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In this paper, we propose a new distance called the k -max distance that is intended for graphs and 

images. The length of a path is defined as the sum of the k maximum arc weights along the path. The 

distance between two nodes is the length of the shortest path between them. We show that the k - 

max distance is a metric. The algorithm for computing the k -max distance is presented. Certain positive 

properties of the k -max distance are shown, namely in the context of measuring the distances for image 

segmentation. The comparison with the geodesic distance, the max-arc distance, the minimum barrier 

distance, and the random walker technique is carried out in the segmentation of real-life images. 
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. Introduction 

Finding the distance between two graph nodes is an important

ask in graph theory with practical applications in computer sci-

nce, including computer vision [1–3] . The images may be viewed

s graphs in which the nodes correspond to the pixels, and the

rcs connect the nodes corresponding to the neighbouring pixels.

he arc weights are determined from the intensity values in the

eighbouring pixels. 

The common algorithm for solving the shortest path problem

as introduced by Dijkstra [4] . If the shortest path in graph is

easured in the usual way, it corresponds to measuring the dis-

ance along the image surface. Therefore, it is often called the

eodesic distance [5] . This distance is frequently used in image seg-

entation [6,7] , e.g., in the methods based on the minimization of

nergy function [8–10] . Some more efficient variations of the algo-

ithm for computing the geodesic distance have been introduced

n [11,12] . 

Although the geodesic distance is used in many tasks of image

rocessing, some other metrics have also been introduced in this

rea, such as the minimum barrier distance [13,14] , which is shown

o be more resistant to noise and to the changes of seed positions

15] . Another distance that was presented recently is the resistance-

eodesic distance [16] which reduces the possibility that an acci-

ental unwanted path appearing due to imperfections in an image

ill be used for determining the distance. In [17] , the authors in-

roduced an eccentricity that measures the longest geodesic dis-
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ance across the object, and they also discussed its robustness to

oise. 

The sensitivity to noise is a well-known drawback of the

eodesic distance. Our goal was to find a distance measure that

s capable of reducing the influence of noise. In images, for exam-

le, such a measure should take into account only the important

hanges of intensity, which usually occur on the boundaries be-

ween the image segments (the areas with different intensities). In

he graph, the important changes correspond to the arcs with high

eights. On the other hand, small intensity fluctuations inside the

egments giving low weights of arcs are not important and should

ot be taken into account. The problem with the geodesic distance

s that it is difficult to distinguish whether its value arises as a

um of a big number of unimportant arc weights (e.g., the distance

etween two faraway points lying in the same large segment), or

hether it is a sum of a smaller number of important arc weights

e.g., the distance between two points in two different segments). 

In the k -max distance, the length of the path is defined as the

um of the k maximum arc weights along the path. The distance

s defined as the length of the path that is the shortest one in this

ense. Preliminary ideas and results were introduced in [18] . In this

aper, a more detailed view is presented. The properties are pre-

ented more rigorously. Special attention is paid to the algorithm

ith the goal to improve its effectiveness. Further experiments are

ncluded. 

This paper is organized as follows. The drawbacks of the

eodesic distance are presented in Section 2 . Section 3 describes

he k -max distance algorithm and its complexity. Section 4 focuses

n experiments, and Section 5 is a conclusion. 

http://dx.doi.org/10.1016/j.patrec.2017.09.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.09.003&domain=pdf
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Fig. 1. The synthetic test image with the points between which the distance is 

measured. We would expect that d g ( A, B ) > d g ( B, C ). Due to noise, an incorrect result 

is often provided by the geodesic distance ( Fig. 2 ). 

Fig. 2. The error rate of geodesic distance for the test case from Fig. 1 , a = 20 , 

various values of da , and various values of σ n are considered. 
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2. Geodesic distance 

This section describes the geodesic distance and its behaviour

if the distance is measured in noisy images. Consider a graph and

two nodes in it, denoted by A and B , respectively. Let αAB be

a path connecting A and B ; αAB = (A ≡ V 1 , V 2 , . . . , V n ≡ B ) ; V i is a

node through which the path is running. The length of the path is

the sum of the weights of all its arcs l(αAB ) = 

∑ n −1 
i =1 w V i ,V i +1 

, where

w V i ,V i +1 
is the weight of the arc connecting V i and V i +1 . Let P AB 

be the set of all existing paths between A and B . The geodesic dis-

tance between A and B is the length of the shortest path between A

and B , i.e., d g (A, B ) = min αAB ∈P AB 
{ l(αAB ) } . In image processing, the

weight of arc is often determined by the equation 

w i, j = 1 . 0 − e 
− (b i −b j ) 

2 

2 σ2 
w + η , (1)

where b i , b j are the values of intensities at the pixels correspond-

ing to V i and V j , respectively; σ w 

is a constant. The value of η de-

termines the price of using the arc regardless of how big the inten-

sity difference between its endpoints is. It can also be η = 0 , which

violates the condition d(A, B ) = 0 ⇔ A ≡ B, but it reflects the opin-

ion that the distances between any two points in the same image

segment should be small or even zero. 

To show the behaviour of the geodesic distance, consider the

synthetic image containing a unit intensity step, i.e., two segments

( Fig. 1 ). The point A is placed in the left segment, the points B

and C are in the right segment. The Gaussian noise is added. The

arc weights are computed according to Eq. (1) ( σw 

= 0 . 333 , η =
0 . 01 ). The geodesic distances between A and B , and B and C are

computed. Since A and B are in different segments, and B and C are

both in the same segment, we expect that d g ( A, B ) > d g ( B, C ). We

check how the expectation is met for various amounts of noise in

the image, and for various values of da (see Fig. 1 ). Even if da > 0,

we would probably want d g ( A, B ) > d g ( B, C ). 

The fact is that the results are often different. Fig. 2 shows how

often the unexpected result d g ( A, B ) ≤ d g ( B, C ) is obtained. The er-

ror rates are computed as the mean from 10 5 samples. As can

be easily understood, the error rate increases with the increasing

amount of noise ( σ n stands for the standard deviation of Gaussian

noise) and with the increasing value of da . The explanation was

given before. The sum of the weights affected by noise may over-

shadow the useful information, which is the weight of just one arc

in this case. 
The facts stated above have led us to the idea to define a dis-

ance that considers only several arcs with a high weight while

he low-weighted arcs are ignored. The Chebyshev distance be-

ween two vectors is a distance that takes into account only the

aximum difference of vector entries ( L ∞ 

norm). Similarly, only

he maximum arc weight along the path can be considered in the

raphs, which is known as max-arc distance . Apparently, the max-

rc distance cannot describe everything what is needed. For exam-

le, the length of the path running across two boundaries between

egments in an image should be longer than the length of the path

unning across only one boundary. The k -max distance seems to

e the missing part between the max-arc and geodesic distance.

or k = 1 , the k -max distance becomes the max-arc distance. For

 → ∞ , it becomes the geodesic distance. 

. The k -max distance 

In this section, the k -max distance is introduced. Let 
∑ 

top k 
(. )

tand for the sum of the k largest values in a collection of non-

egative real numbers. We define the length of a path as the

um of the k largest arc weights along the path, i.e., l(αAB ) =
 

top k 
(w V 1 ,V 2 

, w V 2 ,V 3 
, . . . , w V n −1 ,V n 

) , where αAB is a path connecting

 and B, V i are the nodes of the path ( V 1 ≡ A, V n ≡ B ), and w V i ,V i +1 

re the arc weights. If k is greater than the number of arcs in

he path, the distance is given by the sum of all the arc weights,

.e., it equals to the geodesic distance. Let P AB be the set of all

aths between A and B . The k -max distance between A and B is

 k m 

(A, B ) = min αAB ∈P AB 
{ l(αAB ) } . It can be easily seen that the k -

ax distance in a weighted undirected graph is a metric since the

ollowing is true. 

1. d k m 

( A, B ) ≥ 0 

Since the arc weights are positive, their sum is positive. 

2. d k m 

(A, A ) = 0 

The distance d k m 

(A, A ) = 0 is defined a priori (no edge). 

3. d k m 

(A, B ) = d k m 

(B, A ) 

Because w V i ,V i +1 
= w V i +1 ,V i 

and the sum is commutative. 

4. d k m 

(A, C) ≤ d k m 

(A, B ) + d k m 

(B, C) 

Let αAB = (A ≡ A 1 , A 2 , . . . , A n ≡ B ) be the shortest path be-

tween A and B ( A i is a path node). Let αBC = (B ≡
B 1 , B 2 , . . . , B m 

≡ C) be the shortest path between B and

C . The length of αAB is 
∑ 

top k 
(w A 1 ,A 2 

, . . . , w A n −1 ,A n 
) , the

length of αBC is 
∑ 

top k 
(w B 1 ,B 2 

, . . . , w B m −1 ,B m 
) . Consider the

path (or a walk in general) αAB ·αBC connecting A and

C created by concatenating αAB and αBC . Its length is∑ 

top k 
(w A 1 ,A 2 

, . . . , w A n −1 ,A n 
, w B 1 ,B 2 

, . . . , w B m −1 ,B m 
) . The collection

of the k top weights determining the length of αAB ·αBC con-

tains a certain subcollection from the collection containing the

k top weights along αAB and a certain subcollection of the k

top weights along αBC . Therefore, the length of αAB ·αBC cannot

be longer than d k m 

(A, B ) + d k m 

(B, C) . Furthermore, the short-

est path between A and C cannot be longer than the length of

αAB ·αBC since it would not be the shortest path otherwise. 

The rest of this subsection presents our comments on the prop-

rties of the k -max distance from the point of view of the classifi-

ation ( C 1, C 2, C 4) introduced in [19,20] . Let αS be a path to a node

 , and let 〈 S, T 〉 be the arc connecting S with a node T . Obviously,

t makes sense to suppose that l ( αS ) ≤ l ( αS · 〈 S, T 〉 ), which is the C 1

ondition. Consider two different paths to S , denoted by αS and βS ,

espectively. We claim that the condition l ( αS ) < l ( βS ) ⇔ l ( αS · 〈 S,

 〉 ) < l ( βS · 〈 S, T 〉 ) ensures that the optimum path to S is a part of

he optimum path to T , which corresponds to the C 2 condition.

inally, the condition l ( αS ) = l ( βS ) ⇔ l ( αS · 〈 S, T 〉 ) = l ( βS · 〈 S, T 〉 ) is
he C 4 condition. In [20] , it is shown that the Dijkstra algorithm

an be used if either C 1, C 2 or C 1, C 4 are satisfied, which can be
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Fig. 3. Counter-examples showing that the k -max distance ( k = 2 in this case) does 

not meet the conditions presented in [20] : (a) The C2 property is not satisfied since 

l ( αS ) is optimal while l ( αS · 〈 S, T 〉 ) is not. (b) The C4 property is not satisfied since 

l ( αS · 〈 S, T 〉 ) > l ( βS · 〈 S, T 〉 ) although l ( αS ) = l ( βS ) . 

Fig. 4. Measuring the distance d km ( A, C ). 
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asily understood. In the Dijkstra algorithm, only a single value

hat could become the distance, and only a single pointer back are

tored in each node at each moment. The conditions C 1, C 2 or C 1,

 4 ensure that no other values are needed for a correct computa-

ion. 

The path length in the k -max distance satisfies only the C 1 con-

ition. Fig. 3 proves that neither C2 nor C4 are satisfied. Therefore,

he paths neither create the forest introduced in [19] , nor the Di-

kstra algorithm can directly be used. Further details are given in

he next section. 

.1. The k -max algorithm 

In this section, we present the algorithm for computing the k -

ax distance in graphs. In the sense that the distances are com-

uted from the shortest to the longest, the algorithm may be re-

arded as similar to well-known Dijkstra’s algorithm. On the other

and, substantial modifications are necessary, which is due to the

act that the k -max distance satisfies neither the condition C2

Bellman’s principle of optimality [21] ) nor the condition C4 from

he previous subsection. 

Consider the graph in Fig. 4 . If the shortest path is found be-

ween A and C and if B is a node on this path, it may happen that

he shortest path between A and B is not a part of the shortest

ath between A and C . Generally, there is a risk that the prob-

ems that do not obey Bellman’s principle cannot be solved effec-

ively. Firstly, we present the observations that make the computa-

ion feasible. Then the algorithm is presented. Say that the distance

 km 

( A, C ) between the nodes A and C is to be measured. Since two

aths, denoted by α and β , respectively, exist between A and B ,

he distance between A and B is d km 

(A, B ) = min { l (αAB ) , l (βAB ) } .
o determine the path lengths l ( αAB ) and l ( βAB ), two vectors of

 maximum weights along the particular paths are considered:

  B = (a 1 , a 2 , . . . , a k ) , 
�
 b B = (b 1 , b 2 , . . . , b k ) . According to the defini-

ion l(αAB ) = 

∑ k 
i =1 a i , and l(βAB ) = 

∑ k 
i =1 b i . Let us now explore

he path from B to C . Let c 1 , c 2 , . . . be the maximum weights

long this path. We suppose that the entries of the vectors are

lways ordered such that a i ≥ a i +1 , b i ≥ b i +1 , c i ≥ c i +1 in our no-

ation. If r values are retained ( k − r values are replaced) in 

�
 a B 

uring the way from B to C , the vector �
 a B is modified to the

ector �
 a C = (a 1 , a 2 , . . . , a r , c 1 , c 2 , . . . , c k −r ) , which happens if c 1 >

 r+1 , c 2 > a r+1 , . . . , c k −r > a r+1 . Along the same path, s values,

 ≤ s ≤ k , can be similarly retained in 

�
 b . 
B 
heorem 1. Consider the situation described in the previous para-

raph. If r values are retained in � a C from 

�
 a B (i.e., k − r values are re-

laced) and if 
∑ r 

i =1 a i < 

∑ r 
i =1 b i , then � a C (not � b C ) will determine the

istance d km 

( A, C ) . 

roof. Let s be the number of values that are retained when 

�
 b B 

hanges into � b C . Three cases should be distinguished: s = r, s > r ,

nd s < r . For brevity, only the latter case is presented. The remain-

ng cases can be proven in a similar way. 

Say that s < r . We have � a C = (a 1 , . . . , a r , c 1 , . . . , c k −r ) , and 

(αAC ) = 

r ∑ 

i =1 

a i + 

k −r ∑ 

i =1 

c i . (2) 

he vector �
 b C can be written in the form of �

 b C =
(b 1 , . . . , b s , c 1 , . . . , c k −r , c k −r+1 , . . . , c k −s ) . Considering the fact

hat c k −r+1 > b s +1 , . . . , c k −s > b s +1 (since b s +1 was completely

emoved from 

�
 b C during updating �

 b B to �
 b C ), and consequently

 k −r+1 > b s +1 , . . . , c k −s > b r (since b i ≥ b i +1 ), we have 

(βAC ) = 

s ∑ 

i =1 

b i + 

k −r ∑ 

i =1 

c i + c k −r+1 . . . + c k −s ≥
r ∑ 

i =1 

b i + 

k −r ∑ 

i =1 

c i . (3)

emembering the assumption 

∑ r 
i =1 a i < 

∑ r 
i =1 b i , we conclude that

 ( αAC ) < l ( βAC ). �

Since Bellman’s optimality principle does not hold for the k -

ax distance, a list of vectors (each containing the k maximum

eights, and each corresponding to a certain path to the node)

ust be stored in each node. Although only one of them deter-

ines the distance to the node, the remaining vectors may be

eeded for determining the distances to other nodes. It is threat-

ning that the total number of vectors that should be stored dur-

ng the computation may increase above the acceptable limits. The

heorem shows that the number of vectors can be reduced. 

In the algorithm, the vectors are examined in pairs to decide

hether it is necessary to store both of them for further computa-

ion. We let r run through all possible values 1 ≤ r ≤ k . If 
∑ r 

i =1 a i <
 r 
i =1 b i , we say that �

 a is better for that particular value of r . If
 r 
i =1 b i < 

∑ r 
i =1 a i , then 

�
 b is better. If � b is never better (i.e., is not

etter for any value of r ), then only � a is stored. We say that � b is

vershadowed by � a . (If � a is never better, we proceed analogously.)

f sometimes (for some values of r ) � a is better, and sometimes � b

s better, both the vectors are stored. The algorithm can now be

ormulated as follows. 

Algorithm The K -Max Distance in Graph 

Input: The graph and its node S from which the distances are to

e computed. 

Output: The k -max distances to all nodes in the graph. The

hortest path between S and each node if required. 

1. For each node, set its actual distance to a big value (infinity),

and create an empty list of its attached max vectors. 

2. Create an empty priority queue that will be used for organising

the vectors according to the distance. 

3. Set the actual distance d km 

(S, S) = 0 , insert the max vector

(0 , 0 , . . . , 0) into the list of the vectors attached to S , and in-

sert the vector into the queue (only the pointers are stored in

the queue). 

4. While the queue is not empty do 

5. Read and remove from the queue the vector, denoted by �
 m T ,

whose sum of entries is minimal. (The subscript T indicates that

the vector is attached to the node T , i.e., it is present in the list

of its max vectors.) If the candidate distance value determined

for T before is greater than the sum, replace it by the value of

the sum, and remember the pointer to the vector since it may

become the first vector for backtracking the path from T to S . 
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Table 1 

The distance (see the text), the mean of the maximum numbers (during one com- 

putation) of the vectors that were present in the list attached to one node ( ̂  M ), the 

absolute maximum number of vectors attached to one node ( M ), the number of the 

inserts into the queue in the form of the ratio R / V , and the real running time in 

ms. The values were computed from 10 5 samples; the mean values with standard 

deviations (the values in the brackets) are presented. 

k dist ˆ M M R / V Time 

5 2.04 (0.32) 1.90 (0.52) 8.29 (2.03) 1.99 (0.56) 17 

10 3.56 (0.40) 4.13 (1.44) 24.36 (8.09) 4.45 (1.54) 55 

15 4.87 (0.47) 7.79 (2.99) 52.67 (20.15) 8.38 (3.17) 170 

20 6.01 (0.55) 13.15 (5.28) 96.25 (40.02) 14.08 (5.55) 523 
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6. For each neighbour of T (including the neighbours for which the

distance has already been determined), do the following (let U

be such a neighbour, let w T, U be the weight of the arc connect-

ing T and U , and let M U be the list of the vectors attached to

U ): Update �
 m T with w T, U into �

 m T,U . (If the minimum value in

�
 m T is less than w T, U , replace it by w T, U . Otherwise, � m T,U = 

�
 m T ).

Check the updated vector with all vectors in M U . If no vector

overshadowing �
 m T,U exists in M U , insert �

 m T,U into M U , insert

�
 m T,U into the queue, remove from M U all the vectors that are

overshadowed by �
 m T,U , remove them also from the queue, es-

tablish the backtracking pointer from 

�
 m T,U to �

 m T . If a vector

overshadowing �
 m T,U exist in M U , do nothing. 

7. Output the distances of all nodes. The backtracking pointers at-

tached to the max vectors can be used for outputting the short-

est paths. 

3.2. Time complexity 

In this subsection, an outline of the time complexity analysis is

presented. Let V be the number of nodes, and let D be the max-

imum degree of node. We recall that k is the number of maxi-

mum values determining the distance. For now, say that the num-

ber of vectors that are attached to one node simultaneously at a

certain moment during computation is not greater than M . There-

fore, no more than VM items are present in the queue simultane-

ously. Say that no more than R vectors are inserted into the queue

in total (since the vectors can also be deleted from the lists at-

tached to the nodes, R may be greater than M ). Also, the minimum

vector is read no more than R -times. For each minimum vector,

no more than D node neighbours are checked/updated, which re-

quires O ( kDM ) time for the test of overshadowing and updating the

lists of the vectors attached to the neighbouring nodes. For insert-

ing/deleting the vectors into/from the queue (only the pointers are

inserted), O ( R log( VM )) time is required. It follows that the overall

time complexity is O (R (kDM + log (V M))) . Since V, D , and k are a

priori known constant values, the efficiency of algorithm depends

on the values of M and R . 

It is obviously difficult to explore the values of R and M theoret-

ically, Therefore, an experiment has been used to illustrate possi-

ble practical values. 10 5 images of size 101 × 101 pixels have been

generated containing Gaussian noise ( σn = 0 . 333 ). The arc weights

have been computed using Eq. (1) ( σw 

= 0 . 333 , η = 0 . 01 ). In each

image, the k -max distances from the centre of the image to all

image points have been determined. The number of inserts into

the queue, denoted by R , and the number of vectors attached to

the nodes simultaneously have been examined. Namely, the aver-

age maximum number of the vectors attached to one node (i.e.,

the average over the maximum numbers in particular nodes that

were achieved during computation), denoted by ˆ M , and the ab-

solute maximum number of vectors (i.e., the maximum over the

maxima in the particular nodes), denoted by M . The distance be-

tween the image centre point and the point in the top-left corner

has been checked too. The mean values together with the stan-

dard deviations of the mentioned quantities are shown in Table 1 .

The practical mean running time on one core of an Intel Pentium

3.4 GHz computer is also shown. It can be seen that the values of

R , ˆ M , and M increase with k . In spite of this fact, Theorem 1 can be

regarded as useful. The computation would not be feasible without

it. 

3.3. Further optimization 

To further reduce the number of the vectors that must be

stored, we introduce a criterion that makes it possible to remove

the vectors with a low probability of being important for deter-
ining the distance. However, it is achieved at the expense that

nly approximate distances are computed. 

heorem 2. Consider the situation as in Theorem 1 . Say that the

robability distribution of the arc weights in the graph is known and

s described by its cumulative distribution function, denoted by F (.) .

he particular arc weights are supposed to be independent. The prob-

bility, denoted by π r , of the event that, during the move along a

ath containing L arcs, the vector � a = (a 1 , . . . , a r , a r+1 , . . . , a k ) will be

pdated in such a way that just r entries will be retained in � a (i.e.,

ust k − r entries will be replaced) can be expressed as (we introduce

 − r ≡ q for brevity) 

r = 

q ∑ 

i =0 

(
L 

i 

)
(1 − F (a r )) 

i F (a r ) 
L −i 

−
q −1 ∑ 

i =0 

(
L 

i 

)
(1 − F (a r+1 )) 

i F (a r+1 ) 
L −i . (4)

roof. Consider two situations: (1) Less than q weights on the

ath will be greater than a r+1 . Therefore, less than q entries in 

�a

re replaced (more than r are retained). (2) More than q weights

ill be greater than a r . Therefore, more than q entries are re-

laced (less than r are retained). The probabilities of the men-

ioned events are denoted by π > r and π < r , respectively. The prob-

bility that just q entries are replaced ( r entries are retained) is

r = 1 − π>r − π<r . The first case occurs if 0 , 1 , 2 , . . . , q − 1 weights

n the path are greater than a r+1 . Therefore, we have 

>r = 

q −1 ∑ 

i =0 

(
L 

i 

)
(1 − F (a r+1 )) 

i F (a r+1 ) 
L −i . (5)

he second case occurs if q + 1 , . . . , L weights on the path are

reater than a r . It follows that 

<r = 

L ∑ 

i = q +1 

(
L 

i 

)
(1 − F (a r )) 

i F (a r ) 
L −i 

= 1 −
q ∑ 

i =0 

(
L 

i 

)
(1 − F (a r )) 

i F (a r ) 
L −i . (6)

he second formula can be derived if we realise that the items in

he sum in the first formula have the form that is known from

he binomial theorem. In this case, ((1 − F (a r )) + F (a r )) 
L = 1 L = 1 .

herefore, the terms in the sum in the second formula are the

erms that are not present in the first formula. The formula in the

heorem can now be obtained as πr = 1 − π>r − π<r . �

The method for determining whether or not a vector should

e stored ( Section 3.1 ) can now be modified. The condition from

heorem 1 tells whether, for a given value of r , a vector may be

eeded for determining the distance in the future. We strive to

etermine the probability that it will happen. Namely, we deter-

ine the probability of the event that just r entries are retained

n the vector during the future updates. If this probability is lower
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Table 2 

On the behaviour of the method using the probability threshold 0.3. The meaning of 

the symbols is as in Table 1 . F (.) was determined as the distribution corresponding 

to the Gaussian noise of pixel intensities ( Eq. (1) , σn = σw = 0 . 333 , η = 0 . 01 ). 

k dist ˆ M M R / V Time 

5 2.05 (0.32) 1.73 (0.44) 7.41 (1.70) 1.81 (0.48) 17 

10 3.57 (0.40) 2.58 (0.71) 14.44 (3.73) 2.77 (0.77) 36 

15 4.89 (0.47) 3.44 (1.01) 21.60 (6.12) 3.72 (1.08) 82 

20 6.03 (0.55) 4.52 (1.39) 29.73 (8.98) 4.89 (1.48) 201 

Fig. 5. The error rate of the k -max distance for the test case from Fig. 1 , a = 20 , 

da = 0 , k = 1 , . . . , 20 . Various noise levels ( σ n ) are considered. The dashed lines 

show the error rate for the geodesic distance with the same settings. 
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Fig. 6. The error rate of the k -max distance for the test case from Fig. 1 , a = 20 , 

σ = 0 . 3 , k = 1 , . . . , 20 . Various values of da are considered. The dashed lines show 

the error rate for the geodesic distance with the same settings. 
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b  
han a chosen threshold, we can conclude that the vector is not

mportant for that particular value of r . The discussion following

heorem 1 can now be extended. All values of r , 1 ≤ r ≤ k , are ex-

lored. Let n a be the number specifying for how many values of

 , � a can determine the distance ( Theorem 1 ). Similarly, n b specifies

or how many values of r , � b can determine the distance (or shortly,

s better). If n b > 0 and if n a is substantially greater than n b , 
�
 b is

hecked whether, for the value of r for which 

�
 b is better, the prob-

bility is big enough of the event that just r entries are retained

n 

�
 b in the future. If the probability is low for all r for which 

�
 b is

etter, � b is not stored. Various chosen values of L are used to esti-

ate the maximum possible probability. The function F (.) must be

nown or estimated. 

An example of how the introduced probabilities can influence

he numbers of vectors in nodes is presented in Table 2 . The test

nvironment was the same as described in Section 3.2 . The values

 ∈ { q , 2 q , 3 q } with the step max{1, q /2} were used to determine

he maximum probability for each checked value of r . As can be

een, the distances remain almost unchanged while the numbers

f vectors are reduced (compare with the results in Table 1 ). Al-

hough computing the probabilities takes some additional time, the

verall computation time is reduced if the probability threshold is

ufficiently high. 

. Experiments 

In this section, the performance of the k -max distance is shown

n comparison with the geodesic distance and the max-arc distance

which is equivalent to the 1-max distance). In the experiments on

eal-life images, the mentioned distance-based methods are also

ompared with the minimum barrier distance [14] , and with the

andom walker segmentation algorithm [22] . In all experiments,

he parameters from Eq. (1) are set to σw 

= 0 . 333 and η = 0 . 01 un-

ess otherwise noted. 

Firstly, we show the behaviour of the k -max distance on the

ame synthetic image that was used for illustrating the behaviour

f the geodesic distance in Section 2 ( Fig. 1 ). We measure the k -

ax distances d k m 

( A, B ) and d k m 

( B, C ). The measurement is erro-

eous if d ( A, B ) ≤ d ( B, C ). Fig. 5 shows the error rate of the
k m k m 
 -max distance for k = 1 , . . . , 20 , and for various levels of noise.

he results show that the error rate of the k -max distance is lower

han it is in the case of the geodesic distance. The error rate is

imilar only for k = 1 with σn = 0 . 4 . In this case, the high level

f noise causes that the weights of the important arcs that cross

he segment boundary are frequently overshadowed by the noisy

eights of the unimportant arcs lying inside the segments. This

s also the reason why the best results are not achieved for k = 1

max-arc distance), but a greater value of k is required although

he image contains only one boundary line between the segments.

ig. 6 shows how the error rate depends on the value of k for var-

ous values of da ( a = 20 , σn = 0 . 3 ). It can be seen that, beginning

rom a certain value of k , the error rate increases with k , which

s because more unwanted arc weights (affected by noise) are in-

luded into the max vector. If many such weights are included, the

robability increases that they will decide the final distance. For

 → ∞ , the error rate of the k -max distance approaches (from be-

ow) to the error rate of the geodesic distance, which is expected

ince the k -max distance becomes the geodesic distance for k → ∞ .

.1. Exploring the shortest paths in images 

In this experiment, the shortest path between two chosen im-

ge points is explored. A noisy synthetic image with a spiral, a map

mage, and a fundus photography are used ( Fig. 7 ). The shortest

aths found by the geodesic distance, the max-arc distance, and

he k -max distance for k ∈ {5, 10, 20} are shown. The spiral im-

ge contains two image segments: the spiral, and the background.

ince the chosen points are both situated in the background ( Fig. 7 ,

olumn 1, row 1), we expect that the whole shortest path be-

ween them should run in the background too. It can be seen that

he geodesic distance ignores the spiral shape since the expected

hortest path is too expensive due to summing the noisy weights

f many arcs. For the max-arc, 5-max, and 10-max distance, the

hortest path correctly follows the shape of spiral. For the 20-max

istance, the number of noisy weights summed in the distance is

oo high, similarly as in the case of the geodesic distance. In the

ap image ( Fig. 7 , row 2), the goal is to find the shortest path

onnecting two points located on the sea near the coast. We ex-

ect that the shortest path should run on the sea along the coast.

his is achieved by the k -max distance for k ∈ {5, 10, 20}. Similarly,

n the fundus photography ( Fig. 7 , row 3), the points are placed on

 retinal blood vessel. We expect that the path should follow the

essel, which is achieved by the 5-max and 10-max distance. 

.2. Image segmentation 

Since the distance measurement is important for image seg-

entation, the tests are carried out in this area. The seeded seg-

entation has been selected. It uses a priori provided seeds scrib-

led into the particular segments. The distance of every image
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Fig. 7. The shortest paths in images. The input images with the end points of the path are shown in the first column. The shortest paths are shown for the geodesic distance 

(column 2), the max-arc distance (column 3), and for the k -max distance for k = 5 (column 4), k = 10 (column 5), k = 20 (column 6). 

Fig. 8. Synthetic images to be segmented: (a, b) with a unit intensity step with 

Gaussian noise, (c) with textures, (d, e, f) with various positions of seeds. 

Table 3 

The comparison of the segmentation results of the synthetic images ( Fig. 8 ). The 

percentage of incorrectly labelled pixels is presented in the form of the mean values 

and standard deviations (in the brackets). The minimum errors are depicted in bold. 

Fig. 8 a Fig. 8 b Fig. 8 c 

Geodesic 7.29 (5.05) 7.38 (4.90) 8.17 (7.28) 

Max-arc 4.45 (11.16) 4.68 (10.57) 6.25 (14.77) 

5-max 2.78 (6.83) 2.69 (6.39) 3.69 (5.76) 

10-max 2.75 (4.75) 2.76 (4.39) 3.57 (4.63) 

Fig. 8 d Fig. 8 e Fig. 8 f 

Geodesic 5.86 (2.20) 8.73 (2.86) 14.55 (3.06) 

Max-arc 8.37 (16.42) 4.05 (10.43) 7.32 (15.32) 

5-max 5.09 (10.95) 2.58 (6.43) 5.12 (10.70) 

10-max 3.41 (7.18) 2.56 (4.42) 5.08 (7.96) 

 

 

 

 

 

 

 

 

Fig. 9. On the sensitivity to the number and position of seeds. The input image 

with the seeds (row 1), the segmentation results of the geodesic distance (row 2), 

the max-arc distance (row 3), the 5-max distance (row 4), and 10-max distance 

(row 5) are shown. The values in the images show the percentage of incorrectly 

labelled pixels. 

n  

m  

e  

t  

h  

t  

p  

e  

d  

a

point is measured to the seeds. The point is assigned to a segment

if the distance to its seed is shorter than the distance to the seeds

of the remaining segments. 

In the first test, a synthetic greyscale image with two segments

separated by a boundary in the image centre is used. Three ver-

sions of the image are considered: a unit intensity step with a line

boundary ( Fig. 8 a), with a more complex boundary ( Fig. 8 b) (both

with added Gaussian noise, σn = 0 . 3 ), and with textures in each

segment ( Fig. 8 c). The segmentation error is evaluated as a relative
umber of incorrectly labelled pixels, which is computed as the

ean (together with the standard deviation) from 10 5 samples. In

ach sample, the seeds (3 × 3 pixels) are placed randomly within

he segment area (one seed in each segment). We also explore

ow the positions of seeds influence the segmentation results. For

his purpose, Fig. 8 a is used ( σn = 0 . 3 ) with the seeds (3 × 3 pixels)

laced on various positions ( Fig. 8 d–8 f). The segmentation error is

valuated from 10 5 samples again. Table 3 shows that the k -max

istance performs better than the geodesic distance and the max-

rc distance in all the mentioned test cases. 
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Fig. 10. The images from the Berkeley dataset [23] used in the experiments. The 

object (red) and background (blue) seeds are depicted. 

Fig. 11. The mean segmentation errors (with standard deviations) of the methods 

tested on real-life images shown in Fig. 10 . The results of the geodesic distance 

(geo), the max-arc distance, the random walker (RW), the minimum barrier distance 

(MBD), and the k -max distance for various values of k are shown; k best is the result 

obtained in such a way that the best segmentation was found for each image for 

k = 1 , . . . , 30 . 
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We also examine the dependence on the position and the num-

er of seeds in a real-life image ( Fig. 9 ). We suppose that the

mage contains an object with a background (the image and the

round truth are from the Berkeley dataset [23] ). For the object,

ne seed is used. For the background, one, two, and three seeds,

espectively, are used. We examine how many seeds are necessary

o obtain satisfactory segmentation results. It can be regarded as a

ood property of the distance measure if the number and the po-

ition of seeds are not important. Fig. 9 shows that the geodesic

istance (row 2) requires more seeds in the background. The re-

ults of the max-arc (row 3) and k -max distance (row 4 and 5) are

imilar. 

Finally, we compare the segmentations based on the k -max dis-

ance, the geodesic distance, the max-arc distance, the minimum

arrier distance, and the random walker technique on several real-

ife images from the Berkeley dataset ( Fig. 10 ). Fig. 11 shows the

ean segmentation errors (with the standard deviations) of the

articular methods (the ground truth for each image is also from

he dataset). The value of σ w 

, which is used for computing the arc

eights, is chosen individually for each image such that it gives

he best possible segmentation result. 

. Conclusion 

We have presented a new distance called the k -max distance

hich can be used in the graphs and images. The length of a path

s defined as the sum of the k maximum arc weights on the path.

he distance is the length of the shortest path in this sense. We

roved that the k -max distance is a metric. Since it does not obey

ellman’s principle of optimality, the time and memory complex-
ty is generally critical. We presented the observations and the

ethod making the computation of the k -max distance feasible.

he properties of the k -max distance were tested and its compar-

son with some other distance measures was carried out. The ex-

eriments have shown that the k -max distance performs generally

etter than the geodesic distance. If used in image segmentation,

or example, it is less sensitive to the position and to the number

f seeds than the geodesic distance. We also achieved better re-

ults than the minimum barrier distance, and the random walker

echnique in the segmentation of real-life images. 
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