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Abstract. The background subtraction is a technique widely used for
video analysis, mainly moving object detection for surveillance systems.
Such algorithms must be robust, fast and it has to be able to deal with
dynamic backgrounds like water surface or moving tree branches. Also,
they should be able to deal with illumination changes and objects casted
shadows. Generally, in computer vision the algorithms with a physical
background have the best performance. We propose an algorithm for
background subtraction based on a model of layered RC circuits. We
tested our method on video sequences acquired from level crossing and
on commonly used datasets. Finally, we have compared the proposed
method with other frequently used methods.

1 Introduction

The background subtraction is a common technique for moving object segmen-
tation from video sequences. It is an alternative to the object detectors based
on the knowledge of appearance of the objects. There are two popular methods:
Ada-boost proposed by Yoav Freund and Robert E. Schapire [1], and support
vector machine by Constantine Papageorgiou and Tomaso Poggio [2]. Both are
trainable object detectors and are used in variety of applications.

In many cases, we are not able to predict the size, shape, or color of the
objects, tahtin we are trying to detect. In such cases, we are ought to use the
background subtraction algorithms. These, instead of training the object detec-
tor, model the background and subtract from it the “moving” objects in the
foreground. The result of background subtraction is a binary image, where the
pixels indicating “moving” objects are marked with white color and background
pixels with black color. Then the connected components algorithm is used to
find the individual objects in the segmentation. An example application of such
an algorithm is the project Pfinder by Christopher Richard Wren et al. [3]. Their
system tracks people and interprets their behavior. The tracking itself is done
using the background subtraction algorithm. Generally, PDE based algorithms
have the best performance in computer vision applications. Our method is in-
spired by the model proposed by Pietro Perona and Jitendra Malik [4]. They
presented a model, using a grid of resistors and condensers organized in a grid,
functioning as an image filter. In this paper we present our modification to this
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model. We have modified the filter so it can be used for background modeling.
The model is extended by excitation contacts used for connection of the input
video sequence images with the model. Our paper has the following structure: in
Section 2 we present works related to our matter, in Section 3 we describe our
modified model, in Section 4 we conduct experiments and compare our method
with other commonly used methods, and in Section 5 we conclude our work.

2 Related Works

The last two decades witnessed great improvement in background subtraction al-
gorithms. Background subtraction techniques are based on learning of the back-
ground model from the video sequences. Each image in the video sequence is
subtracted from the background model to find the differences and is also used
for adaptation (update) of the background model. Big difference between the
model and the actual image indicates “moving” objects in the foreground. One
of the earliest method was proposed by Alan Lipton Hironobu et at. [5]. We refer
to it as a temporal difference background subtraction (TDBS). This method uses
one of the resent images as the background model and subtracts it with the most
recent image. The difference is then thresholded and objects in the foreground
are found. This method is not prone to fast illumination changes, but is prone to
slow or temporally stationary objects. When the background model is too similar
to the input image, there is too little difference and no foreground objects are
indicated. This is exactly what happens when slow objects are moving in the im-
ages. Another method was proposed by Christopher Richard Wren et al. [3] and
is known as temporal Gaussian background subtraction (TGBS). This method
creates statistical model of the background. Each pixel of the background model
is represented by one Gaussian defined by two values: µ for the mean value and
σ for the standard deviation, both computed from N recent images. For bet-
ter performance, those values are computed using the running Gaussian, which
approximates these two values and is not that much demanding upon memory
and computational time. This method deals with the problem of slow or tem-
porally stationary objects detection, because it uses more than one image for
background model construction. As a trade off, it is prone to the illumination
changes. Sometimes, the µ value is represented by median (TMBS) [6], it makes
the method more stable if the time between individual video sequence images
vary, but the computational time and memory requirements rise accordingly.
The problem with all these methods rises with dynamic backgrounds. Dynamic
backgrounds are for example: moving tree branches, water surface waves, etc.
. The method dealing with dynamic backgrounds is known as the mixture of
Gaussians background subtraction (MoGBS). It was developed by C. Stauffer
and W.E.L. Grimson [7]. This method models not only one, but K Gaussians
for each pixel, and each Gaussian adapts to one background. For example, in the
case of moving branches, one background represents the branch and the other
the sky behind it. This also applies for interior video sequences, where the light
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is switched on and off. In this case, one Gaussian adapts to dark background
and the other one to the illuminated background.

We describe our method in the next Section. First, we show our modification
to the model presented by Pietro Perona and Jitendra Malik, then we propose
a layered version of the model for dynamic backgrounds, and finally we provide
the reader with information about additional improvements to our method.

3 Proposed Method

The inspiration to use a layered RC circuit model for background subtraction
came from paper by Pietro Perona and Jitendra Malik [4]. In their work, they pre-
sented a method for scale-space image filtering based on heterogeneous isotropic
diffusion. They also presented a model of diffusion process using electrical com-
ponents, namely resistors and condensers (RC circuit). The scheme for filter
they proposed can be seen in Figure 1. As we can see, the circuit is a grid of

Fig. 1. The image filter model proposed by Pietro Perona and Jitendra Malik

condensers connected to neighboring condensers trough the resistors. Each con-
denser represents one pixel in the image and the voltage is the pixel intensity (or
color if we think of the voltage as an vector). If the condenser has lower voltage
than its neighboring condenser, then it is being charged by that neighbor (the
neighbor is being discharged by it) and vise versa. Charging speed depends on
the resistance of the resistors. The greater the resistance is the slower is the
charge/discharge rate.

Before we describe modification to the model, we have to understand the
background itself and how it differs from foreground. Generally, the background
consists of objects that are in most cases stationary and the foreground represents
the “moving” objects. Basically, the background model represents the values
occurring with higher probability and are not changing that much over time.
The foreground objects are represented as values occurring less frequently and
are significantly different from the background model. The background model
can be statistically modeled using the Gaussian distribution. This method was
presented by was proposed by Christopher Richard Wren et al. [3] and is known
as temporal Gaussian background subtraction (TGBS). In this method, the mean



4 Karel Mozdřeň, Eduard Sojka, Radovan Fusek, and Milan Šurkala

value µ and standard deviation parameter σ are modeled for each pixel from last
N images. Each new image is then compared with the model, and if new values
are 2.5σ further away from the mean value, then it is marked as foreground. The
model of the background could also be viewed as a time dependent signal filter,
which is often realized as a combination of resistors and condensers in electrical
engineering. This is also the basic idea behind our method.

3.1 Simple RC Model

Our method uses for background modeling a simulation of diffusion using a grid
of condensers and resistors as proposed by by Pietro Perona and Jitendra Malik
[4]. This model is modified in such a way, that each condenser representing one
pixel of the background and the voltage over condenser is a representation of
pixel intensity. This condenser is connected to excitation voltage representing
the input image pixel values trough the additional resistor. The one-dimensional
example of one block of the original filter and in comparison the modified fil-
ter can be seen in Figure 2. This way the video sequence values are filtered
and the voltage uc over the condenser C represents the filtered value (modeled
background), which is an equivalent of the mean µ value used in TGBS. The
standard deviation parameter ucσ can be modeled similarly using the absolute
difference between input excitation voltages (values) and modeled background
uc as an excitation voltage for uσ circuit. The differential equation describing
the background update has the following form

∂uc,x,y
∂t

=
1

CR
(uc,x−1,y + uc,x+1,y + uc,x,y−1 + uc,x,y+1 − 4uc,x,y)

+
1

CRe
(ue,x,y − uc,x,y) , (1)

where the uc is the background model value (voltage over condenser), x and y
represent the position in the circuit grid, C is the condenser capacity, R is the
resistance value of the resistors connecting the condenser C with the neighboring
condensers, and the resistor Re connects the excitation voltage ue (new value)
to the background model condensers. The magnitude of the excitation resistance

Fig. 2. The scheme of one block of the original (left) and modified filter (right)

Re regulates the speed of background model adaptation. If the resistance is too
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small, the adaptation speed is fast, and if it is big, the adaptation speed is slow.
Fast adaptation leads to imprint of slowly moving objects into the background
model. On the other hand, if the adaptation is too slow, some parts of the
background image might be outdated.

This model is most similar to the TGBS method. The main difference be-
tween these two methods is in filtering. The TGBS filters the data only in
time domain, because it filters the values for each input image pixel sepa-
rately, but our method considers the background model as a whole, where
all the pixels are connected to theirs nearest neighbors, which allows filter-
ing also between background model pixels. The first experiment we propose
compares the TGBS with our method. For the test, the level crossing dataset
we have created is used. This dataset can be downloaded from our website
http://mrl.cs.vsb.cz/people/mozdren/levelcrossing/index.html It con-
sists of high resolution images and ground truth images for randomly selected
frames. As a quantitative measure the Matthews Correlation (Phi) Coefficient
(MCC) [8] is used. It computes the rate between true positive (true foreground),
true negative (true background), False Positive (false foreground), and false neg-
ative (false background) pixels. The MCC is computed as follows

Φ =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (2)

where TP is true positive, TN is true negative, FP is false positive, and FN is
false negative. When the resulting coefficient is +1, the perfect prediction was
measured, for −1 the inverse prediction, and for 0 the random prediction. The
results can be seen in Table 1. As seen in the Table, our model performs better

Table 1. Performance comparison: RCBS: this model; TGBS: temporal gaussian

TP TN FP FN Phi

RCBS 704612 19469974 80437 978641 0.59

TGBS [3] 630959 18605493 154090 1843122 0.41

than TGBS method. Further improvements for dynamic background adaptation,
casted shadows removal, and segmentation filtering are presented in following
parts of the text.

3.2 Layered RC Model

The simple layered RC model is already able to distinguish between foreground
and background, but it still needs to be modified for adaptation to the dy-
namic backgrounds. Dynamic backgrounds are hard to adapt to. In many cases
the background consists of moving objects like tree branches and water surface
waves or objects frequently changing its color. The interiors, where the light are
switched on and off are also considered as dynamic backgrounds. In this case,
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using only one Gaussian leads to high values of standard deviation σ. If the σ
is high, most of the input values are marked as background, even the moving
objects in the foreground. This problem was solved by C. Stauffer and W.E.L.
Grimson [7] in MoGBS. They developed a method, where the background is not
modeled only by one Gaussian, but by a mixture of K Gaussians. There, each
of the Gaussians adapts to one kind of the backgrounds emerging in the video
sequence.

Inspired by this method, we introduce the layered RC circuit model (LR-
CBS). We added to our circuit (model) additional layers, that are used to repre-
sent multiple backgrounds, the DEMUX which is a demultiplex connecting the
input voltages ue (input values) to specific layer, which is selected by selector S.
Each layer is also connected by the inter-layer resistor RL providing inter-layer
filtration. This helps mainly in initialization step, if the backgrounds are set ran-
domly, and also when one background disappears. Layer, that does not represent
any background moves towards to the nearest active background layer, where it
helps to represent its background. The modified background modeler scheme can
be seen in Figure 3. The adaptation of this model is driven by selector S. When

Fig. 3. The scheme of one one-dimensional block representing the layered RC model

the new excitation value ue emerges, the selector S connects it using the demul-
tiplex DEMUX to the layer, where the absolute difference between new value
ue and mean value uc,l is minimal. The other layers excitation values ue,l are
leveled to theirs corresponding voltages uc,l (no excitation). This is performed
for each block in the model and then the following difference equation is used
for the update

u
(t+1)
c,x,y,l = u

(t)
c,x,y,l +

dt

RC
(u

(t)
c,x−1,y,l + u

(t)
c,x+1,y,l,t + u

(t)
c,x,y−1,l

+u
(t)
c,x,y+1,l − 4I

(t)
c,x,y,l) +

dt

ReC
(u

(t)
e,x,y,l − u

(t)
c,x,y,l)
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+
dt

RLC
(u

(t)
c,x,y,l−1 + u

(t)
c,x,y,l+1 − 2u

(t)
c,x,y,l) , (3)

where u
(t)
c,x,y,l is the value representing the background for pixels at position

x, y in the layer l at time t. The dt is a time difference constant, and RL is
the resistance of the resistor connecting individual layers. Similarly, the uσ is
modeled. The pixel is marked as foreground, if the input value is not within the
distance of 2.5σ from the most similar layer value.

3.3 Selectivity

In some cases, the selectivity is introduced to background subtraction algorithms.
It slows or stops the adaptation of the background for the input pixels marked as
the foreground. This way, the moving objects do not imprint into the background
that much or not at all. The selectivity is driven by the resistance of the resistor
Re in our method. If the resistance Re is high, then the background adaptation
is slow and vice versa. This implies that the resistance of the resistor should
be driven by the difference between voltages uc and ue. We have found the
inspiration in a model of perceptron used in artificial neural network. Namely,
the perceptron model used for back propagation neural network developed by
David E. Rumelhart et al. [9]. The output of the perceptron y is computed from
the total input x using the equation

y =
1

1 + e−λ(x−t)
, (4)

where λ drives the slope of the function, and t represents the threshold (the
point, where the function moves rapidly from zero to one). Shape of the func-
tion can be seen in Figure 4. To use this function with our method, we have to

Fig. 4. The perceptron output function, used in back-propagation algorithm

define the maximal resistance Rmax (slow adaptation of the background) and
minimal resistance Rmin (fast adaptation of the background). The function is
then shifted up by Rmin and stretched by the difference between maximal and
minimal resistances. The input value is given by the absolute difference (dis-
tance) between the excitation voltage ue and the condenser voltage uc, and the
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threshold is given by modeled standard deviation ucσ multiplied by T , which is
often set to 2.5 (represents 99 % of possible background values). This gives us
a function with fluent transition between minimal resistance for values within
the range Tucσ and maximal resistance for values exceeding this range. This
equation has the following form:

Re = Rmin +
Rmax −Rmin

1 + e−λ(‖ue−uc‖−Tucσ)
, (5)

and the graph of the function can be seen in Figure 5.

Fig. 5. Graph of a function for resistance regulation

3.4 Casted Shadows

Another problem is casted shadow. Objects moving in the video sequences often
cast shadows and these are failingly marked as part of the object, which is not
a wanted effect. In our method, the background/foreground segmented images
are further processed by algorithm proposed by Thanarat Horprasert et al. [10].
They separate the brightness from chromaticity, and compute the brightness and
chromaticity distortion using input pixel values and background model values.
Those values are then thresholded and if those are within selected threshold,
then the pixel is marked as shadow.

3.5 Segmentation Filtering

The background subtraction segmentations are often post processed by morpho-
logical operators. We have decided to use a more sophisticated filter. Our filter
computes local histogram of segmentation affiliations for each pixel in segmen-
tation and the affiliation for current pixel is substituted by the affiliation of the
most frequent affiliation value (most probable value). The size of the area around
the pixel directly affects the strength of the filter. The greater the area is, the
stronger the filter is, and the more details are ignored. This filter can be used
not only for binary segmentations, but also for ternary segmentations such as
segmentation of moving objects, shadows and background. We have created an
artificial example of segmentation to show ours filter abilities. The input and the
output of the filter can be seen in Figure 6.
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Fig. 6. Artificial segmentation before and after filtering

3.6 Frequency Sensitive Background Modeling

We have encountered one more problem. Our adaptation algorithm is similar to
simple competitive learning [11], which in many cases becomes stuck in poor local
solution (background). This also rises the problem, where some layers represent
only small part of the background or none at all. We need each layer to represent
approximately same quantity of the background. This is solved by introduction
of a frequency sensitivity (frequency sensitive competitive learning) [12]. The
basic idea is to store information about frequency of excitation of each layer in
the block. In our method, we monitor the frequency of excitation, and if the
pixel is marked as the foreground (new potential background), we excite the
layer with the least frequency of the excitation. Consequently, this makes the
least used layer to represent a new background.

4 Experiments

In this section we experiment with the complete method with all presented
improvements and we compare it to other commonly used methods. The ex-
periments were conducted on real video sequences captured from IP cameras
installed on a level crossing, that we use for tests of obstacle detection and obsta-
cle behavior monitoring. Furthermore, we use standard datasets, often used for
testing and comparison of background subtraction algorithms. The level cross-
ing dataset and ground truth images can be downloaded from http://mrl.cs.

vsb.cz/people/mozdren/levelcrossing/index.html, and standard datasets
with ground truth images created by L. Li [13] has been downloaded from
http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html.

The first experiment that we have conducted was a test of the abilities of
the proposed method under different conditions like dynamic backgrounds and
changing illumination. Resulting segmentations in Figure 7 clearly show that
our method is able to adapt under many difficult conditions. The tests were
conducted using the following configuration: R = 2 MΩ, C = 1 µF , dt = 0.001,
RL = 2 MΩ, Rmin = 20 kΩ, Rmax = 200 kΩ, λ = 5.0, K = 5.

Our second experiment is quantitative. We compared our method with other
commonly used methods. In this test, the level crossing dataset has been used.
This dataset consists of high resolution images, and therefore, moving object
detection can be measured more accurately. As a quantitative measure the pre-
viously presented Matthews Correlation (Phi) Coefficient (MCC) [8] is used. The
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a b c d e f

Fig. 7. Testing images their foreground segmentations and ground truths. First row) in-
put images; Second row) ground truth; Third row) Our segmentations, a) Level Cross-
ing - exterior with shadows; b) Bootstrap - high movement, changing illumination;
c) Campus - dynamic background, moving tree branches; d) Escalator - dynamic back-
ground; e) Fountain - dynamic background, water; f) Lobby - Strong change in illumi-
nation, switching lights on and off

results can be seen in Table 2. There, you can see that our method performs bet-

Table 2. Algorithms comparison: LRCBS: layered RC; MoGBS: mixture of gaussians;
RCBS: Simple RC; TDBS: temporal difference; TGBS: temporal gaussian; TMBS: tem-
poral median

TP TN FP FN Phi

LRCBS 681225 20385616 103824 62999 0.89

MoGBS [7] 489913 20329902 295136 118713 0.7

RCBS 704612 19469974 80437 978641 0.59

TDBS [5] 461445 19816336 323604 632279 0.48

TGBS [3] 630959 18605493 154090 1843122 0.41

TMBS [6] 535682 17712377 249367 2736238 0.29

ter than other commonly used methods. The simple RC circuit model (RCBS)
performs better, than TDBS, TGBS, TMBS, which are the methods, that are
not able to adapt to dynamic background as well as RCBS. The layered version
LRCBS is in addition able to deal with dynamic backgrounds. It is clear from
the experiments that it outperforms the MoGBS.

5 Conclusion

We have developed a novel algorithm for background subtraction using a lay-
ered RC circuit for background modeling. We have shown, that our simple RC
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model performs better than TGBS method that is is similar to. This gave us
good foundations for further improvements. The first improvement was intro-
duction of additional layers, which allowed our method to represent dynamic
backgrounds. We also dealt with casted shadows and output segmentation fil-
tering. We have shown in the experiments that our algorithm is able to adapt
to many difficult conditions like strong illumination changes, casting shadows,
and dynamic backgrounds. Furthermore, our method performs better than other
commonly used methods for background subtraction.
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