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ABSTRACT

Segmentation and filtration are widely discussed problems in
image processing. Mean shift and its variants belong to the
most popular methods in this area. In this paper, we propose
a new variant of relatively new evolving mean shift that is
based on the idea of minimization of dataset energy given by
the sum of sizes of the mean-shift vectors. Our hierarchical
EMS is focused on a significant reduction of computational
time due to hierarchical evolution of the size of the kernel. We
also present acceleration of precise point selection and vector
recalculation, which can be applied also to original EMS.

Index Terms— evolving, hierarchy, image, mean-shift,
segmentation

1. INTRODUCTION

For the purpose of segmentation and filtration of data, many
methods exist. The mean-shift idea (nowadays known as blur-
ring mean shift) appeared in 1975 [1]. Different version was
later presented by Cheng in 1995 [2] and Comaniciu and Meer
[3], [4]. This method seeks for the positions with the highest
densities of data points. Positions of point convergence are
called attractors, which are representatives of all points that
converged to them and mark them as cluster members. Many
variations of the MS method have been proposed. They im-
prove the segmentation results, speed or both. One of the most
popular methods is Gaussian Blurring MS (GBMS) that was
presented in 2006 [5]. This method is based on the method
[1] and slightly changes handling the dataset in comparison
with MS because it replaces the source data for each follow-
ing iteration with the output from the previous one. It makes
it possible to achieve a lower number of iterations per data
point and it makes BMS faster than MS.

Among many others, Evolving MS (EMS) is one of the
latest variations of the MS method [6]. The MS vector influ-
ences an energy between the data points and EMS is formu-
lated as an energy minimization problem. In each iteration,
only one data point is shifted and the energies are recom-
puted. EMS needs a smaller number of iterations per point
than BMS, but it suffers from a higher overhead because of
the need to search for the maximum energy and recalculation.

The MS methods are described in Section 2. In Section
3, we propose our Hierarchical EMS (HEMS) method in de-
tail and we present some efficient ways of algorithm accelera-
tion. Section 4 is devoted to experiments carried out with our
method; we discuss our results there too.

2. MEAN-SHIFT METHODS

Consider X = {xn}Nn=1 ⊂ Rd as a dataset of N points in the
d-dimensional space. We use the image pixels as data points.
We define a kernel density estimator with a kernel K(x) as

p(x) =
1

N

N∑
n=1

K

(∥∥∥∥x− xn

σ

∥∥∥∥
2
)
, (1)

where N is the number of pixels (data points), x is a pro-
cessed pixel and xn are the pixels in the neighbourhood of
the pixel x. The term σ is a bandwidth, which limits the size
of the neighbourhood. We can distinguish between two types
of bandwidths in images. Spatial limit (in x and y axis) is
denoted by σs and range limit (luminance) is denoted by σr.

The kernel function K(x) is used as a weighting function
and many various types can be used. The simplest one is a
uniform kernel which always takes values of 1. The Epanech-
nikov kernel is probably the most popular kernel in the MS
method because of very good speed, filtration and segmenta-
tion results. Both kernels are truncated. The kernel size is
given by the σs parameter. The Epanechnikov kernel is de-
scribed by the following equation

K(x) =

{
1− x2, if ‖x‖ ≤ 1

0, otherwise
. (2)

The last popular kernel is the Gaussian. It has very good
filtration and segmentation results, but it is computationally
very demanding. Slow speed is given by the fact that the
Gaussian kernel uses all data points for computation (kernel is
not truncated). The bandwidth only changes the shape of the
Gaussian curve. For a better speed, the kernel is sometimes
truncated, e.g., in a distance of 3σ.

In the classical MS method, the previously mentioned ker-
nels are used and the MS vector is represented by the equation
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mσ,k(x) =

∑N

i−1 xik
(∥∥x−xi

σ

∥∥2)
∑N

i−1 k
(∥∥x−xi

σ

∥∥2) − x . (3)

In this equation, the term x is the former position of the pro-
cessed pixel. The first term on its right-hand side is a new
position of this pixel computed as a weighted mean of ”simi-
lar” pixels (pixels that belong to the searching window). MS
is an iterative process and we can stop the process if the shifts
are small or zero. In such a case, the pixel converged to its
attractor. MS and BMS are shifting the points until conver-
gence, but MS uses original data as an input for all iterations,
whereas BMS uses filtered data from the previous one.

EMS is a new method that was published in 2009 [6]. The
size of MS vector influences the energy to be minimized. We
search for the pixel with the highest energy in each iteration
and we shift it according to the vector. All adjacent vectors
have to be recomputed. The speed of EMS is highly depen-
dent on the speed of searching for the maximum energy and
recalculation. Therefore, the truncated kernels are better be-
cause the recalculation does not involve the whole dataset.

The energy of dataset is a sum of energies between all
pixels and can be represented by the equation

E(X) =
N∑
i=1

N∑
j=1,j �=i

(
Exixj

+ Exjxi

)
. (4)

E(X) is the sum of all energies. The energy in each pixel is
described as the sum of all energies between this pixel and all
pixels in its neighbourhood. The energy contributed by the
pixel xi to the pixel xj is given by the equation

Exixj
= k(0)− k

(
xi − xj

σ

)
. (5)

Hierarchical MS (HMS) was presented in 2009 [7]. It uti-
lizes multiple MS steps (stages), each with different kernel
size. The benefits of hierarchical approach will be described
in Section 3 devoted to our HEMS method.

3. HIERARCHICAL EVOLVING MEAN SHIFT

Our new method called hierarchical EMS (HEMS) is focused
on a significant reduction of computational time. We pre-
sented the hierarchical approach with introduction of HBMS
in 2011 [8]. EMS is highly dependent on the size of searching
window (kernel); it is very useful to keep it as small as pos-
sible. In such a case, we obtain a segmentation with a high
number of small segments in a fraction of original time. The
number of segments is lower than the number of source points
in the first iteration. We consider these segments as source
points for the next stage. The points are weighted according
to the number of pixels that the segment contains (in the first
iteration, data points are handled as one-pixel segments). In
Fig. 1, an evolution of segments in each stage is shown.

(a) 1st stage filtration (b) 2nd stage filtration (c) 3rd stage filtration

(d) 1st stage segm. (e) 2nd stage segm. (f) 3rd stage segm.

Fig. 1. HEMS filtration and segmentation after each stage

In the following stages, the number of data points is re-
duced and, therefore, faster computation is achieved. Two
stages can be sufficient for a small image. Because of a high
dependence on the kernel size, it is appropriate to use a higher
number of stages with larger images.

Algorithm 1 HIERARCHICAL EVOLVING MEAN SHIFT

Input: Dataset Xk
l , where k is an iteration index and l is a

stage index.
Output: A clustered dataset XEMSl

1: repeat
2: repeat
3: Select data point xk

i ∈ Xk
l with the highest

energy and move xk
i according to EMS vector.

Compute xk+1
i = xk

i + EMSk
x

4: Update all EMS vectors that are outdated be-
cause of the shift of xk

i data point.
5: Set k ← k + 1.
6: until Xk

l satisfies the stopping criterion (energy of
dataset is lower than a selected target energy value)

7: If l is not the final stage, enlarge the searching win-
dow (σs) set the dataset Xk

l+1 = EMSl.
8: until Last stage is performed. EMSl is a result.

Two big problems emerge in EMS algorithm. If we pro-
cess a large image (especially in the first stage), searching for
the maximum in such a large amount of energies can be com-
putationally very exhaustive (n steps in each EMS iteration).
We propose a precise searching method that is used in the first
stage in which the contribution should be the most significant.
We use two buffers in hierarchy to store the energy values. In
the first step, we compute an average and maximum energy of
the dataset (in n steps). We adjust a threshold energy between
the average and the maximum energy and we pick up the en-
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ergies higher than this threshold (also in n steps) into the first
buffer. After that, the values are sorted very fast because of
their low number. We pick a more limited number of energy
values to the smaller second buffer, where we will be search-
ing for the maximum. Because of a small number of values,
it can be done very fast. The ideal size of buffer is mostly be-
tween 1

2

√
n and

√
n. The energy value of the shifted pixel is

removed and if an energy higher than the threshold emerges
during recalculation of EMS vectors, it is added to the buffer.

If this buffer is empty, we repeat the selection process.
We use the threshold values that select approx. 4% of data
points. Therefore, the sorting algorithm has approx. com-
plexity 0.04n · log(0.04n). It is performed after more than√
n iterations (if

√
n is the buffer size). The searching for the

maximum in the buffer takes 1
2

√
n on average instead of n.

(a) EMS
(40/− /−)

(b) EMS
(40/− /−)

(c) EMS
(40/− /−)

(d) EMS
(40/− /−)

(e) HEMS2
(6/40/−)

(f) HEMS2
(6/40/−)

(g) HEMS2
(6/40/−)

(h) HEMS2
(6/40/−)

(i) HEMS3
(2.5/10/40)

(j) HEMS3
(3/12/40)

(k) HEMS3
(3/10/40)

(l) HEMS3
(3/12/40)

Fig. 2. Segmentations produced by EMS, HEMS2 and
HEMS3. The parameters σs1 / σs2 / σs3 are shown in the
brackets, σr was set to 32 in all cases

Recalculation of the EMS vector is an another problem.
In the next stages, we use a method that recalculates EMS
vectors for all pixels possibly affected by the pixel shift. This
area is specified by the range from min(oldX, newX) − σs

to max(oldX, newX)+σs on the x-axis and similarly on the
y-axis. Because of a low number of pixels in the next stages,
it is quite fast even though the complexity is m2, where m

is the number of pixels in the neighbourhood of shifted pixel
and m � πσ2

s (the size of neighbourhood in the first stage).
Even this approach is very slow in the first stage because

m = πσ2
s . We use an extra buffer in our approach. It stores

the numbers of pixels (weighted by the kernel function) that
were used to compute the EMS vector for each pixel. The
recalculation is done by multiplying the EMS vector by the
number of pixels contributing in computation of the EMS vec-

tor. We obtain the sum of energies of the pixel xi. We subtract
the contribution of the shifted pixel to the affected pixel from
the sum and we divide it by a reduced number of pixels.

EStemp
xi

=
EMSxi

·∑N

i−1 k(x, xi, σ)− k(xj , xi, σ)∑N

i−1,i�=j k(x, xi, σ)
(6)

In (6), EStemp
xi

is a temporary sum of energies of the pixel
xi with subtracted influence of the pixel xj . This sum equals
to the sum of energies that were used to compute the EMS
vector of the pixel xi. EMSxi

is the energy of the pixel xi and
k(x, xi, σ) is a result of the kernel function between the pixel
xi and x with the bandwidth σ. The reverse step is processed
in the area where the new position of shifted pixel is. This
algorithm needs only 2πσ2

s steps per pixel instead of σ4
s .

4. EXPERIMENTS

This section presents the results of our implementation of
EMS and HEMS. All algorithms use the accelerated search-
ing for the maximal energy and adjusting the EMS vectors in
the first stage. Therefore, EMS is fully accelerated too. We
examine the speed of algorithms, quality of filtration and seg-
mentation, although this can be quite subjective. We use the
images from The Berkeley Segmentation Dataset [9]. As a
testing computer, a laptop with 2,4 GHz Intel Core i5 proces-
sor was used. We used a single-core configuration.

In Fig. 2, the bandwidth was set experimentally to the
values that led to the fastest computation. We use σs=40 for
the final stage of all algorithms. Note that the higher values
of σs should lead to a lower number of segments and it is
the main parameter to control the result. The index behind
the term σs denotes the stage number. 2-stage and 3-stage
HEMS are referred to as HEMS2 or HEMS3, respectively.

All results are presented in Table 1. A segmentation looks
visually good, although this is subjectively evaluated. The
corresponding images are shown in Fig. 2. HEMS2 is up to
70 × faster than EMS and HEMS3 is even faster. The draw-
back is the increased number of segments and visually not
so good shaped clusters. The hierarchical approaches create
more segments and a slightly larger searching window should
be used to achieve a smaller number of segments. HEMS
was approx. 45 − 180 × faster for all the images we tested.
Small, mostly circular, segments are created in the first stage
and they are grouped in the later stages. The jagged lines are
reduced. Significant lines are always segmented properly.

We measure the segmentation quality as a combination
of number of segments and Mean Square Error (MSE). MSE
describes the difference between the images, not the filtration
quality itself. It is desirable to achieve a smaller number of
segments with a small value of MSE. If the number of seg-
ments is high, the image is oversegmented and if the MSE is
high, the image is significantly damaged. The values of MSE
are similar in EMS and HEMS.
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Table 1. Comparison of the numbers of segments (seg), speed (t[s]) and number of iterations (iter) depending on algorithm
1st stage 2nd stage 3rd stage Total time

seg t[s] iter seg t[s] iter seg t[s] iter MSE t[s]

Stones image
EMS 55 6089.9 5.93 - - - - - - 107 6090.5

HEMS2 1151 62.63 6.40 78 26.36 8.90 - - - 113 89.69
HEMS3 6440 19.15 6.82 593 6.72 8.41 96 7.4 9.02 113 34.16

Tree image
EMS 59 3836.9 5.78 - - - - - - 208 3837.9

HEMS2 1925 48.51 6.33 111 66.01 8.04 - - - 205 115.25
HEMS3 4758 22.87 6.58 614 7.23 8.5 122 8.73 8.6 202 39.72

Mountains image
EMS 84 4256.9 5.97 - - - - - - 123 4257.5

HEMS2 1636 65.73 6.47 161 50.46 8.54 - - - 137 117.0
HEMS3 5728 24.70 6.63 1059 6.40 8.37 194 25.96 8.67 132 58.17

Lena image
EMS 36 726.1 5.37 - - - - - - 192 726.4

HEMS2 623 25.1 6.40 59 16.1 8.33 - - - 238 41.5
HEMS3 2318 8.5 6.79 293 2.9 8.46 71 4.2 8.67 270 16.1

We present the acceleration of point selection and the
EMS vector recalculation in Section 3. The Lena image was
segmented in 3147.7 seconds without acceleration (only re-
calculation in the affected area was used, σs = 10). Selective
back recalculation using Eq. (6) reduced time to 76.9 sec-
onds. Hierarchical optimization in search for the maximal
energy using two buffers reduced the time to 58.0 seconds.

5. CONCLUSION

Our HEMS method showed that the hierarchical approach to
EMS algorithm can shorten the computational time signifi-
cantly and it does not necessarily lead to much worse seg-
mentation capabilities. We think that a remarkable speedup
is a good compensation for a very small reduction of the seg-
mentation quality. Moreover, we presented fully precise hi-
erarchical acceleration for searching the maximal energy ap-
plicable not only for HEMS, but also for original EMS. We
also presented an effective way of EMS vector recalculation.
In the future, we are going to focus on the minimization of
overheads, especially, the ability to use full acceleration in
the higher stages.
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