New text on deep neural networks for Image Analysis I
http://mrl.cs.vsb.cz//people/sojka/cnns.pdf

e It should give an idea what is happening in the area.

* Do do take it too much seriously, just try to get into the spirit.

* We have another course (Image Analysis II) that is fully focused into this area.
* The text is still under the development (i.e. unfinished at this moment).

Thanks for understanding and tolerance.

eduard


http://mrl.cs.vsb.cz//people/sojka/cnns.pdf
http://mrl.cs.vsb.cz//people/sojka/cnns.pdf

What can we do? “Hand-crafted” recognition.

* Segmentation (similarity in color or brightness or texture, finding boundaries)
» Computing features (describing shape, color, brighness, texture)
e Classification

However, neither segmentation nor computing features are genarally easy.
(segmention: consider a picture from a street, shopping centre etc.; features: consider
the situation in which you are to recornise many types (classes) of objects). If
segmentaion and the features are OK, the classification itself is not so complicated.
(,Only*“ to find and separate the clusters in the space of features.)

What we can +- expect today (YOLO v8 was used in the folowing examples):




al




How we will continue in this course

Efficient methods before the boom of DNNs/CNNs (and also inspiring for
DNNs/CNNs development): Dalal and Triggs (2005): Histograms of Oriented
Gradients for Human Detection (HoG + SVM).

CNNs/DNNs + sliding window, from LeNet (1998) to AlexNet(2012), ..., and
to ResNet (2015).

R-CNN (2014), Fast R-CNN (2015), Faster-CNN (2015): The sliding window
is replaced by automated proposals of windows potentially containing the
objects (region proposal). The number of regions that are proposed is high (e.g.
2k); the proposals are often incorrect, the correctness is verified in the next
step, which is classification. Together with classification, the position of object
region may be recomputed with the goal to make it more precise.

YOLO (You Only Look Once) V1 (2015), ..., YOLO v9 (2024): One network
is responsible for everything (region proposal, classification, determining more
precise region).

Another interesting networks (e.g. with time): recurrent networks, LSTM,
SelfAttention, ...



I. Efficient and inspiring methods preceding the DNNs/CNNs era: Dalal
and Triggs (2005): Histograms of Oriented Gradients for Human Detection (sliding
window+HoG+SVM).

How to avoid segmentation: Instead of determining the pixels [ goimage atan
creating the object, only the window in which the object is possibly |_scales and locations
present is used. The features are computed from the whole area of | gxact features over

this window. Sufficiently big training set will help the classifier to windows
decide which features (from the whole window area) are important  Runlinear SV
for recognising the object in window. The process of segmentation is locations

thus replaced by using so called sliding window. Sliding window Fuse muliple
moves along the whole area of image by small steps. At each _ detectionsin3D
position & scale space

position, it is checked whether or no the object that is to be
recognised is present at that position.

Sliding Window principle

Say that we have a method that can recognise the human providing that the human
fits into the yellow sliding window. Sliding window moves along the whole area of
image by small steps. At each position, it is checked whether or no the object that is
to be recognised is present at that position. As a result, we may obtain e.g. the
probability that the human of the size corresponding to the size of window is present
at that position.

The problem is that the people in the picture are of different size. The sliding window
usually retains its size (since the size is connected with the subsequent steps). Instead
the analysed picture is rescaled (reduced for big people, enlarged for small people).
Many image scales are usually used (i.e. we have a pyramid of rescaled images as is
depicted in the figure).




Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple
detections in 3-D
position & scale space

Finally, the results from all positions of sliding window and from all image scales are
evaluated. 3D probability maps are created. Maximum probability values are taken
into account, overlapping detections are removed.

HoG principle

Scan image(s) at all
scales and locations

Extract features over
windows

Run linear SVM
classifier on all
locations

Fuse multiple -
detections in 3-D Compute Weighted vote Contrast normalize
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Histogram of Gradients

Quite often blocks containing 8x8 pixels are used (as in the figure above). 2x2 blocks
are usually joined together. Their histogram vectors are simply concatenated, which
gives 36 values. This final vector is finally normalised to unit length. Dalal & Triggs
used the sliding window of size 64x128. What was the size of the final feature vector

for this window? (This is a homework. :-))

Once we have the feature vector for the whole sliding window, it can be sent to a
classifier. Support vector machine (SVM) was used in the original approach. It would
also be possible to use a shallow neural network.



IL. Sliding window + CNNs (DNN5s)
Brief repetition of what we have already done (neural cell + fully connected layers)
o wo
axon from a neuron \Synapse
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cell body
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output axon
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Activation functions: Sigmoid, Tanh, ReL.U, Leaky ReL.U

Activation Functions

Sigmoid Leaky ReLU
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(a) Standard Neural Net (b) After applying dropout.

Gradient descent, stochastic gradient descent, (mini)batch gradient descent.



Another useful prerequisite: Networks with competition (Kohonen Maps, 1982)
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Finally, we must be familiar with the convolution. We have discussed it in the
previous course (Digital Image Processing). I will briefly repeat it during the lecture.
It would not give a sense otherwise.

Why the convolution is used in the networks: It should extract what is
important for recognition 0060060600r600s000
[ U T W AR A R U B R A |
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LeNet-5: Y. Lecun et al.: Gradient-based learning applied to document recognition
(1998). Feature extraction by convolutional layers and pooling is followed by final
classification, which is carried out in the fully connected layers. (You may notice, if
you want, the term “Gaussian connections”. The last layer can be viewed as Kohonen
map. We would probably use softmax today.)

In the past, we were interested what is exactly happening in the convolutional layers.
It is illustrated by the following figure.



Fig.3: Activations taken from the first convolutional layer of a simplistic deep
CNN, after training on the MNIST database of handwritten digits. If you look
carefully, you can see that the network has successfully picked up on character-
istics unique to specific numeric digits.

A more general view on how the particular layers are put together:

convolution w/ReLu  pooling convolution w/ ReLu  pooling pooling fully-connected
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Fig.5: A common form of CNN architecture in which convolutional layers are
stacked between ReLus continuously before being passed through the pooling
layer, before going between one or many fully connected ReLus.
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Elements of NNs and the key for reading the figures that follow
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Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Softmax

e Aspecial kind of activation layer,
usually at the end of FC layer
outputs

e Canbeviewed as a fancy
normalizer (a.k.a. Normalized
exponential function)

e Produce adiscrete probability
distribution vector

e Very convenient when combined
with cross-entropy loss
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Given sample vector input x and weight
vectors {w}, the predicted probability of y = j




C3:f. maps 16@10x10
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LeNet a co dal? ILSVRC (ImageNet Large Scale Visual Recognition Challenge) is an

annual computer vision competition. It is done on a subset of a computer vision
dataset called ImageNet https://www.image-net.org/challenges/[.SVRC/.
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V soutéZi je vice kategorii, prohlédnéte si také vysledky pro jednotlivé roky, napf.
https://image-et.org/challenges/.SVRC/2015/results. DalSi sité jsou vitézné sité v
této soutézi.

Year CNN Developed Errorrates  No. of
By parameters

1998 LeNet Yann LeCun 60 thousand
etal

2012 AlexNet Alex 15.3% 60 million
Krizhevsky,
Geoffrey
Hinton, llya
Sutskever

2013 ZFMet Matthew 14.8%
Zeiler, Rob
Fergus

2014 GoogleNet Google 6.67% 4 million

2014 VGGNet Simonyan, 7.3% 138 million
Zisserman

2015 ResNet Kaiming He 3.6%



https://image-net.org/challenges/LSVRC/2015/results
https://www.image-net.org/challenges/LSVRC/

AlexNet

AlexNet (Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: ImageNet
Classification with Deep Convolutional Neural Networks, 2012) was the winner of

ImageNet ILSRVC 2012 (team name SuperVision).

Figure 5.12: The AlexNet CNN
In the original paper:
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ZFNet

ZFNet: Winner of ILSVRC 2013 (Image Classification). Jedna se o tuning AlexNet.
Zajimavé je, jak se priSlo na to, co se ma zmeénit. Vizualizaci toho, co se déje v
jednotlivych vrstvach. Pro blizsi vysvétleni se l1ze podivat do Matthew D. Zeiler and
Rob Fergus, Visualizing and Understanding Convolutional Networks, 2014,

https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf.
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https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf

VGG: Oxford Visual Geometry Group

VGG: Karen Simonyan, Andrew Zisserman: Very Deep Convolutional Networks for Large-Scale Image
Recognition (2015)
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Above: Several types of visualisation, table of possible configurations. VGG is a
famous network that has been also used as a building block in further networks.



GoogleNet CNN
C. Szegedy et al.: Going Deeper with Convolutions (2015)
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Figure 5.15: The GoogleNet CNN
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Figure 5.14: The Inception module
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concat

5x5 conv. 1x1 conv.

1x1 conv.

max pool

1x1 conv. 1x1 conv.

NVIDIA totéz
Filter Concat
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3x3

i
3x3 3x3 1x1

[ i i I IR |
1x1 1x1 Pool 1x1 1x1 1x1 Pool 1x1

'l 1x1
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C. Szegedy et al.: Rethinking the Inception Architecture for Computer Vision (2015).
Zlepsuje zde svij predchozi navrh z téhoZ roku. Sit' by méla mit méné parametr.
Odtud rychlejsi uceni i inference.



ResNet CNN

Kaiming He et al.: Deep Residual Learning for Image Recognition (2015)
Kaiming He et al.: Identity Mappings in Deep Residual Networks (2016)
Jie Hu et al.: Squeeze-and-Excitation Networks (2018)

Plain Block Residual Block
X X
Stacked neural Stacked neural y
F network layers network layers
y=Fix) y=Flx)+x
Hard to get F(x)=x and make y=x Easy to get F(x)=0 and make y=x
an identity mapping an identity mapping

If the identity mapping is optimal, it is very easy to come up with a solution like F(x)
=0 rather than F(x)=x using stack of non-linear CNN layers as function.

Residual Block (ResBlock)
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relu
1x1, 256
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Solving the problem of segmentation by CNNs

H. Noh, S. Hong and B. Han, "Learning Deconvolution Network for Semantic Segmentation," 2015 IEEE
International Conference on Computer Vision (ICCV)

Problem:

The network: VGG 16 is used as a convolution layer. The deconvolution network
contains unpooling and transpose convolution layers, which are organised in the
reverse order with respect to the input convolution network. The key idea is that the
bottleneck (4096 numbers) between the convolution and deconvolution network
describes all substantial information that is contained in the picture. The pairs like in
the figure above must be prepared for training. The right images are the required
answer of the deconvolution network.
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Transpose convolution with stride 1 (left figure) and stride 2 (right figure)
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R-CNN:s, Fast R-CNNs, Faster RCNNs (2014, 2015)

Girshick, R., J. Donahue, T. Darrell, and J. Malik. "Rich Feature Hierarchies for Accurate Object Detection
and Semantic Segmentation." CVPR '14 Proceedings of the 2014 IEEE Conference on Computer Vision and
Pattern Recognition. Pages 580-587. 2014

The R-CNN detector first generates region proposals using (approx 2000, selective
search is used in the original paper). The proposal regions are cropped out of the
image and resized and warped to window 227x227 pixels. The CNN features are then
computed (Cafe implementation of the AlexNet, 4096 features). Finally, the region
proposal bounding boxes are classified by a support vector machine (class-specific
linear SVM) that is trained using CNN features.
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The ideas of how the region proposals can be done

Selective search is inspired by the region growing method for image segmentation. In
each iteration step two areas best fitting one to another (color, brightness, texture,
shape) are connected together. Each new area may be an object., i.e. the
corresponding region proposal is generated (see the figure below).




Edge bounding boxes: The candidate bounding boxes are sought for using a sliding
window search over position, scale and aspect ratio. The length of contours that are
fully enclosed by the box is evaluated, these contours increase the chance that an
object is present in the box. On the contrary, the contours running across the
boundary of the decrease this chance. Top-ranked region proposals are used.

In this context (edge bounding boxes), new approaches for detecting edges have been
used (Structured Forests for Fast Edge Detection). Random forests were trained on
the BSDS500 segmentation and NYU Depth datasets using 16x16 window (you can
check it also in OpenCV). The difference between the results obtained by the usual
algorithm and the algorithm using random forests can be seen in the figure below.

https://docs.opencv.org/3.4/d0/da5/tutorial_ximgproc_prediction.html

Random forests

—  Sobel- = Random-forests—— —
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Ilustrative examples showing from top to bottom (first row) original image, (second
row) Structured Edges, (third row) edge groups, (fourth row) example correct
bounding box and edge labeling, and (fifth row) example incorrect boxes and edge
labeling. Green edges are predicted to be part of the object in the box while red edges
are not.



Fast R-CNN
Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE International Conference on Computer Vision. 2015

As in the R-CNN detector , the Fast R-CNN detector also uses an algorithm like Edge
Boxes or Selective Search to generate region proposals. Unlike the R-CNN detector,
which crops and resizes region proposals, the Fast R-CNN detector processes the
entire image. Whereas an R-CNN detector must classify each region, Fast R-CNN
pools CNN features corresponding to each region proposal. Fast R-CNN is more
efficient than R-CNN, because in the Fast R-CNN detector, the computations for
overlapping regions are shared.
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Fast R-CNN architecture. The entire image (e.g. 1000%600) is fed into the backbone
CNN (e.g. VGG) and the features from the last convolution layer are obtained (size
60x40x512, for example). Each Rol is pooled into a fixed-size (e.g. 7x7) feature
map. Rol max pooling works by dividing the h x w Rol window into an HXW grid of
sub-windows of approximate size h/Hxw/W and then max-pooling the values in each
sub-window into the corresponding output grid cell. Pooling is applied independently
to each feature map channel, as in standard max pooling. The final feature vector is
further processed in two fully connected layers. The network has two output vectors
per Rol: softmax probabilities and per-class bounding-box regression offsets.

b~

Region
Proposal
Eg:Selective
search

N region proposals

=
= 6
@

ROI poaling Dutput size k3 -
- o
Op=[NXx7x7x512] E e
60 8| op=[Nxc]
=
40 3|3 £
Backbone E g
CNN (VGG) 2 8
= =
2| & B
Sie ROI Pooling 4095 4096 gl ohp ;
units  units 2 Br= Fﬁ:aéﬁn]
fd
Fast RCNN Network




Fixed size output vector irrespective 1\"'[]1}31.['[ size

H x W grid to divide
sub-windows

A

[ Al
P AR A
VA A A A4
L Ry

LS SR

]

F

Conv |:i}-';:r feature maps

Pretrained backbone is used. The architecture is then trained end-to-end with a multi-
task loss (classification and localisation error). Classification gives probabilities for
every ROI over (K+1) categories (since the “background class” is considered too).
The classification loss is given by -log(pw.) which is the log loss for the true class.

The regression branch produces 4 bounding box regression offsets (x,y,w,h), the
localisation error is given by the sum of the smooth L.1 between obtained and ground
truth coordinates for x, y, w, h.



Faster R-CNN

Ren, Shaoqging, Kaiming He, Ross Girshick, and Jian Sun. "Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks." Advances in Neural Information Processing Systems . Vol. 28,
2015.

The Faster R-CNN detector adds a region proposal network (RPN) to generate region
proposals directly in the network instead of using an external algorithm like Edge
Boxes or Selective Search. RPN takes an input image (of any size) and outputs a set
of rectangular object proposals, each with an objectness score. Generating region
proposals in the network is faster than in Selective Search or Edge Boxes.

The RPN uses Anchor Boxes for object detection.
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In the backbone convolutional neural network, a big image (say 1000x600 pixels) is
transformed into the image containing features (size 60x40x512, say).

For every point in the output feature map, the RPN has to learn whether an object is
present in the input image at its corresponding location and expected size. This is
done by placing a set of “Anchors” on the input image for each location on the output
feature map from the backbone network. The authors used 3 scales/sizes of box area
128, 256, 512, and 3 aspect ratios of 1:1, 1:2 and 2:1. For each position in the feature
map, they thus have 9 anchor boxes.
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Using 3%3 sliding window can also be understood as computing convolution with the
3x3xN (N=512, for example). It can also be easily seen that the anchors are
translation invariant, as the authors note. Let k be the number of anchor boxes, the
output of RPN is created by 2k scores (object/nonobject probability) and 4k
coordinates (x, y, w, h for each anchor box).

You can also see the positions that are considered for each pint in the feature map as
is depicted in the image below.
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The RPN is trained end-to-end by back-propagation and stochastic gradient descent
(SGD). Each mini-batch arises from a single image that contains many positive and
negative example anchors. It would be possible to optimize for the loss functions of
all anchors, but this would bias towards negative samples as they are dominate.
Instead, 256 anchors in an image are sampled randomly to compute the loss function
of a mini-batch, where the sampled positive and negative anchors have a ratio of up
to 1:1. If there are fewer than 128 positive samples in an image, the mini-batch is
padded with negative ones. The training loss for the RPN is multi-task loss
(erroneous object/nonobject classification as well as incorrect determining the box in
the case of object are penalised).

Alternating training: The RPN is trained independently first. The backbone CNN for
this task is initialized with weights from a network trained for an ImageNet
classification task, and is then fine-tuned for the region proposal task. In the second



step, a separate detection network is trained by Fast R-CNN using the proposals
generated by RPN from the previous step. This detection network is also initialized
by the ImageNet-pre-trained model. At this point the two networks do not share
convolutional layers. In the third step, we use the detector network to initialize RPN
training, but we fix the shared convolutional layers and only fine-tune the layers
unique to RPN. Now the two networks share the convolutional layers. Finally,
keeping the shared convolutional layers fixed, we fine-tune the unique layers of Fast
R-CNN.

Overall structure of faster R-CNN.
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If the alternating training is used, both VGG nets are replaced by only one VGG net.



YOLO v1 (2015)

J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You Only Look Once: Unified, Real-Time Object
Detection (2015), https://arxiv.org/pdf/1506.02640.pdf

A note: Although YOLO is now in v9 (February 2024), it seems appropriate to start
from YOLO v1 since it is more readable than the newer versions.

Other detection methods like R-CNN and Fast(er) R-CNN are primarily image
classifier networks which are used for object detection with the following steps.

1. Use Region Proposal method to generate potential bounding boxes in an image

2. Run the classifier on these boxes

3. After classification, perform post processing to tighten the boundaries of the
bounding boxes, remove duplicates

These pipelines prove to be complex and bulky and hard to optimize as each
component needs to be trained separately. Also such a pipeline is often very slow
during inference.

YOLO is different from all these methods as it treats the problem of image detection
as a regression problem (YOLO v1) rather than a classification problem and supports
a single convolutional neural network to perform all the above mentioned tasks.
(Explanation: Regression predicts a continuous value, while classification predicts a
categorical value.)

YOLO network uses features from the entire image to predict each bounding box. It
predicts all bounding boxes across all classes for an image simultaneously. This
means the YOLO network reasons globally about the full image and all the objects in
the image.

YOLO vl divides the input image into an SxS grid. If the center of an object falls into
a grid cell, that grid cell is responsible for detecting that object. Each grid cell
predicts B bounding boxes and confidence scores for those boxes. These confidence
scores reflect how confident the model is that the box contains an object and also how
accurate it thinks the box is that it predicts. Formally we define confidence as
Pr(Object) * IOU™" .. (Intersection Over Union). If no object exists in that cell, the
confidence scores should be zero. Otherwise we want the confidence score to equal
IOU between the predicted box and the ground truth.

Each bounding box consists of 5 predictions: x, y, w, h, and confidence. The (x, y)
coordinates represent the center of the box relative to the bounds of the grid cell. The
width and height are predicted relative to the whole image. Finally, the confidence
prediction represents the IOU between the predicted box and any ground truth box.
Each grid cell also predicts C conditional class probabilities, Pr(Class;Object). These
probabilities are conditioned on the grid cell containing an object.
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For evaluating YOLO on PASCAL VOC, the authors used S=7, B=2. PASCAL VOC
had 20 labelled classes so C=20. The final prediction is a 7x7x30 tensor.
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This term penalize bad localization of center of cells

2. This term penalize the bounding box with inacurate height and width. The square root is
present so that errors in small bounding boxes are more penalizing than errors in big
bounding boxes.

3. This term tries to make the confidence score equal to the IOU between the object and the
prediction when there is one object

4. This term tries to make confidence score close to 0 there is no object in the cell

5. This is a simple classification loss (not explained in the article)



YOLO v4

Although it is the YOLO v8 (or 9) which is in the center of our interest now (2024), 1
managed to get this explaining picture for YOLO v4. The basic backbone, neck, and
head structure remains also in the higher YOLO versions. The detailed stucture
however differs to certain extent. (For example, also the format of the result is now
little bit different as will be shown later.)
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YOLO v8

The architecture of YOLO v8 (the rough view in the top, a more detailed view to the
left and in the bottom, the details of the particular blocks in the middle, see also the

table containing parameters).
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CloU is an improved version of IoU loss function (1-IoU). DFL provides gradients
that can guide the learning of boundary predicted features, thus helping to reduce the

bbox loss. BCE is the binary cross-entropy loss.



If you use the pretrained YOLO model, object classification may be quite easy. The
sample images from the beginning of this text have been prepared with this program.

import cv2
from ultralytics import YOLO

model = YOLO( 'y vBn.pt')
source = cv2.imread('IMG_20240319

results = model(source, conf=
for result in results:

result = result.cpu()
boxes = result.boxes.xyxy.numpy()
cls = result.boxes.cls.numpy()
names = result.names
print(names)
for i1, box in enumerate(boxes):
print( , box)
print( , names[cls[i]])
cv2.rectangle(source, (int(box[©]), imt(box[1])), (imt(box[2]), imt(box[=]1)), (o, O, ),
cv2.putText(
img = source,
text = f"{names[cls[i1]]}",
org = (int(box[0]), int(box[1])),
fontFace = cv2.FONT_HERSHEY DUPLEX,
fontScale = s
color = ( : EE
thickness =
)
cv2.imshow( " result source)
cv2.imwrite( g source)
cv2.wailtKey()

A bigger example can be found here: http://mrl.cs.vsb.cz//people/sojka/zao.zip

A note on YOLO v9: Fabruary 2024, https://github.com/WongKinYiu/yolov9
https://arxiv.org/pdf/2402.13616.pdf



https://arxiv.org/pdf/2402.13616.pdf
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http://mrl.cs.vsb.cz//people/sojka/zao.zip
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YOLOVY: Learning What You Want to Learn
Using Programmable Gradient Information
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Abstract Performance on MS COCO Object Detection Dataset
56 . RIDETR:
Today’s deep learning methods focus on how to design Ours ImggeNet pretrained SOTA.

the most appropriate objective functions so that the pre-
diction results of the model can be closest to the ground
truth. Meanwhile, an appropriate architecture that can
facilitate acquisition of enough information for prediction
has to be designed. Existing methods ignore a fact that
when input data undergoes layer-by-layer feature extrac-
tion and spatial transformation, large amount of informa- S ok PPYOLOE [74 e VOLOWE 701
tion will be lost. This paper will delve into the important is- © Denthwife fonytltion SOTA.
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tions. We proposed the concept of programmable gradi- "“ o oo
ent information (PGI) to cope with the various changes 36 b
required by deep networks to achieve multiple objectives. Lo m\umhf:.u, Porametors 4\11[] Lo
PGI can provide complete input information for the tar- Figure 1. Comparisons of the real-time object detecors on MS
ger task to calculate objective function, so that reliable COCO dataset. The GELAN and PGI-based object detection
gradient information can be obtained to update network method surpassed all previous train-from-scratch methods in terms
weights. In addition, a new lightweight network architec- of object detection performance. In terms of accuracy, the new

A note on measuring the results:

Precision

0.3

0.2

0.1

0.0

True Positive: The model predicted that a bounding box exists at a certain position (positive)
and it was correct (true).

False Positive: The model predicted that a bounding box exists at a particular position
(positive) but it was wrong (false).

False Negative: The model did not predict a bounding box at a certain position (negative)
and it was wrong (false) i.e. a ground truth bounding box existed at that position.

True Negative: The model did not predict a bounding box (negative) and it was correct
(true). This corresponds to the background, the area without bounding boxes, and is not used
to calculate the final metrics.

Precision = TP/(TP+FP), Recall = TP/(TP+FN)
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Average precision (AP) is the area under the PR curve above. (For completeness:
Another possibility is to use ROC curve (right figure).



Another note: Ablation study means removing certain components to understand their
contribution to the whole.

Recurrent Networks
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* Tiisthe input at time step ¢. For example, -1 could be a one-hot vector corresponding to the second
word of a sentence.

* Stis the hidden state at time step . It's the “memory” of the network. 5t is calculated based on the
previous hidden state and the input at the current step: s¢ = (Ut + Ws¢_1), The function ./
usually is a nonlinearity such as tanh or ReLU. -1, which is required to calculate the first hidden
state, is typically initialized to all zeroes.

* 0Otis the output at step ¢. For example, if we wanted to predict the next word in a sentence it would be

a vector of probabilities across our vocabulary, o = softmax(Vs, )
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Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output
vectors are in blue and green vectors hold the RNN's state. From left to right: (1) Vanilla mode of processing
without RNN, from fixed-sized input to fixed-sized output (e.g. image classification). (2) Sequence output (e.g.
image captioning takes an image and outputs a sentence of words). (3) Sequence input (e.g. sentiment
analysis where a given sentence is classified as expressing positive or negative sentiment). (4) Sequence


https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
https://reference.wolfram.com/language/ref/Tanh.html

input and sequence output (e.g. Machine Translation: an RNN reads a sentence in English and then outputs a
sentence in French). (5) Synced sequence input and output (e.g. video classification where we wish to label
each frame of the video). Notice that in every case are no pre-specified constraints on the lengths sequences
because the recurrent transformation (green) is fixed and can be applied as many times as we like.

Long Short-Term Memory Recurrent Neural Network
Hochreiter, S., & Schmidhuber, J"urgen. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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The first step in our LSTM is to decide what information we're going to throw away from the cell state. This
decision is made by a sigmoid layer called the “forget gate layer.” It looks at At-1 and xt, and outputs a

number between 0 and 1 for each number in the cell state Ct-1. A 1 represents “completely keep this” while a
0 represents “completely get rid of this.”

iv =0 (Wi-[he—1,2¢] + b;)
ét :tanh(Wc-[ht_l,:ct] + bc)



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

The next step is to decide what new information we're going to store in the cell state. This has two parts. First,
a sigmoid layer called the “input gate layer” decides which values we'll update. Next, a tanh layer creates a
vector of new candidate values, C~t, that could be added to the state. In the next step, we'll combine these
two to create an update to the state.
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Updating the old cell state, Ct-1, into the new cell state Ct. We multiply the old state by ft forgetting the things
we decided to forget earlier. Then we add it>k C~t. This is the new candidate values, scaled by how much we
decided to update each state value.
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Finally, we need to decide what we're going to output. This output will be based on our cell state, but will be a
filtered version. First, we run a sigmoid layer which decides what parts of the cell state we're going to output.
Then, we put the cell state through tanh (to push the values to be between -1 and 1) and multiply it by the
output of the sigmoid gate, so that we only output the parts we decided to.
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Temporal CNs

Shaojie Bai, J. Zico Kolter, Vladlen Koltun: An Empirical Evaluation of Generic Convolutional and Recurrent Networks for
Sequence Modeling (2018)
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Figure 1. Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors d = 1,2, 4 and filter size k£ = 3. The
receptive field is able to cover all values from the input sequence. (b) TCN residual block. An 1x1 convolution is added when residual
input and output have different dimensions. (c) An example of residual connection in a TCN. The blue lines are filters in the residual
function, and the green lines are identity mappings.

Vision Transformers & Self-Attention Networks

Creating the vision transformers was inspired by self-attention networks that are used
in the areas like natural language processsing (NLP) and chatbots (the self-attention
networks are alternatively also called the transformers). In NLP the goal is to
generate a sequence of words, in vision, in contrast, the goal is only to classify
objects. In vision, therefore, we will not use the whole architecture, but only a part of
it.

We start, however, from a brief view on the architecture for NLP as it was presented
in Ashish Vaswani et al.: Attention Is All You Need (2017), https:/arxiv.org/abs/1706.03762. The
following figure is taken from the mentioned paper. We will focus mainly on the


https://arxiv.org/abs/1706.03762

encoder part since it is also used in vision transformers.
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Motivation: In NLP (e.g. during translation), one sentence in a certain language
should be used for generating the equivalent sentence in an another language.
Recurrent NN and LSTM networks were commonly used for this task before. The
problem is that they process the input sequence sequentially. It causes that an
important word that was pronounced longer before (e.g. at the beginning of the
sentence, if the end of the sequence is being processed now) may be forgotten, which
makes that the content of the sentence in the goal language is not expressed properly.
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Moreover, the sequential character of recurrent NNs,
including LSTMs, brings also computational problems.
Long sequentially processed sequences require long
computational times.

Let us first examine the encoder part, which is more
important for us (from the point of view of application in
vision). The most interesting multi head attention layer will
be described later. Notes regarding the remaining structure:
Please note the ResNET like shortcuts. Feed forward
contains usual fully connected layers. Add is used due to the



ResNET approach. Norm is a batch normalisation that will be explained/illustrated
later. The N, value says that this structure is repeated N, times. (In the paper, the
authors used N, = 6).

An example of how the encoder input is created. Each word is firstly replaced by a
number (input ID) from a vocabulary, this representation is then mapped into a vector
(512 real numbers in this case and in the original paper), which is called the
embedding. The numbers changes during training, which reflects a specific meaning
of the word.

Note: Svereal following pictures presented here are taken from nice Umar Jamil’s tutorial that is available
here https://www.youtube.com/watch?v=bCz40MemCcA .

Original sentence

(tokens) YOUR CAT IS A LOVELY CAT
v A4 A4 h 4 A4 . 4
Input IDs (position in
the vocabulary)
\ 4 \ 4 \ 4 \ 4 \ 4 ¥
952.207 171.411 621.659 776.562 6422.693 171.411
5450.840 3276.350 1304.051 5567.288 6315.080 3276.350
Embedding 1853.448 9192.819 0.565 58.942 9358.778 9192.819
(vector of size 512)
1.658 3633.421 7679.805 2716.194 2141.081 3633.421
2671.529 8390.473 4506.025 5119.949 735.147 8390.473

Positional encoding (which is the next step, see the figure above) reflects the position
of the word in sentence. The authors proposed the following (see the figure). These
values are simply added to the values above (in embedding), which gives the input to
the encoder.

Sentence 1 YOUR CAT IS
. . pos
PE(pos, 2i) = sin 57 " —
100009modet i)
> PE(0, 2)
A PE(0, 510)
PE(0,511)
pos

PE(pos,2i + 1) = cos =

10000%modet


https://www.youtube.com/watch?v=bCz4OMemCcA
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What is happening in the encoder, namely in its most interesting part? We start from
the simple self attention, which should illustrate the nice idea that is hidden in
attention. Consider for a while that Q, K, V (query, key, value) are three projections of
the encoder input (i.e. obtained from the input by multiplying three matrices whose
values are determined during training, simple copy is possible too). The projections
may either retain the original size of embedding or may decrease the size. In this
explanation, we understand Q, K, V as matrices whose size is 6x512 (6 is because we
restrict ourselves here, for the purpose of explanation, to the sentences containing just
6 words, 512=d is the size of embedding of each word in the sentence, this size has
been retained during projection). The attention is then defined as follows (you can

also see it as a picture below):
l MatMul I

KT
Attention(Q, K, V) = SOftmaX(Q - W
Vag

Q K \

An important step is to understand what it exactly means. The result of softmax is
illustrated in the figure below. The high values in the resulting matrix tells that the
words of the corresponding row/column are tied together, i.e. are important one for
another in the sentence, i.e. determine the context. Due to the softmax function, the
values may be regarded as probabilities. From the way how the matrix was computed
(dot product), we could also say that the values in the matrix express the “similarity”
(or a “connection”) between the words.



YOUR CAT Is A LOVELY CAT I

YOUR 0.268 0.119 0.134 0.148 0179 0.152 1
CAT 0.124 0.278 0.201 0.128 0.154 0.115 1
Is 0.147 0.132 0.262 0.097 0218 0.145 1

A 0.210 0.128 0.206 0212 0.119 0.125 1
LOVELY 0.146 0.158 0.152 0.143 0.227 0.174 1

CAT 0.195 0.114 0.203 0.103 0.157 0.229 1

Another illustration: Say the following sentence is an input sentence we want to
translate: ”The animal didn't cross the street because it was too tired.” (Who was
tired? The street or animal?) After training, the encoder reveals the following
dependencies.

Layer:| 5 3| Attention: | Input - Input H

The_ The_
animal_ animal_
didn_ didn_
t_ t_
Cross_ cross_
the_ the_
street_ street_
because_ because_
it it
was was,
too_ too

tire tire
d d

Now, please, try to imagine what is happening if the whole formula is computed, i.e.
matrix multiplication by V is carried out. A new features for the particular word are
computed which is done as a linear combination defined by similarities from the
above matrix. It can be easily understood now that the word at the beginning of the
sentence may have a big influence on the word at the end of the sequence. (Compare
this with the recurrent networks, including LSTMs).

More exactly, the multihead attention is usually used. It is realised in such a way that
the projection matrices W%, WX, W;" are introduced whose values are determined by
learning, i stands for i-th head.



MultiHead(Q, K, V) = Concat(heady, ..., head, )W
where head; — Attention(QW.2, KWX, vw,Y)
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If we imagine that the weight matrices for particular heads are put to one big matrix, the multihead
processing may be illustrated by the following figure.
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In the 6riginal paper, the authors had h=8, d,=d,=512/8=64.
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Training (in the context of translation if you are interested)

1
L=——
N |&

The encoder outputs, for each word a vector that not only captures
its meaning (the embedding) or the position, but also its interaction
with other words by means of the multi-head attention.
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Encoder
Input
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Or with nice and more explicit pictures (taken from https://towardsdatascience.com/transformers-

explained-visually-part-1-overview-of-functionality-95a6dd460452)
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https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452
https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452
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The Transformer processes the data like this:

1. The input sequence is converted into Embeddings (with Position Encoding) and fed to the
Encoder.

2. The stack of Encoders processes this and produces an encoded representation of the input
sequence.

3. The target sequence is prepended with a start-of-sentence token, converted into Embeddings
(with Position Encoding), and fed to the Decoder.

4. The stack of Decoders processes this along with the Encoder stack’s encoded representation
to produce an encoded representation of the target sequence.

5. The Output layer converts it into word probabilities and the final output sequence.

6. The Transformer’s Loss function compares this output sequence with the target sequence
from the training data. This loss is used to generate gradients to train the Transformer during
back-propagation.



Inference (again from https://towardsdatascience.com/transformers-explained-visually-part-1-
overview-of-functionality-95a6dd460452)
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The flow of data during Inference is:

1. The input sequence is converted into Embeddings (with Position Encoding) and fed to the
Encoder.

2. The stack of Encoders processes this and produces an encoded representation of the input
sequence.

3. Instead of the target sequence, we use an empty sequence with only a start-of-sentence
token. This is converted into Embeddings (with Position Encoding) and fed to the Decoder.

4. The stack of Decoders processes this along with the Encoder stack’s encoded representation
to produce an encoded representation of the target sequence.

5. The Output layer converts it into word probabilities and produces an output sequence.

6. We take the last word of the output sequence as the predicted word. That word is now filled
into the second position of our Decoder input sequence, which now contains a start-of-
sentence token and the first word.

7. Go back to step #3. As before, feed the new Decoder sequence into the model. Then take the
second word of the output and append it to the Decoder sequence. Repeat this until it

predicts an end-of-sentence token. Note that since the Encoder sequence does not change for
each iteration, we do not have to repeat steps #1 and #2 each time.


https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452
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Now we can continue with the Vision Transformer (ViT) as it was introduced in:
Alexey Dosovitskiy et al.: An Image Is Worth 16x16 Words: Transformers For Image Recognition at Scale,

https://arxiv.org/abs/2010.11929. The authors uses only the encoder (left part) of the general
transformer above. The figure below is taken from their paper.

Vision Transformer (ViT) Transformer Encoder

MLP
Head
A A

A A A A
P sme - @) ) @) 6) @)6) @) @) 6] [ej]

* Extra learnable
[class] embedding Linear Pro_]ectlon of Flattened Patches

Transformer Encoder |

IEE [ ] T T ] |,|
m%g—»%ilmﬂﬁﬁﬁﬁ'
ds=

The authors transformed the image recognition problem in such a way that they
almost entirely copy the way of how the transformer is used in NLP. Image is divided
into subimages. The subimages directly (or some projections) are used as embedding,
which is done with the hope that in the process of encoding the more and more
descriptive features will be computed in their place. However, the final values of
particular tokens (features) are not interesting in this case (the classification should be
done). Also, positional encoding is used as can be seen from the picture above. It can
be simple in this case since the subimages extracted from the image have fixed
positions.

For the purpose od classification, a special class token is used that is randomly
initialized and prepended to the beginning of the input sequence. Since it is randomly
initialized, it does not contain any useful information on its own. Token is able to
accumulate information from the other tokens in the sequence the deeper and more
layers have been processed. When the tansformer finally performs the final
classification of the sequence, it uses an MLP head which only looks at data from the
last layer class token and no other information. It can be perceived as a placeholder
data structure that is used to store information that is extracted from other tokens in
the sequence.

Unfortunately, this ViT is a sliding window approach. (However, the approaches
using transformers aiming at detecting objects have appeared too.) The performance
of this particular ViT was a bit questionable (i.e. below some CNNs, like ResNET,
see the following picture). This was discussed in the following paper (I will comment
on the details during the lecture).


https://arxiv.org/abs/2010.11929
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Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Li Yuan'; Yunpeng Chen?, Tao Wang'3*, Weihao Yu', Yujun Shi’,
Zihang Jiang', Francis E.H. Tay!, Jiashi Feng!, Shuicheng Yan'

! National University of Singapore 2 YITU Technology
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yuanli@u.nus.edu, yunpeng.chen@yitu-inc.com, shuicheng.yan@gmail.com

Abstract

Transformers, which are popular for language modeling,
have been explored for solving vision tasks recently, e.g.,
the Vision Transformer (ViT) for image classification. The
VIiT model splits each image into a sequence of tokens with
fixed length and then applies multiple Transformer layers
to model their global relation for classification. However,
ViT achieves inferior performance to CNNs when trained
Jfrom scratch on a midsize dataset like ImageNet. We find
it is because: 1) the simple tokenization of input images
fails to model the important local structure such as edges
and lines among neighboring pixels, leading to low train-
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Figure 1. Comparison between T2T-ViT with ViT, ResNets and
MobileNets when trained from scratch on ImageNet. Left: per-
formance curve of MACs vs. top-1 accuracy. Right: performance
curve of model size vs. top-1 accuracy.
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Figure 2. Feature visualization of ResNet50, ViT-L/16 [12] and our proposed T2T-ViT-24 trained on ImageNet. Green boxes highlight
learned low-level structure features such as edges and lines; red boxes highlight invalid feature maps with zero or too large values. Note the
feature maps visualized here for ViT and T2T-ViT are not attention maps, but image features reshaped from tokens. For better visualization,
we scale the input image to size 1024 x 1024 or 2048 x 2048.

A note on GPT:

GPT uses an unmodified Transformer decoder, except that it lacks the encoder
attention part. We can see this visually in the above diagrams. The GPT, GPT2, GPT
3 is built using transformer decoder blocks. GPT-3 was trained with huge Internet text
datasets — 570GB in total. When it was released, it was the largest neural network
with 175 billion parameters (100x GPT-2). GPT-3 has 96 attention blocks that each

contain 96 attention heads
?
Prediction

Feed Forward

Text & Position Embed

Text: Second Law of Robotics: A robot must obey the orders given it by human beings

l Generated training examples

Example # Input (features) Correct output (labels)

1 Second Tlaw of robotics

2 Second  law of  robotics g a

3 Second law of robotics g a robot



	ZFNet: Winner of ILSVRC 2013 (Image Classification). Jedná se o tuning AlexNet. Zajímavé je, jak se přišlo na to, co se má změnit. Vizualizací toho, co se děje v jednotlivých vrstvách. Pro bližší vysvětlení se lze podívat do Matthew D. Zeiler and Rob Fergus, Visualizing and Understanding Convolutional Networks, 2014, https://cs.nyu.edu/~fergus/papers/zeilerECCV2014.pdf.
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