2304.00501

VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| H UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
‘ OF OSTRAVA | SCIENCE SCIENCE

https://arxiv.org/abs/1804.02767
https://arxiv.org/abs/2304.00501
https://github.com/ultralytics/yolov5/issues/280
https://docs.ultralytics.com/yolov5/tutorials/architecture_description/
https://github.com/ultralytics/yolov5/issues/6998
https://github.com/ultralytics/yolov5/issues/280

EVROPSKA UNIE
Evropské strukturalni a investicni fondy I

Operacni program Vyzkum, vyvoj a vzdélavani

Table 4: Summary of YOLO architectures. The metric reported for YOLO and YOLOvV2 were on VOC2007, while the
rest are reported on COCO2017. The NAS-YOLO model reported has 16-bit precision.

Version Date Anchor Framework Backbone AP (%)
YOLO 2015 No Darknet Darknet24 63.4
YOLOv2 2016 Yes Darknet Darknet24 63.4
YOLOV3 2018 Yes Darknet Darknet53 36.2
YOLOv4 2020 Yes Darknet CSPDarknet53 43.5
YOLOvVS 2020 Yes Pytorch YOLOvS5CSPDarknet 55.8
PP-YOLO 2020 Yes PaddlePaddle ResNet50-vd 45.9
Scaled-YOLOv4 2021 Yes Pytorch CSPDarknet 56.0
PP-YOLOvV2 2021 Yes PaddlePaddle ResNetl01-vd 50.3
YOLOR 2021 Yes Pytorch CSPDarknet 5.4
YOLOX 2021 No Pytorch YOLOXCSPDarknet 51.2
PP-YOLOE 2022 No PaddlePaddle = CSPRepResNet 4.7
YOLOv6 2022 No Pytorch EfficientRep D2.5
YOLOv7 2022 No Pytorch YOLOv7Backbone 56.8
DAMO-YOLO 2022 No Pytorch MAE-NAS 50.0
YOLOVS 2023 No Pytorch YOLOvBCSPDarknet 53.9
YOLO-NAS 2023 No Pytorch NAS H2.2

https://arxiv.org/abs/2304.00501

https://arxiv.org/abs/2305.17786

VSB TECHNICAL | F#

https://arxiv.org/abs/2304.00501
https://arxiv.org/abs/2305.17786
https://arxiv.org/abs/1506.02640

EVROPSKA UNIE = . .
e KON SSD: Single Shot MultiBox Detector

Wei Liu!, Dragomir Anguelov?, Dumitru Erhan?, Christian Szegedy?,
Scott Reed?, Cheng-Yang Fu', Alexander C. Berg!

'UNC Chapel Hill *Zoox Inc. *Google Inc. *University of Michigan, Ann-Arbor
'wliu@ecs.unc.edu, erago@zoox .com, 3{dumitru, szegedy}@google .com,
‘reedscot@umich.edu, '{cyfu,aberg}@cs.unc.edu

— We introduce SSD, a single-shot detector for multiple categories that 1s faster than
the previous state-of-the-art for single shot detectors (YOLO), and significantly
more accurate, in fact as accurate as slower techniques that perform explicit region
proposals and pooling (including Faster R-CNN).

— The core of SSD is predicting category scores and box offsets for a fixed set of
default bounding boxes using small convolutional filters applied to feature maps.

— To achieve high detection accuracy we produce predictions of different scales from
feature maps of different scales, and explicitly separate predictions by aspect ratio.

— These design features lead to simple end-to-end training and high accuracy, even
on low resolution input images, further improving the speed vs accuracy trade-off.

— Experiments include timing and accuracy analysis on models with varying input
size evaluated on PASCAL VOC, COCO, and ILSVRC and are compared to a
range of recent state-of-the-art approaches.

https://arxiv.org/abs/1512.02325 usa reomcaL

UN
Lt

https://arxiv.org/abs/1512.02325

EVROPSKA UNIE
Evropské strukturalni a investicni fondy

LG

Operacni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTV

SSD

Extra Feature Layers

VGG-16 f A \

- through Convs _3 layer Classifier : Conv: 3x3x(4x(Classes+4)) m
AN w - =
N N Classifier : Conv: 3x3x(6x(Classes+4)) E g
N \ 1B |48

IR S A e
T | O {8 |&
0 ' [| < s

g | : s : “ “ e |:> W [74.3mAP
= P~
Bl mee [[1] |) o E| 59FPS
I : Comvd_3 I FFEEI;? fF‘E‘_;':I? 5 Conv: 3x3x(4x(Classes+4)) | £ E
300 lr [| ConvE_2 Gom.2 : * % c%
h I 38 ' 5 L =
\\ : I 19 19 10 Conp10_2 Comv11_2 E =
(=]
|3 Mo | 3 Q‘ =
NN s | 1024 1024 512 256 256
Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128
Conv: 3x3x512-s2 Conv: 3x3x256-52 Conv: 3x3x256-31 Conv: 3x3x256-51
70

https://arxiv.org/abs/1512.02325

DEPARTMENT
OF COMPUTER
SCIENCE

VS8 TECHNICAL
Il H UNIVERSITY
1" oF 0sTRAVA

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

https://arxiv.org/abs/1512.02325

EVROPSKA UNIE '\’<§
Evropské strukturalni a investicni fondy 'r
Operacni program Vyzkum, vyvoj a vzdélavani MINISTERST KOLSTV

k anchor boxes

1~
'_'_:_____'_:_—:
Bl =1 | | = = |
44—, | |: : : I: :
N R L L =
||||_J||| | |_ L - - L !
= =la. Rl e Lol o o B
FUBRIP] B j Y
l||l_|||| |
2 (ZEZ|E ' -
L= loc : A(cz, cy,w, h)
conf t (c1,€¢2,°] Cp)

(a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map

Fig. 1: SSD framework. (a) SSD only needs an input image and ground truth boxes for
each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4)
of default boxes of different aspect ratios at each location in several feature maps with
different scales (e.g. 8 x 8 and 4 x 4 in (b) and (c)). For each default box, we predict
both the shape offsets and the confidences for all object categories ((c1,c2,- - ,cp)).
At training time, we first match these default boxes to the ground truth boxes. For
example, we have matched two default boxes with the cat and one with the dog, which
are treated as positives and the rest as negatives. The model loss is a weighted sum
between localization loss (e.g. Smooth L1 [6]) and confidence loss (e.g. Softmax).

[]
L
.
L

https://arxiv.org/abs/1512.02325 |41 c. 1/arwiv.ore/abs/1506.01497

https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1506.01497

EVROPSKA UNIE V\Kﬁ
Evropské strukturalni a investi¢ni fondy]
Operacni program Vyzkum, vyvoj a vzdélavani A Y

k anchor boxes

Face

Pedestrian)

C an illustration of default boxes, please refer to Fig. 1. Our default boxes are similar to
ar the anchor boxes used in Faster R-CNN [2], however we apply them to several feature

maps of different resolutions. Allowing different default box shapes in several feature
maps let us efficiently discretize the space of possible output box shapes.

Sizes can be obtained from dataset

https://arxiv.org/abs/1506.01497 72
htt DS://arXiV.O rg/a bS/l 512.02325 VS8 TECHNICAL | FACULTY OF ‘_LL::I\ :J(‘:/‘:. ‘

‘l ” UNIVERSITY ENGI
" oF osTRAVA | sc1E

SCIENCE

https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1506.01497

sl EVROPSKA UNIE
* * Evropské strukturalni a investicni fondy
L A R Operacni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO 8KOLSTV

Extra Feature Layers
VGG-16 r A 1

<= _through Conv5_3 I_E‘EF';" Classifier : Conv: 3x3x(4x(Classes+4)) m

N < " <
RN N Classifier : Conv: 3x3x(6x(Classes+4)) @ e,
| *, " _ E w
LN A 19 4
— e o —— — —_———— —_
. : | | \ -+ & o
| I o -

% I : 38 : 19 19 o™ |:> 0 |74.3mAP

= I

Bl e | |) © E| 59FPS
I I Convd_3 | | Comé Comd? = Conv: 3x3x(4x(Classes+4)) | & £
| | | | e {Fen) Convg 2 o =
300 | I I Conve_2 - alb-] ©
\ [a5 | b =
N : : 19 19 10 = Conp10_2 Comv11_2 E =
o
E AN | ? PN =

S 52| 1024 1024 51z 266 256 E
Conv: 3x3x1024 Conv: 1x1x1024 Conv: 1x1x256 Conv: 1x1x128 Conv: 1x1x128 Conv: 1x1x128
Conv: 3x3x512-82 Conv: 3x3x256-52 Conv: 3x3x256-81 Conv: 3x3x256-51
cnn layers make predictions, each with different anchor boxes
73

DEPARTMENT
OF COMPUTER
SCIENCE

htt DS://arXiV.O rg/a b5/1512.023 25 VSB TECHNICAL FACULTY OF ELECTRICAL
UNIVERSITY | ENGINEERING AND COMPUTER

I”l‘ OF OSTRAVA | SCIENCE

https://arxiv.org/abs/1512.02325

s, XN SSD
Method mAP | FPS | batch size | # Boxes | Input resolution
Faster R-CNN (VGGI16) | 73.2 7 | ~ 6000 | ~ 1000 x 600
Fast YOLO 52.7 | 155 1 98 448 x 448
YOLO (VGG16) 66.4 | 21 1 98 448 x 448
SSD300 74.3 | 46 | 8732 300 x 300
SSD512 76.8 | 19 1 24564 512 x 512
SSD300 74.3 | 59 8 8732 300 x 300
SSD512 76.8 | 22 8 24564 512 x 512

Table 7: Results on Pascal VOC2007 test. SSD300 is the only real-time detection
method that can achieve above 70% mAP. By using a larger input image, SSD512 out-
performs all methods on accuracy while maintaining a close to real-time speed.

https://arxiv.org/abs/1512.02325

74

VSB TECHNICAL | FACU CTRIC! PA
| |‘ UNIVERSITY NGINEERING AND COM TER | OF COMPU
1" oF osTRAVA

https://arxiv.org/abs/1512.02325

Watidt o EVROPSKA UNIE
Evropské strukturalni a investicni fondy
Operacni program Vyzkum, vyvoj a vzdélavani

htt DS://arXiV.O rE./a bS/l 512.02325 VSB TECHNICAL | FACULTY OF ELECTRICA

” ” UNIVERSITY | ENGINEERING A
‘ OF OSTRAVA | SCTE

DEPARTMENT
OF COMPUTER
SCIENCE

https://arxiv.org/abs/1512.02325

AN £\/ROPSKA UNIE V\’<§
* * Evropské strukturalni a investicni fondy 'r
X ~ 3 Operacni program Vyzkum, vyvoj a vzdélavani MINISTERS STy

Docs > Models and pre-trained weights

Here is an example of how to use the pre-trained object detection models:

from torchvision.io.image import read_image
from torchvision.models.detection import fasterrcnn_resnet50_fpn_v2,
FasterRCNN_ResNet50_FPN_V2_Weights

from torchvision.utils import draw_bounding_boxes The classes of the pre-trained model outputs can be found at weights.meta["categories"]. For details on

from torchvision.transforms.functional import to_pil_image how to plot the bounding boxes of the models, you may refer to Instance segmentation models.

img = read_image("test/assets/encode_jpeg/grace_hopper_517x606.]jpg") Table of all available Object detection weights

Step 1: Initialize model with the best available weights Box MAPs are reported on COCO val2017:

weights = FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT

model = fasterrcnn_resnet50_fpn_v2(weights=weights, box_score_thresh=0.9) Weight Box MAP Params Recipe

model.eval() FCOS_ResNet50_FPN_Weights.COCO_V1 39.2 32.3M link

Step 2: Initialize the inference transforms FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.COCO_V1 22.8 19.4M link

preprocess = weights.transforms() FasterRCNN_MobileNet_V3_Large_FPN_Weights.COCO_V1 328 19.4M link
FasterRCNN_ResNet50_FPN_V2_Weights.COCO_V1 46.7 43.7M link

Step 3: Apply inference preprocessing transforms

. FasterRCNN_ResNet50_FPN_Weights.COCO_V1 37 41.8M link
batch = [preprocess(img)]
RetinaNet_ResNet50_FPN_V2_Weights.COCO_V1 41.5 38.2M link
Step 4: Use the model and visualize the prediction RetinaNet_ResNet56_FPN_Weights.COCO_V1 36.4 34.0M link
prediction = model(batch)[0]) SSD300_VGG16_lleights.COCO_V1 25.1 35.6M link
labels = [weights.meta["categories"][i] for i in prediction["lahels"]]))) i
. . q q o n SSDLite320_MobileNet_V3_Large_Weights.COCO_V1 21.3 3.4M link
box = draw_bounding_boxes(img, boxes=prediction["boxes"],
labels=1labels,
colors="red",
width=4, font_size=30)
im = to_pil_image(box.detach())
im.show()
76

VSB TECHNICAL FACULTY OF ELECTRICAL

https://pytorch.org/vision/stable/models.html#object-detection-instance-segmentation-and-person-keypoint-detection Il UHSVERSTTY | ENGIVCERENG AND COMPUTER | oF ¢

https://pytorch.org/vision/stable/models.html

R EVROPSKA UNIE

* Evropské strukturalni a investicni fondy Wr

Operacni program Vyzkum, vyvoj a vzdélavani MINISTERST

Feature Pyramid Networks for Object Detection

Tsung-Yi Lin'2, Piotr Dollar!, Ross Girshick!,
Kaiming He', Bharath Hariharan', and Serge Belongie?

'Facebook AI Research (FAIR)
2Cornell University and Cornell Tech

The goal of this paper is to naturally leverage the pyra-
midal shape of a ConvNet’s feature hierarchy while cre-
ating a feature pyramid that has strong semantics at all
scales. To achieve this goal, we rely on an architecture that
combines low-resolution, semantically strong features with
high-resolution, semantically weak features via a top-down
pathway and lateral connections (Fig. 1(d)). The result is
a feature pyramid that has rich semantics at all levels and
is built quickly from a single input image scale. In other
words, we show how to create in-network feature pyramids
that can be used to replace featurized image pyramids with-
out sacrificing representational power, speed, or memory.

4. Applications

Our method is a generic solution for building feature
pyramids inside deep ConvNets. In the following we adopt
our method in RPN [29] for bounding box proposal gen-
eration and in Fast R-CNN [11] for object detection. To
demonstrate the simplicity and effectiveness of our method,
we make minimal modifications to the original systems of
[29, 11] when adapting them to our feature pyramid.

FPN/RETINA NET

predict

)

(c) Pyramidal feature hierarchy (d) Feature Pyramid Network

Figure 1. (a) Using an image pyramid to build a feature pyramid.
Features are computed on each of the image scales independently,
which is slow. (b) Recent detection systems have opted to use
only single scale features for faster detection. (c) An alternative is
to reuse the pyramidal feature hierarchy computed by a ConvNet
as if it were a featurized image pyramid. (d) Our proposed Feature
Pyramid Network (FPN) is fast like (b) and (c), but more accurate.
In this figure, feature maps are indicate by blue outlines and thicker
outlines denote semantically stronger features.

VsB

TECHNICAL
UNIVERSITY
OF OSTRAVA

77

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER
SCIENCE

DEPARTMENT
OF COMPUTER
SCIENCE

https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1612.03144

sl EVROPSKA UNIE
* * Evropské strukturalni a investicni fondy

Operacni program Vyzkum, vyvoj a vzdélavani MINISTERSTVO SKOLSTV

FPN/RETINA NET

Focal Loss for Dense Object Detection backbone AP APso APrs | APs APy APL
Two-stage methods
ey Faster R-CNN+++ [16] ResNet-101-C4 349 55.7 374 15.6 38.7 50.9
Tsung-YiLin Priya Goyal Ross Girshick Kaiming He Piotr Dollar Faster R-CNN w FPN [20] ResNet-101-FPN 362 591 390 | 182 390 482
Facebook AI Research (FAIR) Faster R-CNN by G-RMI [17] | Inception-ResNet-v2 [34] 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w TDM [32] | Inception-ResNet-v2-TDM | 36.8 577 392 | 162 398 521
One-stage methods
YOLOV2 [27] DarkNet-19 [27] 21,6 440 192 | 50 224 355
SSD513 22, 9] ResNet-101-SSD 312 504 333 | 102 345 498
DSSD513 [9] ResNet-101-DSSD 332 533 352 | 130 354 511
RetinaNet (ours) ResNet-101-FPN 39.1 591 423 | 218 427 502
RetinaNet (ours) ResNeXt-101-FPN 408 611 441 | 241 442 512
R’ T B | i
class+box s |
* subnets 0 class) . |
L7 I subnet W [
‘ WxH J___ > WxH L 5 X '
class +box | x256 | 3a7| x256 KA | |
S / / / |
N I |
class+box | * | L J J [
> subnets " ! k g !
Vo WxH WxH »|| WxH |
\\\ box w256 | %8| xas6 | x4A | |
Y : subnet :
AN |
. 1 ! I
N - __a
(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)
Figure 3. The one-stage RetinaNet network architecture uses a Feature Pyramid Network (FPN) [20] backbone on top of a feedforward
ResNet architecture [16] (a) to generate a rich, multi-scale convolutional feature pyramid (b). To this backbone RetinaNet attaches two
subnetworks, one for classifying anchor boxes (c¢) and one for regressing from anchor boxes to ground-truth object boxes (d). The network
design is intentionally simple, which enables this work to focus on a novel focal loss function that eliminates the accuracy gap between our
one-stage detector and state-of-the-art two-stage detectors like Faster R-CNN with FPN [20] while running at faster speeds.
78

VSB TECHNICAL
|”|‘ UNIVERSITY

OF OSTRAVA | SCIENCE

FACULTY OF ELECTRICAL
ENGINEERING AND COMPUTER

DEPARTMENT
OF COMPUTER
SCIENCE

https://arxiv.org/abs/1708.02002
https://arxiv.org/abs/1612.03144

	Snímek 1: Image Analysis ll Object Detection – RCNN/YOLO/SSD
	Snímek 2
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30
	Snímek 32
	Snímek 33
	Snímek 34
	Snímek 35
	Snímek 36
	Snímek 37
	Snímek 38
	Snímek 39
	Snímek 40
	Snímek 41
	Snímek 42
	Snímek 45
	Snímek 47
	Snímek 48
	Snímek 49
	Snímek 50
	Snímek 51
	Snímek 52
	Snímek 53
	Snímek 54
	Snímek 55
	Snímek 56
	Snímek 57
	Snímek 58
	Snímek 59
	Snímek 60
	Snímek 61
	Snímek 62
	Snímek 63
	Snímek 64
	Snímek 65
	Snímek 66
	Snímek 68
	Snímek 69
	Snímek 70
	Snímek 71
	Snímek 72
	Snímek 73
	Snímek 74
	Snímek 75
	Snímek 76
	Snímek 77
	Snímek 78

