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Abstract. In this paper, we propose a new eye iris center localization
method for remote tracking scenarios. The presented method combines
the geodesic distance with CNN-based classification. Firstly, the geodesic
distance is used for fast preliminary localization of the regions possibly
containing the iris. Then a convolutional neural network is used to carry
out the final decision and to refine the final position of the iris center.
In the first step, the areas that do not appear to contain the eyeball are
quickly filtered out, which makes the whole algorithm fast even on less
powerful computers. The proposed method is evaluated and compared
with state-of-the-art methods on two publicly available datasets focused
to the remote tracking scenarios (namely BioID [9], GI4E [15]).
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1 Introduction

In the area of recognition of eye movements, the remote and head-mounted eye-
tracker systems have been widely deployed in recent years. The head-mounted
eye-tracker systems are represented by the devices that are very often attached to
the user’s head. These systems can be used to obtain accurate information of the
eye movements, such as gaze direction, or iris and pupil position. However, these
systems are more intrusive for the users than the remote eye-tracker systems.
The remote trackers can be represented by a single or multiple cameras located
away from the user. For example, these kind of trackers are used inside the
vehicle cockpits to recognize fatigue of the driver or blinking frequency. The
remote systems can also be used for iris and pupil localization, however, due
to the fact that the images provided by the remote systems have usually low
resolution, recognition of the eye parts represents a challenging task.

In this paper, we propose the method for localization of iris center for remote
tracking scenarios. The method is based on the geodesic distance combined with
a convolutional neural network (CNN). In [6], the authors show that the geodesic
distance can be used for pupil localization. We experimented with their method
and we observed detection shortcomings, which became the motivation for this
paper. However, we found that the method is useful, especially, for fast detection
of the coarse position of iris. We use the idea for iris localization based on the
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geodesic distance presented in [6] as the first step. Nevertheless, in the second
step, we newly use CNN to refine the final position of the iris. This step extends
and improves the original method, which is the main contribution of this paper.
The presented experiments show that the proposed method outperforms the
original method [6] and state-of-the-art methods in this area.

The rest of the paper is organized as follows. The previously presented papers
from the area of eye analysis are mentioned in Section 2. In Section 3, the main
steps of proposed method are described. In Section 4, the results of experiments
are presented.

2 Related Work

In the area of iris and pupil detection, many different approaches have been pre-
sented. In [13], the method designed for head-mounted eye-tracking systems for
pupil localisation were proposed. The main steps include: removing the corneal
reflection, pupil edge detection using feature-based technique, and ellipse fitting
using RANSAC. Swirski et al. [14] presented the method that uses a Haar-like
feature detector to roughly estimate the pupil location in the first step. In the
next step, the potential pupil region is segmented using k-means clustering to
find a largest black region. In the final step, the edge pixels of region are used for
an ellipse fitting using RANSAC. Exclusive Curve Selector or ExCuSe was pro-
posed in [2]. This method is based on histogram analysis combined with Canny
edge detector and ellipse estimation using the direct least squares method. in
[8], another pupil detection method know as SET was proposed. The method is
based on thresholding, segmentation, border extraction using the Convex Hull
method, and selection of the segment with the best fit. In [5], another approach
know as ElSe was proposed. The method using edge filtering, ellipse evalua-
tion, and pupil validation. Another method for determining iris centre in low-
resolution images was proposed in [7]. In the first step, the coarse location of iris
centre using a novel hybrid convolution operator is used. In the second step, the
iris location is further refined using boundary tracing and ellipse fitting. In [10],
a pupil localization method based on the training process and Hough regression
forest was proposed. The method based on a convolutional neural network was
proposed in [3, 4]. Evaluation of the state-of-the-art pupil detection algorithms
was presented in [1].

3 Proposed Method

In many iris or pupil detection methods, the coarse position of iris or pupil is
localized in the first step. For example, circle-shaped (due to the shape of pupil)
convolution filter is used in [7]. In [14], the approximate pupil region is localized
using a Haar-like center surround feature.

In this paper, we adopt the coarse localization of iris (eyeball) presented in
[6]. For convenience of the reader, we briefly mention this approach.The approach
is based on the geodesic distance that is used in the following way. Suppose that



Iris Center Localization Using Geodesic Distance and CNN 3

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1. The steps of eyeball and iris center localization using Geodesic distances. The
input image (a). The visualization of the distance function from the centroid (b) and
from particular corners (c, d, e, f). The mean of all corner distances (g). The difference
(h) between (g) and (b) (only non-zero distances are shown). The convolution step (i).
The final position of iris center (j). The values of distance function are depicted by the
level of brightness.

the image of eye region (Fig. 1 (a)) is obtained beforehand (e.g. using facial
landmarks or eye detector). In the first step, the geodesic distance is computed
from the centroid (point located in the center of the eye region) to all other
points inside the eye image (Fig. 1 (b)). The geodesic distance between two
points computes the shortest curve that connects both points along the image
manifold. Since the values of distance function are high in the area of eyebrow,
this step is useful for the removal of eyebrow. It follows that the areas with low
distances represent the potential location of pupil and iris.

In the next step, the geodesic distance is also computed from each image
corner to all other points inside the image (Fig. 1 (c-f)). Then, the mean of all
corner distances is calculated (Fig. 1 (g)). Thereafter, for automatic extraction
of eyeball area, the difference between Fig. 1 (g) and Fig. 1 (b) is carried out.
In the image that visualizes this difference step (Fig. 1 (h)), it can be seen that
the eyebrow area is removed and the potential area of iris is localized. In [6], the
authors used the convolution operation with the Gaussian kernel in the last step
(Fig. 1 (i)). Then, the final iris position is determined as the location with the
maximum value after the convolution step. In Fig. 1 (j), the iris center position
obtained using this approach is shown. In this particular case, it can be seen that
the method fails to find the correct pupil and iris center (position) due to the
fact that the iris is gently off-centered. Fig. 1 (a) is taken from the GI4E dataset
[16] that contains many similar off-center iris and pupil images. We observed
that these kinds of images cause difficulties for the method that was presented
in [6] due to the fact that the final detection is based on finding one point only
with a maximum distance, which does not seem to be reliable enough.
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Fig. 2. The steps of iris center localization using the proposed approach. The input
image (a). The visualization of the distance function from the two corners (top left
(b) and bottom right (c)). The mean of two corner distances (d). The example of
extracted preliminary iris region (e) using difference step between (d) and Fig. 1 (b).
The convolution step (f). The example of selected cropped images (windows) that are
used as an input for the CNN-based detector (g). The final position of iris center using
the proposed approach (h). The values of distance function are depicted by the level
of brightness.

In contrast to the approach from [6], the main steps of our new approach
are as follows. In the first step, the candidates for iris center are quickly deter-
mined. In the second step, the real centre is determined among the candidates
by making use of a traditional convolutional neural network. Rapidly filtering
out the points that do not have a chance to become the iris center speeds up the
whole algorithm, which is often required. In addition to this, the first step also
contributes to the successfulness of recognition since the neural network is asked
to decide only certain specific pixel configurations in image. In the subsequent
paragraphs, this general idea is presented in more details.

In the first step, we follow the approach presented in [6] that has been briefly
repeated at the beginning of this section. Since, in the case of the method pre-
sented here, the goal of the first step is only to determine the candidates (not
to determine the final position of the iris center directly), we may simplify the
algorithm presented in [6], which is desirable since the first step should be fast.
We do the following: Instead of measuring the distances from the four corners,
which was done in the original method, we compute the distances only from two
cornes with the hope that the subsequent use of CNN will compensate for this
simplification. We use the top left and bottom right corner, see Fig. 2 (b), (c).
For the same reason, a smaller kernel size may be used in convolution smooth-
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Fig. 3. An example of iris and non-iris images.

ing the difference between the distances from the center and the mean of the
distances from the corners (see Fig. 2 again), i.e. less aggressive smoothing is
used. We note that the expectations we mention here will also be confirmed
experimentally in Section 4.

Before carrying out the second step, suppose that the CNN-based classifier
is trained with a sufficient amount of training iris and non-iris images (Fig.
3). In the second step, the distance differences produced in the first step are
subjected to thresholding. It means, that the position is verified by CNN only if
the distance value is big enough at that point; a window (centered at the point
that is being verified) of the gray-scale image is used by CNN (Fig. 2(g)). Finally,
the location with the best response of CNN-based detector represents the final
iris position (Fig. 2(h)).

The main advantage of this approach can be summarized as follows. Since,
the original method uses only the maximum distance value as the final point (i.e.
feature vector with one value), the combination with CNN-based detector has
a positive effect on detection accuracy due to the fact that the model of iris is
suitably described using more sophisticated feature vector with the use of CNN.
With the use of coarse iris localization, the whole input image is not evaluated
using CNN-based detector. The classification is carried out in the neighborhood
of points with hight distance values to fine-tune iris position. This step has a
positive effect on detection speed of CNN. Based on the above, the small number
of negative training images can be used due to the fact that the iris position is
approximately detected in advance.

4 Experiments

As we described in the previous section, after detection of approximate iris area
based on the geodesic distance, the potential points that are selected using the
appropriate threshold are further evaluated with the use of CNN. Based on our
experiments, we observed that 85% of all points in the eye image can be discarded
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Fig. 4. Examples of eye images used in experiments. The BioID images are in the first
row. The GI4E images are in the second row.

Fig. 5. The cumulative distribution of detection error. The error that is calculated
as the Euclidean distance (in pixels) is in the x-axis. The y-axis shows percentage
of frames with the detection error smaller or equal to a specific error. The names of
datasets are placed above the graphs.

based on their low distance values. It means, that we examine only 15% of all
points in the image (i.e. locations with the highest distance values) using CNN.
Since, we would like to keep a fast computational time of the approach, we use
a general architecture of LeNet [12] network for CNN. The network consists of
two convolutional layers with the depth of 6 and 16, respectively, and a 5 × 5
filter size with a 1 × 1 stride. Each of the layers is followed by a rectified linear
activation function. Thereafter, a max pooling layer with a window size of 2× 2
and with a 2 × 2 stride is added; last two layers are fully connected. We used
stochastic gradient descent with the learning rate of 0.01 annealed to 0.0001
To compute the recognition score (confidence), we use the soft-max layer, and
32 × 32 grayscale images are used as an input. The implementation of CNN is
based on Dlib [11]. The training set consists of 4600 iris images and 4600 non-
iris images that we manually created from our eye image data (Fig. 3). It is
important to note that the number of training images is low due to the fact that
the geodesic distance is used to find approximate iris location and CNN-based
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Table 1. The detection results of methods.

BioID
Mean error (pixels)

GI4E
Mean error (pixels)

Time
per region (ms)

proposed1 4.97 4.09 18
proposed2 5.36 4.35 9

Dist 5.51 5.58 10
CNN1 6.41 4.65 240
CNN2 6.34 4.92 15
ElSe 10.50 12.72 16

ExCuSe 11.00 7.10 8
Swirski 10.43 11.10 10

detector is used to refine the final iris position. Therefore the negative training
data were obtained around the iris location only.

We examine two configurations of the presented approach. In the first con-
figuration, we use the CNN detector that evaluates neighborhood of every point
after the distance thresholding (15% of all points). The method with this config-
uration is denoted as proposed1 in the following experiments. We also created the
faster option of our method in that the every fourth point is used after the dis-
tance thresholding. This method is denoted as proposed2. The size of extracted
area around each point is 32 × 32 pixels in both variants.

To compare the proposed algorithm to state-of-the-art methods, we have
chosen the following methods. Namely ElSe, ExCuSe, Swirski, the original
distance method (denoted as Dist), and two CNN-based iris detectors: CNN1

and CNN2. In the first CNN-based detector (CNN1), we used a sliding window
technique applied to the entire input eye image with one pixel stride, and the
stride of four pixels is used in the second detector (CNN2). The size of sliding
window is 32 × 32 pixels in both variants (i.e. 32 × 32 grayscale images are
used as an input). The architecture and training process of networks are the
same as in the proposed method. It is worth mentioning that ElSe, ExCuSe,
and Swirski were primarily developed to work with images acquired by head-
mounted cameras, however, the experiments in [1] show that the methods can be
used in the remote images as well. We also experimented with their parameters.
For ElSe, we directly used the setting for remotely acquired images published
by the authors of the algorithm.

To evaluate the methods, we used two public datasets; BioID [9] and GI4E
[15]. The BioID dataset contains 1521 images with the resolution of 384x286
pixels. The GI4E database contains 1339 images with the resolution of 800x600.
From both datasets, the eye regions are selected based on the provided ground
truth data of eye corner positions. It is important to mention that the eye images
from datasets are purposely extracted with the eyebrow to test the methods
in complicated conditions. The size of each extracted eye image (from both
datasets) is 100 × 100 pixels in the following experiments. Example images of
the GI4E and BioID datasets that are used for experiments are shown in Fig. 4.
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Fig. 6. Examples of images in which the proposed method performs better compared
to other tested methods. The results of methods are distinguished by color: proposed2
- red, CNN2 - blue, Dist - cyan. The first row: GI4E dataset, the second row: BioID
dataset.

In Table 1, the detection results and average times of methods are shown. We
note that the average time for processing one eye region was measured on an Intel
core i3 processor (3.7 GHz) with NVIDIA GeForce GTX1050. The given average
errors are calculated as the Euclidean distance between the ground truth of iris
center and the center provided by the particular detection method. in Fig. 5, we
also provide the resulting plots of detection results. In the plots, the cumulative
distribution of detection error is shown (i.e. the graphs show percentage of frames
with the detection error smaller or equal to a specific error).

Based on the results, we can conclude that the proposed method achieved
very stable results and outperforms all methods in images of both datasets. In
BioID datasets, the average detection error of proposed method (proposed1) is
4.97 pixels. It means that the presented method also outperforms the original
method (Dist) in the area of detection accuracy (4.97 vs. 5.51). The faster
variant of our method (proposed2) also achieved promising results (5.36). it is
worth mentioning that the CNN-based detectors achieved good detection score
(6.41 and 6.34), however, the detection time is unnecessarily long in the first
variant of CNN (CNN1). The situation is better in the second faster variant of
CNN detector (CNN2), unfortunately, the detection error is bigger than in the
faster variant of proposed approach (6.34 vs 5.36). Based on the results in Fig.
5, it can be observed that the proposed method is able detect approximately
90% of all frames with detection error smaller than 8 pixels. Even in the case
of GI4E datasets, the proposed detectors achieved smaller errors than all tested
methods (4.09 and 4.35). This situation can also be seen in Fig. 5.

In summary, our results show that the proposed method outperforms the
main competitors: the original method presented in [6] and the iris detectors
based on CNN. The proposed method that combines CNN with distance-based
preprocessing also achieved the promising time needed for processing one eye
region (9 ms in proposed2). Fig. 6 shows several cases in which our method
works better compared to other tested methods (main competitors: CNN2 and
Dist). Based on the results in Fig. 6, it may be said that the common errors are
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caused by the presence of glasses and reflections, however, the proposed method
is better in such cases than the tested methods.

5 Conclusion

In this paper, we proposed a new approach for iris center localization that com-
bines the geodesic distance with a convolutional neural network (CNN). In the
first step, the geodesic distance is used to find the preliminary area of iris. Then,
the potential locations of iris are selected based on the distance values computed
in the first step. Finally, the selected locations are evaluated using CNN and the
location with the best response of CNN represents the final iris position. The
proposed approach was evaluated and compared with state-of-the-art methods
on two publicly available datasets. Based on the experimental results, we can
conclude that the proposed method achieved better recognition performance and
reasonable computational time when compare to the existing methods. We leave
the deeper experiments with another architectures of CNN for future work.
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