Tim Sweeney

CEO, Founder

Epic Games
tim@epicgames.com

THE END OF THE GPU

™ elars

ROADMAP

mailto:tim@epicgames.com�

Background:
Epic Games

Background: Epic Games

Independent game developer
Located in Raleigh, North Carolina, USA
Foundedin 1991

Over 30 games released
= Gears of War
= Unreal series

Unreal Engine 3 is used by 100’s of games

History:

Unreal Engine

Unreal Engine 1
1996-1999

= First modern game engine

= Object-oriented

= Real-time, visual toolset

= Scripting language
= |ast major software renderer
Software texture mapping
Colored lighting, shadowing
Volumetric lighting & fog
Pixel-accurate culling

= 25 games shipped

a

a

a

O

Unreal Engine 2
2000-2005

= PlayStation 2, Xbox, PC
= DirectX 7 graphics

» Single-threaded
4,0 games shipped

t, " EREFaRe

Unreal Engine 3
2006-2012

= PlayStation 3, Xbox 360, PC
» DirectX g graphics

= Pixel shaders
= Advanced lighting & shadowing

= Multithreading (6 threads)
= Advanced physics

= More visual tools
= Game Scripting AW
= Materials i A
= Animation WL SN
+ Cinematics...
= 150 gamesin

Unreal Engine 3 Games

i'_:;-_-_

Army of Two (Electronic Arts)

e =

Game Development: 2009

Gears of War 2: Project Overview

= Project Resources
© 15 programmers
o 45 artists

= 2-year schedule
= $12M development budget

= Software Dependencies
= 1middleware game engine

= ~20 middleware libraries
= Platform libraries

Gears of War 2: Software

Gears of War 2
Gameplay Code
~250,000 lines C++, script code

Unreal Engine 3
Middleware Game Engine
~2,000,000 lines C++ code

DirectX FaceFX
Face

Graphics Animation

Dependencies

ZLib
Data
Compr-
ession

Hardware:
History

Computing History

1985 | Intel 80386: Scalar, in-order CPU
1989 | Intel 80486: Caches!

1993 | Pentium: Superscalar execution

1995 | Pentium Pro: Out-of-order execution
1999 | Pentium 3: Vector floating-point

2003 | AMD Opteron: Multi-core

2006 | PlayStation 3, Xbox 360: *Many-core”

M

Graphics History

1984 | 3D workstation (SGI)
1997 | GPU (3dfx)
2002 | DirectXgq, Pixel shaders (ATI)

2006 | GPU with full programming language
(NVIDIA GeForce 8)

20097 | x86 CPU/GPU Hybrid
(Intel Larrabee)

Hardware:
2012-2020

Hardware: 2012-2020

Processor | Processor ll Processor |l Processor [l Processor
In Order In Order In Order In Order In Order
4 Threads 4 Threads 4 Threads 4 Threads 4 Threads
IS D$ 1S D$ 1S D$ 1$ D$ 1$ D$

AL 1}Ed[]

ST (SN (T

OO0 0000
oo

LOO0ONO0 000

L2 Cache

Thread Proce ssor

Processor |l Processor ll Processor | Processor [l Processor
In Order In Order In Order In Order In Order
4 Threads 4 Threads 4 Threads 4 Threads 4 Threads
1S D$ 1S D$ 1S D$ 1$ D$ 1$ D$

Intel Larrabee NVIDIA GeForce 8

= x86 CPU-GPU Hybrid = General Purpose GPU

= C/C++ Compiler = CUDA"C” Compiler

= DirectX/OpenGL = DirectX/OpenGL

= Many-core, vector architecture = Many-core, vector architecture

= Teraflop-class performance = Teraflop-class performance

Hardware: 2012-2020

CONCLUSION
CPU, GPU architectures are getting closer

THE GPU TODAY

The GPU Today

DirectX 10 Pipeline

B fixed

[l programmable

[memory

Large frame buffer
Complicated pipeline

It's fixed-function

But we can specify N
shader programs
that execute in certain pipeline stages

Shader Program Limitations

= No random-access memory writes
= Can write to current pixel in frame buffer

= Can't create data structures
= Can't traverse data structures
= Can hack it using texture accesses
* Hard to share data between main program
and shaders programs
= Weird programming language
© HLSL rather than C/C++

Antialiasing Limitations

= MSAA & Oversampling

= Every 1 bit of output precision costs up to
2X memory & performance!

= |deally want 10-20 bits
» Discrete sampling (in general)

= Texture filtering only implies antialiasing when
shader equation is linear

- Most shader equations are nonlinear

Texture Sampling Limitations

* |Inherent artifacts of bilinear/trilinear

» Poor approximation of Integrate(color,area)
in the presence of:

= Small triangles

= Texture seams

= Alpha translucency
= Masking

= Fixed-function = poor scalability

Frame Buffer Model Limitation

* Frame buffer: 1 (or n) layers of 4-vectors,
where n = small constant

= |neffective for
= General translucency
= Complex shadowing models

= Memory bandwidth requirement =

FPS * Pixel Count * Layers Depth * pow(2,n)
where n = quality of MSAA

Summary of Limitations

= “"The Shader ALU Plateau”
= Antialiasing limitations
= Texture Sampling limitations

= Frame Buffer limitations

The Meta-Problem:

= The fixed-function pipelineis
too fixed to solve its problems
= Result:
= All games look similar

= Derive little benefit from Moore’s Law

* Crysis on high-end NVIDIA SLI solution only looks at
most marginally better than top Xbox 360 games

Return to 100% “Software” Rendering

= Bypass the OpenGL/DirectX API
* Implement a 100% software renderer

= Bypass all fixed-function pipeline hardware
= Generate image directly

= Build & traverse complex data structures
= Unlimited possibilities

Could implement this...

Software Rendering in Unreal 1 (1998)

Ran 100% on CPU
No GPU required!

Features
= Real-time colored lighting
= Volumetric Fog
= Tiled Rendering
= Occlusion Detection

Software Rendering in 1998 vs 2012

60 MHz Pentium could execute:

16 operations per pixel
at 320x200, 30 Hz

In 2012, a 4 Teraflop processor
would execute:

16000 operations per pixel
at 1920x1080, 60 Hz

Future Graphics:
Raytracing

» For each pixel
= Cast aray off into scene
= Determine which objects were hit

= Continue for reflections, refraction, etc

= Consider

= Less efficient than pure rendering

~ Can use for reflections in traditional render

Future Graphics:
The REYES Rendering Model

= "Dice” all objects in scene down into sub-pixel-
sized triangles

= Rendering with
= Flat Shading (!)
= Analytic antialiasing

= Per-pixel occlusion
(A-Buffer/BSP)

= Benefits

- Displacement maps for free
- Analytic Antialiasing
- Advanced filtering (Gaussian)

Future Graphics:
The REYES Rendering Model

-
"» i ‘ ’:L: "".t e
L, - b e . o

Today’s Pipeline Potential 2012 Pipeline
= Build 4M poly “high-res” character = Build 4M poly “high-res” character

= Generate normal maps from = Renderitin-game!
geometry in high-res = Advanced LOD scheme assures

Future Graphics:
Volumetric Rendering

= DirectVoxel Rendering
= Raycasting
= Efficient for trees, foliage
» Tesselated Volume Rendering

= Marching Cubes
= Marching Tetrahedrons

= Point Clouds
= Signal-Space Volume Rendering

Future Graphics:
Software Tiled Rendering

= Split the frame buffer up into bins
= Example: 1 bin = 8x8 pixels

" Processone bin atatime
= Transform, rasterize all objects in the bin

= Consider

= Cache efficiency

Hybrid Graphics Algorithms

= Analytic Antialiasing
- Analytic solution, better than 1024x MSAA

= Sort-independent translucency

- Sorted linked-list per pixel of fragments requiring per-pixel memory
allocation, pointer-following, conditional branching (A-Buffer).

= Advanced shadowing techniques
- Physically accurate per-pixel penumbra volumes
- Extension of well-known stencil buffering algorithm

- Requires storing, traversing, and updating a very simple BSP tree per-
pixel with memory allocation and pointed following.

= Scenes with very large numbers of objects
- Fixed-function GPU + API has 10X-100X state change disadvantage

Graphics: 2012-2020
Potential Industry Goals

Achieve movie-quality:
= Antialiasing

Direct Lighting

Shadowing

Particle Effects

= Reflections

a

a

a

Significantly improve:
= Character animation
= Obiject counts

Software Implications

Software must scale to...
e 10's—100’s of threads

e Vector instruction sets

Software Implications

Programming Models

e Shared State Concurrency

* Message Passing

* Pure Functional Programming

» Software Transactional Memory

Multithreading in Unreal
“Task Parallelism”

= Gameplay thread
= Al, scripting
= Thousands of interacting objects

= Rendering thread
= Scene traversal, occlusion
= Direct3D command submission

= Pool of helper threads for other work
= Physics Solver
= Animation Updates

Engine 3:

“Shared State Concurrency”
The standard C++/Java threading model

O

Many threads are running
There is 512MB of data
Any thread can modify any data at any time

O

O

O

All synchronization is explicit, manual
= See: LOCK, MUTEX, SEMAPHORE

No compile-time verification of correctness properties:

O

- Deadlock-free

- Race-free

Multithreaded Gameplay Simulation:
Manual Synchronization

ldea:

= Update objects in multiple threads
= Each object contains a lock

= “Just lock an object before using it”

Problems:
= “Deadlocks”

\\ 174

Multithreaded Gameplay Simulation:
“Message Passing”

ldea:
= Update objects in multiple threads
= Each object can only modify itself

= Communicate with other objects by sending
messages

Problems:
= Requires writing 1000’s of message protocols

Pure Functional Programming

"Pure Functional” programming style:

» Define algorithms that don’t write to shared
memory or perform I/O operations

(their only effect is to return a result)

Examples:

e (Collision Detection

Pure Functional Programming

“Inside a function with no side effects,
sub-computations can be run in any order,
or concurrently,

without affecting the function’s result”

With this property:

* A programmer can explicitly multithread the
code, safely.

» Future compilers will be able to automatically
multithread the code, safely.

Multithreaded Gameplay Simulation:
Software Transactional Memory

ldea:
= Update objects in multiple threads

= Eachthread runs inside a transaction block
and has an atomic view of its “local” changes to memory

= C++ runtime detects conflicts between transactions
= Non-conflicting transactions are applied to “global” memory
= Conflicting transactions are “rolled back” and re-run

Implemented 100% in software; no custom hardware required.

Problems:

= “Object update” code must be free of side-effects
= Requires C++ runtime support

= Cost around 30% performance

Vectorization

Supporting “"Vector Instruction Sets” efficiently

) e | = e
3 | |55 5
1 o [] 5 0
EDDD

DDDD
BDDD
EEEEE=
3 | o =

-
[EE]
[
B

HEH) L2

k4
L2

HHH

L2

HHHH

y
L2

HitHH

v
L2

HHEHH

v
L2

.

FB

FB

FB

FB

FB

FB

NVIDIA GeForce 8:

Vectorization

C++, Java compilers generate “scalar” code

GPU Shader compilers generate “vector” code
= Arbitrary vector size (4, 16, 64, ...)
= N-wide vectors yield N-wide speedup

Vectorization: “The 0ld Way”

= *Old Vectors” (SIMD):
Intel SSE, Motorola Altivec

= 4-wide vectors

= 4-wide arithmetic operations

= Vector loads
Load vector register from vector stored in memory

= Vector swizzle & mask

Future Programming Models:
Vectorization

= "Old Vectors”
Intel SSE, Motorola Altivec

Vectorization: “New Vectors”

(ATI, NVIDIA GeForce 8, Intel Larrabee)

= 16-wide vectors
= 16-wide arithmetic

o Vector loads/stores

* Load 16-wide vector register from scalars
from 16 independent memory addresses,
where the addresses are stored in a vector!

- Analogy: Register-indexed constant access in DirectX

“New SIMD” is better than “0ld SIMD”

= *Old Vectors” were only useful when dealing
with vector-like data types:

= "XYZW" vectors from graphics

* 4X4 matrices

= “"New Vectors” are far more powerful:

Any loop whose body has a statically-known call graph
free of sequential dependencies can be “vectorized”,
or compiled into an equivalent 16-wide vector

rogram. And it runs up to 16X faster!

‘“New Vectors” are universal

int n;
cmplx coords[];
int color[] = new Int[n]

for(int 1=0; 1<n; i1++) {
int j=0;
cmplx c=cmplx(0,0)

while(mag(c) < 2) {
c=c*c + coords[i];
Jt++;

}

color[i] = j;

This code...
= s free of sequential dependencies
= has a statically known call graph

Therefore, we can mechanically transform it into an equivalent
data parallel code fragment.

“New Vectors” Translation

for(int i=0; i<n; i++) { for(int i=0; i<n; i+=N) {
» i_vector={i,i+1,..i+N-1}
3} i_mask={i<n, I+1<N, i+2<N, .. 1+N-1<N}

Note: Any code outside this loop
(which invokes the loop)
is necessarily scalar!

“New Vectors” Translation

int n;

cmplx coordslls Note: Any code outside this loop
ForCint i=0; i<ni i+ ¢ (wl'uch |nvo|§es the loop)
int j=0; is necessarily scalar!

cmplx c=cmplx(0,0)
while(mag(c) < 2) {
c=c*c +
coords[i];
i+
b

color[i] = j;

int n;
cmplx coords[];
int color[] = new int[n]

for(int 1=0; i<n; i+=N) {
int[N] 1_vector={i,i+1l,..i+N-1}
Loop Index Vector bool [N] i_mask={i<n, i+1<N,i+2<N, ..Ji+N-1<N}

Loop Mask Vector compIx[N] c_vector={cmplx(0,0),-.}
while(1l) {
bool[N] while_vector={

Vectorized Loop Variable i_mask[0] && mag(c_vector[0])<2,

. anf . }
Vectorized Conditional: if(all_false(while vector))

Propagates loop mask break-
to local condition c_vector=c_vector*c_vector + coords[i..i+N-1 : i_mask]

}

colors[i..i+N-1 : 1_mask] = c_vector;

Mask-predicated

Mask-predicated
vector read

vector write

Vectorization Tricks

= Vectorization of loops

Subexpressions independent of loop variable are scalar and can be
lifted out of loop

Subexpressions dependent on loop variable are vectorized
Each loop iteraction computes an “active mask” enabling operation
on some subset of the N components

= Vectorization of function calls
For every scalar function, generate an N-wide vector version of the
function taking an N-wide “active mask”

= Vectorization of conditionals

Evaluate N-wide conditional and combine it with the current active
mask

Execute “true” branch if any masked conditions true
Execute “false” branch if any masked conditions false
Will often execute both branches

Vectorization Paradigms

* Hand-coded vector operations
Current approach to SSE/Altivec

= Loop vectorization
See: Vectorizing compilers

= Run a big function with a big bundle of data
CUDA/OpenCL

= Nested Data Parallelism
See NESTL

Very general set of “"vectorization” transforms
for many categories of nested computations

Layers: Multithreading & Vectors

Physics, collision detection, scene
traversal, path finding

Game World State
Graphics shader programs

Vector (Data Parallel) Subset

Purely functional core

Software Transactional Memory

Sequential Execution

Hardware 1/0

Potential Performance Gains™: 2012-2020

Up to...
64X for multithreading
1024X for multithreading + vectors!

* My estimate of feasibility based on Moore’s Law

Multithreading & Vectorization:
Who Choses?

= Hardware companies impose a limited
model on developers

= Sony Cell, NVIDIA CUDA, Apple OpenCL

= Hardware provides general feature;
languages & runtimes make it nice;
users choose!
= Tradeoffs

- Performance

The Graphics Hardware of the Future

Future Hardware:
A unified architecture for computing and graphics

Hardware Model

* Three performance dimensions
= Clock rate
= Cores
= Vector width

= Executestwo kinds of code:
= Scalar code (like x86, PowerPC)
= Vector code (like GPU shaders or SSE/Altivec)

= Some fixed-function hardware

Vector Instruction Issues

= A future computing device needs...

= Full vector ISA
- Masking & scatter/gather memory access
* 64-bit integer ops & memory addressing
= Full scalar ISA
* Dynamic control-flow is essential
= Efficient support for scalar<->vector transitions
* Initiating a vector computation
* Reducing the results
- Repacking vectors

Memory System Issues

Effective bandwidth demands will be huge
Typically read 1 byte of memory per FLOP

4, TFLOP of computing power
demands
4, TBPS of effective memory bandwidth!

Memory System Issues

Threads (GPU) Caches (CPU)
* Hide memory latency = Expose memory latency
» Lose data locality = Exploit data locality

to minimize main
memory bandwidth

Memory System Issues

= Cache coherency is vital
= It should be the default

Revisiting REYES

= "Dice” all objects in scene down into sub-

pixel-sized triangles
= Tile-based setup

= Rendering with
= Flat Shading
* No texture sampling
= Analytic antialiasing

- Per-pixel occlusion
(A-Buffer/BSP)

Requires no artificial

Lessons learned:
Productivity is vitall

Hardware will become 20X faster, but:
= Game budgets will increase less than 2X.

Therefore...

= Developers must be willing to sacrifice performance
in order to gain productivity.

= High-level programming beats
low-level programming.

= Easier hardware beats faster hardware!

-~ We need great tools: compilers, engines, middleware

Lessons learned:
Today’s hardware is too hard!

= |fit costs X (time, money, pain) to develop an efficient
single-threaded algorithm, then...

= Multithreaded version costs 2X
= PlayStation 3 Cell version costs 5X
o Current "GPGPU"” version is costs: 120X or more

= Qver 2Xis uneconomical for most software companies!

= This is an argument against:
= Hardware that requires difficult programming techniques
~ Non-unified memory architectures

Lessons learned:
Plan Ahead

Previous Generation:
» Lead-time for engine development was 3 years
= Unreal Engine 3:

= 2003: development started
= 2006: first game shipped

Next Generation:

= Lead-time for engine development is 5 years
= Startin 2009, ship in 2014!

CONCLUSION

END

	THE END OF THE GPU�ROADMAP
	Slide Number 2
	Background: Epic Games
	Slide Number 4
	Unreal Engine 1�1996-1999
	Unreal Engine 2�2000-2005
	Unreal Engine 3�2006-2012
	Unreal Engine 3 Games
	Slide Number 9
	Gears of War 2: Project Overview
	Gears of War 2: Software Dependencies
	Slide Number 12
	Computing History
	Graphics History
	Slide Number 15
	Hardware: 2012-2020
	Hardware: 2012-2020
	THE GPU ToDAY
	The GPU Today
	Shader Program Limitations
	Antialiasing Limitations
	Texture Sampling Limitations
	Frame Buffer Model Limitation
	Summary of Limitations
	The Meta-Problem:
	So...
	Return to 100% “Software” Rendering
	Software Rendering in Unreal 1 (1998)
	Software Rendering in 1998 vs 2012
	Future Graphics: �Raytracing
	Future Graphics:�The REYES Rendering Model
	Future Graphics:�The REYES Rendering Model
	Future Graphics: �Volumetric Rendering
	Future Graphics:�Software Tiled Rendering
	Hybrid Graphics Algorithms
	Graphics: 2012-2020�Potential Industry Goals
	Software Implications
	Software Implications
	Software Implications
	Multithreading in Unreal Engine 3:�“Task Parallelism”
	“Shared State Concurrency” �The standard C++/Java threading model�
	Multithreaded Gameplay Simulation:�Manual Synchronization
	Multithreaded Gameplay Simulation:�“Message Passing”
	Pure Functional Programming
	Pure Functional Programming
	Multithreaded Gameplay Simulation:�Software Transactional Memory
	Vectorization
	Vectorization
	Vectorization: “The Old Way”
	Future Programming Models:�Vectorization
	Vectorization: “New Vectors”
	“New SIMD” is better than “Old SIMD”
	“New Vectors” are universal
	“New Vectors” Translation
	“New Vectors” Translation
	Vectorization Tricks
	Vectorization Paradigms
	 Layers: Multithreading & Vectors
	Potential Performance Gains*: 2012-2020
	Multithreading & Vectorization:�Who Choses?
	Hardware Implications
	The Graphics Hardware of the Future
	Future Hardware:�A unified architecture for computing and graphics
	Vector Instruction Issues
	Memory System Issues
	Memory System Issues
	Memory System Issues
	Revisiting REYES
	Lessons Learned
	Lessons learned:�Productivity is vital!
	Lessons learned:�Today’s hardware is too hard!
	Lessons learned:�Plan Ahead
	CONCLUSION
	END

