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Abstract. Segmentation is one of the most discussed problems in im-
age processing. Many various methods for image segmentation exist. The
mean-shift method is one of them and it was widely developed in re-
cent years and it is still being developed. In this paper, we propose a
new method called Layered Mean Shift that uses multiple mean-shift
segmentations with different bandwidths stacked for elimination of the
over-segmentation problem and finding the most appropriate segment
boundaries. This method effectively reduces the need for the use of large
kernels in the mean-shift method. Therefore, it also significantly reduces
the computational complexity.
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1 Introduction

Segmentation can be solved by many various algorithms. They differ in speed
and accuracy. Both goals are often contradictory, very fast methods are often
not very accurate and vice versa. Mean shift (MS) is one of the most popular
methods in recent years, although it was firstly presented in 1975 [I]. Nowadays,
this method is known as Blurring MS (BMS) and it was deeply discussed in
2006 [2]. The mean-shift methods belong to the more precise methods giving
very nice filtration results. Many of them give nice segmentation results too.
The problem of MS is in a high computational complexity, although many faster
variants were presented in few recent years. The high computational complexity
is most obvious in general mean-shift method usually denoted as MS. It was
presented in 1995 [3] and deeply studied in [4], [5], and [6].

Mean shift is an iterative method that seeks for a position with the locally
highest density of data points. During computation, a kernel density estimate is
computed for every data point. Because we are segmenting images, the pixels in
images are used as these data points in our case. Each pixel is shifted according
to the density estimate and computation is carried out until the convergence
when the shift is very small or zero. Two datasets are used in general MS. We
distinguish between an original and a shifted data. In the first iteration, both
are the same. In the following iterations, we compute mean shift for the already
shifted pixel, but the neighboring pixels in the kernel placed on the computed
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pixel are taken from the original dataset that is never changed. BMS uses a
slightly different approach because only one dataset is used. After each iteration,
the output from the previous iteration is used as an input dataset for the next
one. Therefore, the dataset is slightly blurred after each iteration (the computed
pixel is not taken from the original dataset like in MS but it is taken from the
slightly blurred dataset) and convergence is faster. All the pixels that converged
to the same position, create one segment in the processed image.

The speed of all mean-shift methods is highly dependent on the size of kernel
(the number of pixels that are needed to compute the kernel density estimate)
and the number of iterations needed to achieve the convergence. It was proved
that MS has a higher number of iterations per pixel than BMS [2]. In 2009,
Evolving MS (EMS) was presented in [7] and [8]. It promises even lower number
of iterations per pixel but each iteration requires a lot of overheads. Minimizing
of the kernel sizes is mostly utilized in the hierarchical approaches [9], [10] and
[11], where a small kernel is used in the first stage of these algorithms and then
larger kernels are used in the following stages where the input is the computed
segmentation from the previous stage. In this paper, we present a new Layered
Mean Shift method family that is based on minimization of kernel sizes in order
to achieve a faster segmentation. Our method also improves the detection of
significant boundaries of objects and minimizes the over-segmentation problem.

In the next section, the basics of Mean Shift are going to be described. Section
[ is devoted to our new method called Layered Mean Shift. We use layered
versions for several mean-shift methods, but for explanation, LxMS abbreviation
for an unspecified layered mean-shift method will be used generally.

2 Mean Shift

Let X = {z;};_, C R be a dataset of n points in the d-dimensional space. The
kernel density estimator is given by the equation

o= 1, §K ("57) )

where o is a bandwidth parameter limiting the size of kernel function K(z). In
some literature, denomination the bandwidth parameter as h is also used. We can
distinguish between two types of bandwidths in images. The spatial bandwidth
0 is the first one and limits the neighbourhood of the processed pixel in x and y
axis. The range bandwidth is the second one and it is denoted by o,.. It indicates
the maximal luminance difference of the sample that can fall inside the kernel.
We can have more bandwidths in colour images, for example, three bandwidths
for each colour channel. In our work, we are focused on the greyscale images and
only one o, is needed. The fraction before the sum in Eq. () is a normalization
constant. The processed pixel is denoted as x and all pixels in the neighbourhood
(kernel) are labeled as ;.

Many types of kernel functions exist. The Gaussian is the most popular and
often gives the nicest results, but it has also few drawbacks. It is not trun-
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cated kernel and covers the whole dataset. The bandwidth is not limiting the
size of kernel but only the contribution of the samples. For computation of one
mean-shift vector, we need to compute the kernel function with all image pix-
els. Therefore, the Gaussian kernel is very slow and inherently not appropriate
for using it in our method that limits the size of kernel. Of course, there is a
possibility of truncation of the Gaussian kernel in a defined distance.

In our approach, we use another very famous kernel, the Epanechnikov kernel.
It is truncated and the o parameters limits the contribution of the pixels in
the distance of o. All pixels that are out of the hypersphere given by these
parameters, are not involved in computation and the algorithm can be much
faster, especially with smaller values of 0. The Epanechnikov kernel is given by
the equation

Cf1=2? if x| <1

K(x) = { 0, otherwise (2)
All inferences of kernel estimates and their relationship to mean-shift methods
are deeply described in [4] and [6]. Therefore, we do not deal with them deeply
in this paper. On the other hand, the mean-shift vector should be mentioned at

least. Its equation is given by
112
Z;leik (Hacoau )

lek(Hw_gw 2) — &,

where the function k(x) is a derivative of the kernel K (z). The first term on
the right-hand side is a new position of the processed pixel = (estimate of the
position with the highest density of data points), the second term is the former
position. The difference m, ;. (z) between them is called the mean-shift vector. In
this case, we present the equation for Blurring MS that is faster than general MS.
It uses the modified dataset in each iteration and its results are more regular.
General experiments with our LxMS method will be carried out with the LBMS
version of it.

3)

Mo k(z) =

3 Layered Mean Shift Methods

We present a new Layered Mean Shift (LxMS) that is aimed to the reduction
of computational time as well as to reduction of the over-segmentation problem.
It is well known that the size of segments is highly dependent on the value of
o parameter. The larger the ¢ parameter is, the larger are the segments. If we
expect large segments, we are forced to use larger o,. This leads to slower com-
putation because of O(c,2) complexity for evaluation of one mean-shift vector
for one pixel. Our LxMS method solves this speed and over-segmentation prob-

lem. LxMS does not suffer from over-segmentation even if it is used with small
bandwidths.
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The main idea of LxMS is in execution of multiple mean-shift segmentations
with different kernel sizes that are not very large in any of executed segmenta-
tions. General MS, Blurring MS, and Evolving MS can be used as a basic method
that will be executed repeatedly. Layered mean-shift method using BMS segmen-
tation as its base can be called LBMS (Layered Blurring Mean Shift), the same
applies to MS in HMS method and EMS in HEMS method. As we already said,
presented results that explain the layered approach use BMS as its base in all
cases (LBMS method).

We use m segmentations, each with a different spatial bandwidth. Then these
segmentations are overlaid. Important edges in the image are highlighted in
all segmentations, whereas over-segmentation artifacts are positioned in various
locations in each segmentation. If we stack these segmentations, these artifacts
are almost invisible (they are placed only once in some area) and only important
edges remain (each segmentation produces the same border in the same place).
For example, we can execute three different mean-shift segmentations, the first
one with o5 = 3, second one with o3 = 4, and third one with o3 = 5. We use the
same o, for all segmentations but it is not necessary.

)

(a) original image

Fig.1. Phases of the LBMS method. The original image is in the first column. The
images with different bandwidths are shown in next three figures.

Three different segmentations are visible in Fig. [[l Each was computed with
a different spatial bandwidth and, therefore, created a different segmentation.
In all three cases, the boundaries of church are clearly evident. The number of
stacked segmentations is not limited, of course.

Fig. shows that even very small searching windows (kernels) with o5 < 10
in the 481 x 321 pixel image completely reduces the problem of over-segmentation.
There is no need to use spatial bandwidth with the size of hundreds of pixels.
The better speed is achieved, because we carry out a small number of fast seg-
mentations instead of one very slow segmentation.

It is obvious that only the image of stacked segmentations (Fig. [2(a)]) is use-
less and it has to be processed to create one useful result. In Fi the
result of merging the segments is visible. Many approaches are possible. If we
want only edges, we can use simple edge following algorithms. If we need a real
segmentation, another approach should be used. In LxMS, we use our own seg-
ment merging algorithm. We pick all pairs of pixels from the image and sum how
many times they were in the same segment from m executed segmentations. The
threshold ¢ lower than the number of stacked segmentations is set. If the sum
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(a) Stacked image from three seg- (b) Result after basic processing
mentations

Fig. 2. Stacked segmentation and result of merging the segments

is higher or equal to the threshold, both pixels are inserted into one segment.
For example, we have three segmentations and we can set the threshold value to
2. If two random pixels were in the same segment at least in two of three seg-
mentations, they belong to one segment. It can be clearly seen in Fig. Bl After
carrying out this proces, we should remove very small segments; see the small

spots in [2(b)|

F + +|+ ! ‘ + +
(b)o=7

(a) o=5 (c) 0 =938

Fig.3. Merging of segments. For example, if two random pixels are twice in one

segment from three possible segmentations (Fig. and Fig. [3(c)), they are given
the same segment label. The number of segmentations and necessary number of the

same assignments to segments is adjustable. It does not need to be 3 and 2 like in this
example.

Intuitively, we should try to find the pairs between all pixels in the whole
image. It leads to high complexity of O(n?) that is the same as complexity of MS
and BMS algorithm. We observed that approx. 20 — 40% of computational time
is spent on this merging the segments with such a naive approach. It is obvious
that there is almost no possibility to obtain two pixels in one segmentation if
their spatial distance is larger than the spatial bandwidth (if they are not covered
by the kernel, they will be hardly assigned to one attractor). Therefore, we do
not need to check all pixels with all pixels in the whole image, but only with
their close neighbourhood given by ¢ parameter. Our experiments showed that
the results were the same with such an acceleration and complexity dropped to
O(0s?).

If we limit the maximal distance for merging more, we prevent the merging
of the points that are divided by an another segment spatially between them.
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Fig.4. Segmentation merging with limiting the neigbourhood for searching pairs of
pixels belonging to the same segment. Parameter n is the radius of this neigbourhood.

It should not be acceptable in statistical usage of MS method but sometimes
it can be useful in digital images. This method is sort of a trade off. Some
details are suppressed (segments have more regular shapes) but also does not
connect corresponding parts of segments which can divide one object to more
pieces and also can make additional artifacts. Therefore, we recommend to use
n = o. In Fig. @ reduction of small segments with the size smaller than 50
pixels was used. These small segments emerge in the places where boundaries
of true segments differ very slightly in different segmentations. These pixels are
not assigned to any segment and create their own small segment. Such small
segments are assigned to a neighboring segment.

Algorithm 1. LAYERED MEAN SHIFT

Input: Dataset X, spatial bandwidth o, range (luminance) bandwidth o, bandwidth
multiplier /, number of segmentations m, threshold ¢.
Output: A clustered dataset X,
1: Set index i =10
2: repeat
3: Evaluate MS (or BMS) segmentation X; with bandwidths o, and o, where i
is a index of segmentation
Multiplicate os by I and increase index 4 by 1
until index ¢ = m
for all pixels z; do
for all pixels zj in circle neighbourhood of pixel x; with radius of o5 do
Sum the number of segmentations X; where pixels x; and zj belong to
the same segmentation
9: If the sum is equal or higher than a threshold ¢, both pixels z; and x
are assigned to the same segment
10: end for
11: end for
12: Eliminate segments with size smaller than a preset threshold (fraction of image
area).
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4 Experiments

In this section, the experiments with our algorithm are provided. We tested
LBMS algorithm in comparison with the original BMS and we studied the seg-
mentation quality as well as the speed of algorithm. Also, the hierarchical version
of BMS (called HBMS) was tried. We use removal of small segments with the
size smaller than a preset threshold (for example 1/5000 of image area). The
bandwidth range and the number of stacked segmentations are mentioned for
each test. We use images from Berkeley Image Dataset [12].
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(b) 4; 1.4: 3-2/24  (c) 4; 1.25; 4-3/24  (d) 4; 1.4; 4-3/24

(e) original image  (f) 5; 1.4; 3-2/24  (g) 5; 1.25; 4-3/24  (h) 5; 1.4; 4-3/24

Fig.5. Comparison of LBMS segmentations. The range bandwidth o, is the number
after the slash. ”The first number stands for the value of o, in the first segmentation,
the second number is the multiplier. The notation 3 —2 says that 3 segmentations were
processed and pixels that were 2 or more times in the same segmentation have been
merged.

In Fig. Bl we see that different parameters lead to slightly different segmen-
tations but we can not fully determine general influence of parameters to the
segmentation quality. Of course, the larger number of processed segmentations
causes a higher computational time. The higher values of multiplier increase
computational time too because of higher values of o, parameters in the follow-
ing segmentations. A small difference of spatial bandwidths between the stacked
segmentations causes the increase of the number of segments. The same effect
can be seen if we increase the number of stacked segmentations (of course, it can
be lowered by lowering the threshold). We can say that the higher number of
stacked segmentations often produces the resultant segmentation with a higher
quality of details (see the incomplete stones in Fig. and better result in Fig.
but also with slightly more visible over-segmentation.

We can see several examples in Fig. [fland processing times in Table[2l It is ob-
vious that LBMS does not suffer from over-segmentation even if the kernel sizes
were below o, = 10. Both BMS and HBMS used o, = 20, but there is a visible
over-segmenation in both results. If we want to reduce this effect, we have to



472 M. Surkala et al.

Ve ine

(a) original image
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(e) original image

(i) original image

(m) original image

(q) original image

(d) LBMS
4; 1.4; 3-2/24
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(h) LBMS
4; 1.4; 3-2/24
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(1) LBMS

4; 1.35; 4-3/20

(r) BMS 20/24

y

(s) HBMS 4,20/24

(p) LBMS
4 1.35; 3-2/24

(t) LBMS
45 1.3; 5-4/24

Fig.6. Range bandwidth o, is the number after the slash. In BMS, the number
before the slash is the spatial bandwidth os. In HBMS, the numbers 4,20 mean that
the first stage used os = 4 and the second one used os = 20. The first number in the
LBMS notation is the value o in the first segmentation and the second number is the
bandwidth multiplier. The notation 3 — 2 says that 3 segmentations were processed
and pixels that were 2 or more times in the same segmentation have been grouped.
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Table 1. Comparison of the numbers of segments and speed depending on parameters

image  bandwidth o, multiplier segmentations threshold time segments

mountains 4 1.4 3 2 56.2 s 85
mountains 4 1.25 4 3 70.6 s 178
mountains 4 1.4 4 3 108.5 s 119
stones 5 1.4 3 2 87.2 s 90
stones 5 1.25 4 3 1176 s 150
stones 5 1.4 4 3 171.6 s 121

Table 2. Comparison of the numbers of segments (seg) and the computational time
(t[s]) depending on the algorithm

BMS HBMS LBMS
image t[s] seg t[s] seg t[s] seg
church 158.1s274 9.6s 253 58.7s 114

mountains 158.1 s 238 10.1 s 262 56.2's 85
stones 155.9 s 198 9.7 s 185 106.3 s 149
bird 150.6 s 260 10.4 s 265 59.8 s 103
airplane 185.0 s 145 9.4 s 146 168.6 s 27

enlarge the kernel size. That would lead to enormous increase of computational
time (quadratically). The segmentation is subjectively visually very nice and the
computational times are much better than in BMS. On the other hand, the hier-
archical approaches are still much faster but they suffer from over-segmentation.
In many images, only 3 stacked segmentations are sufficient but a higher num-
ber of segmentations could be useful in images with more noticeable textures.
Enlarging the number of executed segmentations would cause the increase of
computational time. The more simple the images are, the smaller number of
segmentations and smaller kernel size has to be used. Small bandwidths are of-
ten sufficient because they also produce different segmentation boundaries in flat
areas and the same boundaries on the true edges of detected objects.

In Fig. [0 you can see five images segmented by various mean-shift methods.
We used MS, BMS, EMS, their hierarchical versions HMS, HBMS, HEMS and
their layered versions LMS, LBMS and LEMS. The first image is a synthetic
image with smooth background gradient and smooth shapes. MS had very big
problem to segment it because of zero gradient of underlying structure. The data
point can not move and image is segmented only around the edges, where the
non-zero gradient of density exists. The second image is the noisier version of the
first image. Therefore, it can be segmented by MS. The following three images are
the real-life images from the Berkeley Image Database [12]. One stage algorithms
(MS, BMS and EMS) used the spatial bandwidth o, = 25. All of the hierarchical
approaches were used in their 3-stage versions using bandwidths of o5, = 3.5,
0s, = 12 and o, = 50. The layered version used two possible configurations. The
first one is 3 — 2, where 3 stages were processed and the pixels were merged into
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Fig. 7. Rows 1: the original image; 2/3/4: MS/BMS/EMS (spatial bandiwdth o5 =
25); 5/6/7: HMS/HBMS/HEMS (o, = 3.5/12/50); 8/10/12: LMS/LBMS/LEMS (3-2
stages, 0s = 4, multiplier of the bandwidth mul = 1.3); 9/11/13: LMS/LBMS/LEMS
(4-3 stages, os = 4, mul = 1.3); the notation is similar to Fig.
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a larger segment if they both were at least twice in the same segment. The last
configuration was analogically 4 — 3. It is obvious that LMS is unusable as the
original MS gives an unstable result that can not be easily merged. LBMS and
LEMS usually give a stable result around the most visible edges and, therefore,
the layered approach is very beneficial here. In our additional tests, it has been
shown that LMS needs at least o5, = 9 for satisfactory result.

Although the largest spatial bandwidth was 6.7 in 3 — 2 configuration or 8.7
in 4 — 3 configuration, it definitely outperforms all other algorithms in the area
of the over-segmentation problem. We can enlarge the spatial bandwidth in the
classical and hierarchical algorithms to decrease the over-segmentation but it will
lead to much longer computational time and potentially inaccurate results (the
large o5 will cover the large image or even the whole image and the spatial term
will be unimportant - all the pixels with the same brightness in the image will be
grouped even if they are separated by another segments). Such a situation does
not happen in layered algorithms because of small spatial merging bandwidths.

Table 3. Comparison of the speed (t[s]) depending on algorithm

synth. imagel synth. image 2 airplane mountains savana

MS 2185.35 s 2014.93 s 2112.62s 33483 s 2999.28 s
BMS 82.29 s 94.34 s 107.2s  80.58 s 103.35 s
EMS 1061.62 s 1129.69 s 629.86 s 543.26 s 753.63 s
HMS3 67.9 s 20.18 s 23.7T1s 2481s 24.29s

HBMS3 7.56 s 7.63 s 6.63 s 6.96 s 6.84 s
HEMS3 27.14 s 33.94 s 16.63s 1441s 1886 s
LMS3/2 318.67 s 123.08 s 282.11s 345.74s 222.02s
LBMS3/2 21.21s 19.43 s 24.08s 2322s 21.62s
LEMS3/2 79.41 s 75.21 s 70.12s 72.05s 73.28s
LMS4/3 603.13 s 280.99 s 538.54s 695.87s 442.88 s
LBMS4/3 36.75 s 36.22 s 40.52s 37.88s 34.78 s
LEMS4/3 385.45 s 318.73 s 125.6 s 152.81 s 127.33 s

Table Bl shows the speed of all the algorithms. The hierarchical approaches
are the fastest but they still suffer from the over-segmentation problem. The
layered versions are 2.5 to 4-times slower (with the exception of LEMS4-3 in the
synthetic images) with no over-segmentation problem. There rises a question
whether this trade off is acceptable or not.

5 Conclusion

The layered mean-shift methods showed that they are relatively fast methods
that primarily reduce the over-segmentation problem even with very small kernel
sizes. They are very well suited for images with not very noticeable textures. In
other cases, the number of stacked segmentations should be enlarged to achieve
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a proper segmentation. Mean-shift, blurring mean-shift and evolving mean-shift
approaches can be embedded into the LxMS method but it has been shown that
general MS is not a very good choice. In LMS case, it needs much larger initial
spatial bandwidth. The next goal is to improve the grouping of pixels in the
stacked segmentations to achieve smaller a sensitivity to stronger textures.
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