
Edge Thinning and Double Thresholding

Today’s exercise is focused on implementation of edge thinning and subsequent double
thresholding to obtain clean edges.

Non-maxima Supression

So far, we have used the Sobel operator or other convolution operators to obtain edges
in images. For this exercise, we need edges found using central difference, see Eqs. (1)
and (2).

fx(x, y) =
f (x− 1, y)− f (x + 1, y)

2
(1)

fy(x, y) =
f (x, y− 1)− f (x, y + 1)

2
(2)

These edges are rather thick. Our goal is to get edges of image represend using a single
pixel edges. This is called edge thinning and we will use non-maxima supression to
achieve this goal. What non-maxima supression does is that it supresses (sets to 0) all
values that are not maximum in ther context. By context, we mean the close neighbour
of a pixel. In a 1D situation (Fig. 1), we leave unchanged only pixels that satisfy the
following equation

E(x− 1) < E(x) > E(x + 1) (3)

As can be seen, the retained value have to be greater than the values on the left and
right. A simple illustration is depicted in Fig. 1.

Figure 1: An example of 1D non-maxima supression. Green and red bars represent
function values at specific positions. The green value is retained, red values are non-
maxima, so will be set to 0.

The 2D case is a bit more complicated and requires computation of left and right coordi-
nate for an oriented edge. We can see that values |E−Θ| and |E+Θ| have to be computed
by linear interpolation of pixel values as is depicted in Fig. 2. The interpolation equa-
tions are presented in Eqs. (4) and (5).

1

|E(x+1,y+1)|

|E(x+1,y)|

|E(x−1,y−1)|

|E(x−1,y)|

|E(x,y)|

|E
−θ

|

|E+θ
|

α
θ

směr hrany

Obr. 8.14. K rozhodnutí maxima.
 Figure 2: An edge with corresponging gradient values (note that we use Cartesian coor-

dinate system with the (0, 0) coordinate in the bottom left, so adapt your code to respect
OpenCV’s (0, 0) image coordinate in the top left corner).

|E+Θ| = α|E(x + 1, y + 1)|+ (1− α)|E(x + 1, y)| (4)

|E−Θ| = α|E(x− 1, y− 1)|+ (1− α)|E(x− 1, y)| (5)

Double Thresholding

At this point, we have new image with edge magnitudes only at the centers of edges. We
have to separate real edges from random image pertubations. To achieve this, we create
two thresholds t1 and t2 that will be set experimentally. The only rule is to keep t2 > t1.

Double thresholding checks each edge magnitude E(x, y) and if it is greater than
t2 we set the pixel at coordinate (x, y) in the output image to white (255). If the edge
magnitude E(x, y) is less than t2 and greater than t1 and is located next to the coordinate
that has been already set as an edge, we set this coordinate as edge pixel too.

This algorithm may be easily implemented using recursive function. This function
checks each edge magnitude and labels the coordinate as an edge, it recursively calls
itself at coordinates of top, bottom, left, and right neighbouring pixels.

2

