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Abstract

In this paper, we describe a novel and interesting ap-
proach for extracting the image features. The features we
propose are efficient and robust; the feature vectors of rel-
atively small dimensions are sufficient for successful recog-
nition. We call them the energy-transfer features. In con-
trast, the classical features (e.g. HOG, Haar features) that
are combined with the trainable classifiers (e.g. a support
vector machine, neural network) require large training sets
due to their high dimensionality. The large training sets are
difficult to acquire in many cases. In addition to that, the
large training sets slow down the training phase. Moreover,
the high dimension of feature vector also slows down the de-
tection phase and the methods for the reduction of feature
vector must be used. These shortcomings became the moti-
vation for creating the features that are able to describe the
object of interest with a relatively small number of numer-
ical values without the use of methods for the reduction of
feature vector. In this paper, we demonstrate the properties
of our features in the task of face detection.

1. Introduction
In the feature-based detectors that are combined with the

trainable classifiers, the extraction of relevant features has a
significant influence on the successfulness of detectors. The
large number of features slows down the training and detec-
tion phases; on the other hand, the very small number of
features need not be able to describe the properties of ob-
ject of interest. The quality of training set and the selection
of classifier is also equally important.

The proposed features are slightly inspired by the im-
age features that are based on the histogram of oriented gra-
dients (HOG) that was presented by Dalal and Triggs [3].
In their approach, the sliding window is divided into the
small regions (cells). The histogram of gradient directions
is computed within the regions. These regions are normal-
ized across the larger regions (blocks) to provide better il-
lumination invariance. The HOG descriptors are computed

in every position of the sliding window. In their paper, the
authors used the classifier based on the support vector ma-
chine (SVM). Many works show that the HOG descriptors
are very useful in the various detection tasks (further de-
tails may be found in Section 2). Nevertheless, the classical
HOG descriptors suffer from the large number of features,
which causes that the training and detection phases can be
time consuming. The sufficient amount of training data is
also needed to find a separating hyperplane by the SVM
classifier. Sometimes, it is desirable to use the methods for
the dimensionality reduction of feature vector.

We experimented with these features and these short-
comings became the motivation for creating a novel method
for the extraction of image features that give rise to the
lower number of relevant values with the preservation of
illumination and noise invariance properties without having
to use the methods to reduce the feature space. We call
them the energy-transfer features; if we speak about energy
transfer in this paper, we have in mind transfer of heat. In
the proposed method, we divide the whole input image into
regions. Inside each region, we define the source of temper-
ature. We calculate the mean temperature in these regions
(instead of the histogram of oriented gradient that is used in
HOG). For detection, the mean temperatures are then used
for composing the feature vector of sliding window. The
features are calculated globally in the whole input image
only once (for each scale of input image). The feature vec-
tor is then used as an input for the SVM classier. In this
paper, we demonstrate the robustness of the proposed fea-
tures for solving the problem of face detection.

The paper is organized as follows. We introduce the
readers to the area of feature-based detectors. Then, we
present the new method and we show its properties. Finally,
we compare our approach with the state-of-the-art methods.

2. Related Work
In the area of feature-based detectors, the HOG fea-

tures have become the very popular object descriptors [3].
Many detection methods with the HOG features have been
successfully presented. In [10], the authors presented the
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pedestrian detection system applied to the infrared images
that is based on the HOG features combined with the sup-
port vector machine (SVM) classifier. Zhu et al. [13] pre-
sented the AdaBoost-based feature selection combined with
the integral image representation to compute the HOG fea-
tures. The Authors report that the near real-time object
localization is obtained but the accuracy of descriptors is
reduced. In [2], the authors proposed boosting HOG fea-
tures that are combined to the final feature vector to train
the SVM classifier for vehicle classification. Kobayashi et
al. [4] applied Principal Components Analysis to reduce the
dimensionality of HOG features for pedestrian detection.

In the area of face detection, Kurita et al. [5] presented
that the selection of the most relevant Gabor features could
improve the accuracy of face detection. Papageorgiou and
Poggio [7] proposed the object detection system for static
images. Their system uses Haar wavelets for the descrip-
tion of faces, cars, and people combined with the SVM
classier. Schneiderman and Kanade [9] presented the train-
able detector for detecting faces and cars at any location,
size, and pose. Viola and Jones [11] proposed the object de-
tection framework based on image representation called in-
tegral image, rectangular features, and AdaBoost algorithm.
With the use of integral image, the rectangular features are
computed very quickly. The AdaBoost algorithm selects the
most important features that are used to train classifiers and
the cascade of classifiers is designed for reducing computa-
tion time. In [12], their detection framework was success-
fully extended for moving-human detection.

3. Energy-Transfer Features
The main idea of the proposed features is that the ap-

pearance of object of interest can be described by the dis-
tribution of temperature. The image can be considered as
a rectangular plate with certain thermal conductivity prop-
erties that are determined by the gradient of brightness (big
gradients indicate the low conductivity and vice versa). In
the area of image, the distribution can be solved by mak-
ing use of physical laws. We solve the distribution for the
point sources of constant temperature that are appropriately
located into the image. At t = 0, the temperature is zero
in the whole area of image, except the temperature sources.
We suppose that the heat transfer starts at t = 0 and, theo-
retically, it can be infinitely long. Nevertheless, we stop the
transfer at a suitable time t > 0. During the whole time of
transfer, the temperature at source points is held on a chosen
initial value. After the transfer, the distribution of tempera-
ture is investigated. Since the contours of object correspond
to the places with high gradients and since the values of
gradients correspond to the value of thermal conductivity,
we can conclude that the shapes of objects are encoded in
the distribution of temperature that can be obtained by the
process described above.

The usefulness and motivation to use the temperature
distribution function can be described as follows. Suppose
that the object of interest with the very thin edges is ana-
lyzed by the functions of gradient sizes and directions. The
meaningful sample values of this function can be difficult to
obtain; it is difficult to obtain (by the samples) the informa-
tion about the thin edges (the samples need not hit the thin
edges). On the other hand, the function of temperature dis-
tribution does not make problems during sampling. In this
function, the areas with approximately constant temperature
values are important and it is an easy matter to hit them by
samples.
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Figure 1. The image with one object and one source of tempera-
ture. The value of temperature is depicted by the intensity of red
color.

For better understanding, let us firstly consider the fol-
lowing very simple theoretical image containing one rectan-
gular object of constant brightness on the background (the
gradient of brightness of this theoretical image is shown in
the second row in Fig. 1). The problem of segmentation
can be transformed into the problem of solving heat trans-
fer as follows. At places where the size of gradient is zero,
the thermal conductivity equals to infinity; where the size
of gradient is greater than zero, the conductivity is zero. In
this first example, we have only one source of temperature
that is placed into a point lying inside the object (say into
the center of gravity). For all t >= 0, the temperature at
the source point is equal to 1. For t = 0, the temperature
at all other places in the image is equal to 0 (Fig. 1(a)).
After some time, t > 0 the distribution changes into the
form as is depicted in Fig. 1(b). Clearly, the distribution of
temperature reflects the shape of the object. It follows that
the distribution of temperature can be used for recognizing.
Generally, the distribution of temperature is a function with
uncountably many values. For practical use, the function
must be compressed into an acceptable amount of values.
We solve the problem simply by sampling. We can imagine
that the values of samples correspond to thermometers that
monitor the values of temperature function at chosen loca-



tions of image. We can take the samples in a regular grid
and we can use them as an input for recognition by SVM.
We note that in this particular example, the time of trans-
fer does not play a substantial role; the same distribution is
achieved for every t > 0 due to the assumption about the
infinite and zero conductivities.

The presented example also shows that one source point
will not be sufficient for the real-life images (Fig. 3(a)).
The reason can be easily understood. If we have more ob-
jects, if the objects are more complicated, and if we drop the
assumption that the conductivity can only be either zero or
infinity, more sources are apparently needed. Generally, the
sources can be placed into a regular grid (Fig. 3(b)). The
transfer of temperature starts from all sources at the same
time. After the transfer that was carried out during a suit-
ably chosen time, we obtain a temperature distribution. The
distribution reflects the presence of objects and their parts,
which is the main idea of method we propose. The visual-
ization of temperature distribution is shown in Fig. 3(c).
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Figure 3. The real-life image (a). The regular grid of sources (b).
The visualization of distribution of temperature from these sources
(c). The value of temperature is depicted by the level of brightness.

For the purpose of recognition, as was said before, the
function of temperature should be sampled. We can either
simply take the values at a point grid or to carry out the
sampling by integration. We regard the second approach as
more robust. For this purpose, we divide the input image
into cells and we investigate the mean temperature in each
cell. Generally, the position of the sources of temperature
can be chosen arbitrarily and independently on the cells. In
the following text, however, we put the sources into each
cell. As the position of sources, we use the gravity centers
of cells.

Let us express the things more formally. Let I(x, y, t)
stand for the value of temperature at a position (x, y) and at
a time t; the mean temperature in the i-th cell is denoted by
Iµi. We can compute these mean temperatures for all cells
in the whole input image. In the process of recognition, we
use a sliding window. The vector of features for each po-
sition of the sliding window is assembled from the mean
temperatures in the cells that fall into the window in its ac-
tual position (Fig. 4). The i-th item in the feature vector
is the mean temperature Iµi in the i-th cell in the window.
The vector of features is then used in the SVM classifier.
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Figure 4. The vector of features for a momentary position of
sliding window.

For practical realization of the method, it is important to
mention that the thermal field over the input image can be
solved by making use of the following equation [8]

∂I(x, y, t)

∂t
= div(c∇I), (1)

where I represents the temperature at a position (x, y) and
at a time t, div is a divergence operator, ∇I is the temper-
ature gradient and c stands for thermal conductivity. For
the source points and arbitrary time t ∈ [0,∞), we set
I(xs, ys, t) = 1, where (xs, ys) are the coordinates of
source points (i.e. we hold the temperature constant dur-
ing the whole process of transfer, which is in contrast with
the usual diffusion approaches). In all remaining points, we
take into account the initial condition I(x, y, 0) = 0. We
solve the equation iteratively. The conductivity in Eq. 1 is
determined by

c = g(‖E‖), (2)

where E is an edge estimate. We define the edge estimate
E as the gradient of original image E = ∇B, where B is
the brightness function. The function g(·) has the form of
[8]

g(‖∇B‖) = 1

1 +
(

‖∇B‖
K

)2 , (3)

where K is a constant representing the sensitivity to the
edges [8]. Once the temperature field over the input image
is obtained (at a chosen time t), the mean cell temperature
Iµi can be obtained by making use of the formula

Iµi =

∫∫
M

I(x, y, t)dxdy

|M |
, (4)

where M stands for the cell area, and |M | is its size.
After computing the vector of features, the SVM classi-

fier is trained. The function of SVM classifier has the fol-
lowing form

f(x) =

N∑
i=0

yiαik(x, xi) + b, (5)



Figure 2. The visualization of energy-transfer features (ETF). The firs row represents the original face images. The second row represents
the visualization of ETF from these images. In the visualization of ETF, the features are designed with the following parameters: the size
of cells 5× 5, time t = 200 (the number of iterations for the transfer of temperature), and the constant K = 10. The value of temperature
is depicted by the level of brightness.

where N represents the number of training patterns, yi is
a class indicator (+1 for positive patterns, -1 for negative
patterns) for each training pattern xi, αi and b are learned
weight and k(., .) is a kernel function. In our case, we use
Gaussian radial basis function kernel

k(x, y) = e
|x−y|2

2σ2 , (6)

where σ defines the kernel width. This kernel is very often
used in SVM.

Figure 5. The example of visualization of proposed features. The
left image shows the temperature function inside the whole input
image (the value of temperature is depicted by the level of bright-
ness). The right image shows the detection result of ETF324 con-
figuration without the postprocessing (the detection results are not
merged).

4. Face Detection

For the training phase, our positive set consists
of 1700 faces. We used the face images from
the BIOID database (https://www.bioid.com/downloads/
software/bioid-face-database.html) combined with the Cal-
tech face dataset (http://www.vision.caltech.edu/html-files/
archive.html). We manually cropped these images on the

area of faces only. The negative set consists of 3000 im-
ages that was obtained from the MIT-CBCL database (http:/
/cbcl.mit.edu/software-datasets/FaceData2.html).

We resized all training images to the size of 90 × 90
pixels. The visualization of energy-transfer features (ETF)
is shown in Fig. 2 (the effect of parameters will be dis-
cussed later). In the detection phase, we create the eight
different resolutions of input image; the proposed features
are computed for each resolution. The size of sliding win-
dow is set to the size of training images (90 × 90 pix-
els). We experimented with the parameters of our method
and we suggested the following configurations: ETF100,
ETF324. The ETF100 configuration is designed with the
size of cells 9× 9, time chosen for the transfer of tempera-
ture t = 350, K = 10. This configuration consists of 100
features. The ETF324 configuration is designed with the
size of cells 5× 5, time chosen for the transfer of tempera-
ture t = 200, K = 10. This configuration consists of 324
features. In the ETF100 configuration, the higher time pa-
rameter is necessary due to the larger cell size. The larger
cells require more iterations for the transfer of temperature
to affect the adequate area of image. The example of visu-
alization of temperature function inside the whole input im-
age with the positive detections of ETF324 configuration is
shown in Fig. 5.

For comparison, we used the detectors that are based
on the HOG features, LBP (Local Binary Patterns) features
([6]) and Haar features (Viola-Jones detection framework).
In essence, the HOG and LBP features are similar to the
proposed features in the sense that they also compute val-
ues over regular regions (e.g. square blocks) and, therefore,
these features are suitable for comparing (in contrast with
SURF, SIFT features that are based on arbitrarily located
feature points). The Viola-Jones detector that is based on
the Haar features was used because it is considered as a
state-of-the-art detector in the area of face detection.



Figure 6. The detection results of our approach (ETF324) without the postprocessing (the detection results are not merged).

We experimented with the parameters of HOG de-
scriptors and we suggested the following configurations:
HOG324, HOG1296. The HOG324 configuration was de-
signed with the same number of feature values like in the
ETF324 configuration. The parameters were as follows:
The size of block = 32× 32, size of cell = 16× 16, horizon-
tal step size = 32, number of bins = 9. This configuration
gives 324 HOG features. The HOG1296 configuration was
designed with the size of block = 16×16, size of cell = 8×8,
horizontal step size = 16, number of bins = 9. This config-
uration gives 1296 HOG features. For the HOG features
combined with the SVM classifier, we resized the training
images to the size of 96× 96 and we used the same training
images that we used for the proposed features with SVM
(1700 faces, 3000 non-faces).

For the detectors based on the Viola-Jones detection
framework with Haar features and with the features that are
based on LBP, we created the cascade classifiers. For these
classifiers, we resized the training images (1700 faces, 3000
non-faces) to the size of 19 × 19. The resulting cascade
classifiers had 11 stages for the LBP features and also for
Haar features (we note that the number of stages need not
be sufficient and it incurred as a result of a relatively small
amount of training data, however, we wanted to test all ap-
proaches with the same training data). To calculate the per-
formance of approaches, we collected the set of 80 images
that contains 117 faces from the Faces in the Wild dataset

[1]. Before the process of performance calculation, the pos-
itive detections were merged to one if at least 6 positive de-
tections hit approximately one place in the image. In Table
1, the detection results are shown. The ETF324 configura-

Precision Sensitivity F1 score
ETF100 32.9% 97.46% 49.25%
ETF324 87.90% 92.32% 90.08%
HOG324 67.25% 98.29% 79.89%
HOG1296 41.97% 97.41% 58.25%

Haar 74.45% 87.18% 80.31%
LBP 62.07% 76.92% 68.70%

Table 1. The detection performance.

tion achieved the best result with the 324 features (F1 score
= 90.08%). With this size of feature vector, the proposed
approach was able to describe the main features of faces
and this configuration detected faces with the lower number
of false positive detections than the booth configurations of
HOG features, Haar based detector and LBP based detector.
In the ETF100 configuration with the 100 features, the pro-
posed approach correctly detected most of the faces, how-
ever, with the high number of false positive detections. This
size of feature vector is not able to describe all non-faces
samples correctly (F1 score = 49.25%).

The configuration of HOG324 successfully detected the
majority of faces, nevertheless, with the false positive de-



tections in some cases. For example, the 324 HOG features
were not able to distinguish between the balloon and face
(Fig. 7). In these cases, the HOG324 configuration de-
tected most of the spherical objects like faces. The HOG
based detector (HOG324) is not able to describe all details
of the faces with such a small amount of descriptors (F1
score = 79.89%). On the other hand, the HOG1296 config-
uration suffers from the high number of false positive de-
tections (F1 score = 58.25%). We experimented with many
configurations of HOG features, but increasing the number
of features (without increasing training data and without the
reduction of feature space) did not improve the detection ac-
curacy.

Haar based detector had less false positive detections
(precision = 74.45%) than the booth configurations of HOG
features and LBP based detector. However, the Haar based
detector and LBP based detector missed some of the faces
(sensitivity = 87.18% and 76.92%, respectively). These de-
tectors would also need to increase the amount of training
data to achieve better results.

Finally, the ETF324 configuration shows that the faces
can be described with a reasonable number of features with
very good detection results and also with a relatively small
set of training data without need for the methods for reduc-
ing the feature space.

Figure 7. An example of detection. The left image shows the de-
tection result of HOG324 configuration. The right image shows
the result of ETF324 configuration. The detection results of ap-
proaches are shown without the postprocessing (the detection re-
sults are not merged).

5. Conclusion
In this paper, we proposed the novel approach for the

computation of image features. We call them the energy-
transfer features (ETF). The presented features are based
on the distribution of energy (temperature). The vector of
the features is used as an input for the SVM classifier. We
demonstrated that ETF were able to describe the faces with
a relatively small number of relevant features and with the
high accuracy. In our future work, we will focus on the
detection of other objects of interest (humans, cars) using
the proposed features.
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