
THE END OF THE GPU
ROADMAP

Tim Sweeney
CEO, Founder
Epic Games
tim@epicgames.com

mailto:tim@epicgames.com�

Background:
Epic Games

Background: Epic Games
 Independent game developer
 Located in Raleigh, North Carolina, USA
 Founded in 1991
 Over 30 games released
 Gears of War
 Unreal series

 Unreal Engine 3 is used by 100’s of games

History:
Unreal Engine

Unreal Engine 1
1996-1999

 First modern game engine
 Object-oriented
 Real-time, visual toolset
 Scripting language

 Last major software renderer
 Software texture mapping
 Colored lighting, shadowing
 Volumetric lighting & fog
 Pixel-accurate culling

 25 games shipped

Unreal Engine 2
2000-2005

 PlayStation 2, Xbox, PC
 DirectX 7 graphics
 Single-threaded
 40 games shipped

Unreal Engine 3
2006-2012

 PlayStation 3, Xbox 360, PC
 DirectX 9 graphics
 Pixel shaders
 Advanced lighting & shadowing

 Multithreading (6 threads)
 Advanced physics
 More visual tools
 Game Scripting
 Materials
 Animation
 Cinematics…

 150 games in
development

Unreal Engine 3 Games

Mass Effect (BioWare)

Army of Two (Electronic Arts)

BioShock (2K Games)Undertow (Chair Entertainment)

Game Development: 2009

Gears of War 2: Project Overview

 Project Resources
 15 programmers
 45 artists
 2-year schedule
 $12M development budget

 Software Dependencies
 1 middleware game engine
 ~20 middleware libraries
 Platform libraries

Gears of War 2: Software Dependencies

Gears of War 2
Gameplay Code
~250,000 lines C++, script code

Unreal Engine 3
Middleware Game Engine
~2,000,000 lines C++ code

DirectX
Graphics

OpenAL
Audio

Speed
Tree
Rendering

FaceFX
Face
Animation

Bink
Movie
Codec

ZLib
Data
Compr-
ession

…

Hardware:
History

Computing History

1985 Intel 80386: Scalar, in-order CPU
1989 Intel 80486: Caches!
1993 Pentium: Superscalar execution
1995 Pentium Pro: Out-of-order execution
1999 Pentium 3: Vector floating-point
2003 AMD Opteron: Multi-core
2006 PlayStation 3, Xbox 360: “Many-core”

…and we’re back to in-order execution

Graphics History

1984 3D workstation (SGI)
1997 GPU (3dfx)
2002 DirectX9, Pixel shaders (ATI)
2006 GPU with full programming language

(NVIDIA GeForce 8)
2009? x86 CPU/GPU Hybrid

(Intel Larrabee)

Hardware:
2012-2020

Hardware: 2012-2020

L2 Cache

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

D$ D$ D$ D$ D$

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

D$ D$ D$ D$ D$

NVIDIA GeForce 8

 General Purpose GPU
 CUDA “C” Compiler
 DirectX/OpenGL
 Many-core, vector architecture
 Teraflop-class performance

Intel Larrabee

 x86 CPU-GPU Hybrid
 C/C++ Compiler
 DirectX/OpenGL
 Many-core, vector architecture
 Teraflop-class performance

Hardware: 2012-2020

CONCLUSION
CPU, GPU architectures are getting closer

THE GPU TODAY

The GPU Today

 Large frame buffer
 Complicated pipeline
 It’s fixed-function
 But we can specify

shader programs
that execute in certain pipeline stages

Shader Program Limitations

 No random-access memory writes
 Can write to current pixel in frame buffer
 Can’t create data structures

 Can’t traverse data structures
 Can hack it using texture accesses

 Hard to share data between main program
and shaders programs

 Weird programming language
 HLSL rather than C/C++

Result: “The Shader ALU Plateau”

Antialiasing Limitations

 MSAA & Oversampling
 Every 1 bit of output precision costs up to

2X memory & performance!
 Ideally want 10-20 bits

 Discrete sampling (in general)
 Texture filtering only implies antialiasing when

shader equation is linear
 Most shader equations are nonlinear

Aliasing is the #1 visual artifact in Gears of War

Texture Sampling Limitations

 Inherent artifacts of bilinear/trilinear

 Poor approximation of Integrate(color,area)
in the presence of:
 Small triangles
 Texture seams
 Alpha translucency
 Masking

 Fixed-function = poor scalability
 Megatexture, etc

Frame Buffer Model Limitation

 Frame buffer: 1 (or n) layers of 4-vectors,
where n = small constant

 Ineffective for
 General translucency
 Complex shadowing models

 Memory bandwidth requirement =

FPS * Pixel Count * Layers Depth * pow(2,n)

where n = quality of MSAA

Summary of Limitations

 “The Shader ALU Plateau”

 Antialiasing limitations
 Texture Sampling limitations
 Frame Buffer limitations

The Meta-Problem:

 The fixed-function pipeline is
too fixed to solve its problems

 Result:
 All games look similar
 Derive little benefit from Moore’s Law
 Crysis on high-end NVIDIA SLI solution only looks at

most marginally better than top Xbox 360 games

This is a market BEGGING
to be disrupted :-)

SO...

Return to 100% “Software” Rendering

 Bypass the OpenGL/DirectX API
 Implement a 100% software renderer
 Bypass all fixed-function pipeline hardware
 Generate image directly
 Build & traverse complex data structures
 Unlimited possibilities

Could implement this…

 On Intel CPU using C/C++

 On NVIDIA GPU using CUDA (no DirectX)

Software Rendering in Unreal 1 (1998)

Ran 100% on CPU
No GPU required!

Features
 Real-time colored lighting
 Volumetric Fog
 Tiled Rendering
 Occlusion Detection

Software Rendering in 1998 vs 2012

60 MHz Pentium could execute:
16 operations per pixel

at 320x200, 30 Hz

In 2012, a 4 Teraflop processor
would execute:

16000 operations per pixel
at 1920x1080, 60 Hz

Assumption: Using 50% of computing power for graphics, 50% for gameplay

Future Graphics:
Raytracing

 For each pixel
 Cast a ray off into scene
 Determine which objects were hit
 Continue for reflections, refraction, etc

 Consider
 Less efficient than pure rendering
 Can use for reflections in traditional render

Future Graphics:
The REYES Rendering Model

 “Dice” all objects in scene down into sub-pixel-
sized triangles

 Rendering with
 Flat Shading (!)
 Analytic antialiasing
 Per-pixel occlusion

(A-Buffer/BSP)

 Benefits
 Displacement maps for free
 Analytic Antialiasing
 Advanced filtering (Gaussian)
 Eliminates texture sampling

Future Graphics:
The REYES Rendering Model

Today’s Pipeline
 Build 4M poly “high-res” character

 Generate normal maps from
geometry in high-res

 Rendering 20K poly “low-res”
character in-game

Potential 2012 Pipeline
 Build 4M poly “high-res” character

 Render it in-game!

 Advanced LOD scheme assures
proper sub-pixel sized triangles

Future Graphics:
Volumetric Rendering

 Direct Voxel Rendering
 Raycasting
 Efficient for trees, foliage

 Tesselated Volume Rendering
 Marching Cubes
 Marching Tetrahedrons

 Point Clouds
 Signal-Space Volume Rendering
 Fourier Projection Slice Theorem
 Great for clouds, translucent volumetric data

Future Graphics:
Software Tiled Rendering

 Split the frame buffer up into bins
 Example: 1 bin = 8x8 pixels

 Process one bin at a time
 Transform, rasterize all objects in the bin

 Consider
 Cache efficiency
 Deep frame buffers, antialiasing

Hybrid Graphics Algorithms

 Analytic Antialiasing
– Analytic solution, better than 1024x MSAA

 Sort-independent translucency
– Sorted linked-list per pixel of fragments requiring per-pixel memory

allocation, pointer-following, conditional branching (A-Buffer).

 Advanced shadowing techniques
– Physically accurate per-pixel penumbra volumes
– Extension of well-known stencil buffering algorithm
– Requires storing, traversing, and updating a very simple BSP tree per-

pixel with memory allocation and pointed following.

 Scenes with very large numbers of objects
– Fixed-function GPU + API has 10X-100X state change disadvantage

Graphics: 2012-2020
Potential Industry Goals

Achieve movie-quality:
 Antialiasing
 Direct Lighting
 Shadowing
 Particle Effects
 Reflections

Significantly improve:
 Character animation
 Object counts
 Indirect lighting

SOFTWARE IMPLICATIONS

Software Implications

Software must scale to…
• 10’s – 100’s of threads
• Vector instruction sets

Software Implications

Programming Models
• Shared State Concurrency
• Message Passing
• Pure Functional Programming
• Software Transactional Memory

Multithreading in Unreal Engine 3:
“Task Parallelism”

 Gameplay thread
 AI, scripting
 Thousands of interacting objects

 Rendering thread
 Scene traversal, occlusion
 Direct3D command submission

 Pool of helper threads for other work
 Physics Solver
 Animation Updates

Good for 4 threads.
No good for 100 threads!

“Shared State Concurrency”
The standard C++/Java threading model

 Many threads are running

 There is 512MB of data

 Any thread can modify any data at any time

 All synchronization is explicit, manual
 See: LOCK, MUTEX, SEMAPHORE

 No compile-time verification of correctness properties:
 Deadlock-free

 Race-free

 Invariants

Multithreaded Gameplay Simulation:
Manual Synchronization

Idea:
 Update objects in multiple threads
 Each object contains a lock
 “Just lock an object before using it”

Problems:
 “Deadlocks”
 “Data Races”
 Debugging is difficult/expensive

Multithreaded Gameplay Simulation:
“Message Passing”

Idea:
 Update objects in multiple threads
 Each object can only modify itself
 Communicate with other objects by sending

messages

Problems:
 Requires writing 1000’s of message protocols
 Still need synchronization

“Pure Functional” programming style:

• Define algorithms that don’t write to shared
memory or perform I/O operations

(their only effect is to return a result)

Examples:
• Collision Detection

• Physics Solver

• Pixel Shading

Pure Functional Programming

Pure Functional Programming

See: “Implementing Lazy Functional Languages on Stock Hardware”;
Simon Peyton Jones; Journal of Functional Programming 2005

“Inside a function with no side effects,
sub-computations can be run in any order,

or concurrently,
without affecting the function’s result”

With this property:
• A programmer can explicitly multithread the

code, safely.
• Future compilers will be able to automatically

multithread the code, safely.

Multithreaded Gameplay Simulation:
Software Transactional Memory

Idea:
 Update objects in multiple threads
 Each thread runs inside a transaction block

and has an atomic view of its “local” changes to memory
 C++ runtime detects conflicts between transactions

 Non-conflicting transactions are applied to “global” memory
 Conflicting transactions are “rolled back” and re-run

Implemented 100% in software; no custom hardware required.

Problems:
 “Object update” code must be free of side-effects
 Requires C++ runtime support
 Cost around 30% performance

See: “Composable Memory Transactions”; Tim Harris, Simon Marlow, Simon Peyton Jones,
and Maurice Herlihy. ACM Conference on Principles and Practice of Parallel Programming 2005

Vectorization

Supporting “Vector Instruction Sets” efficiently

NVIDIA GeForce 8:
• 8 to 15 cores
• 16-wide vectors

Vectorization

C++, Java compilers generate “scalar” code

GPU Shader compilers generate “vector” code
 Arbitrary vector size (4, 16, 64, …)
 N-wide vectors yield N-wide speedup

Vectorization: “The Old Way”

 “Old Vectors” (SIMD):
Intel SSE, Motorola Altivec

 4-wide vectors

 4-wide arithmetic operations

 Vector loads
Load vector register from vector stored in memory

 Vector swizzle & mask

Future Programming Models:
Vectorization

 “Old Vectors”
Intel SSE, Motorola Altivec

x0 x1 x2 x3

y0 y1 y2 y3

+ + + +

= = = =

z0 z1 z2 z3

vec4 x,y,z;
...
z = x+y;

Vectorization: “New Vectors”

(ATI, NVIDIA GeForce 8, Intel Larrabee)

 16-wide vectors

 16-wide arithmetic

 Vector loads/stores
 Load 16-wide vector register from scalars

from 16 independent memory addresses,
where the addresses are stored in a vector!

 Analogy: Register-indexed constant access in DirectX

 Conditional vector masks

“New SIMD” is better than “Old SIMD”

 “Old Vectors” were only useful when dealing
with vector-like data types:
 “XYZW” vectors from graphics

 4x4 matrices

 “New Vectors” are far more powerful:
Any loop whose body has a statically-known call graph
free of sequential dependencies can be “vectorized”,
or compiled into an equivalent 16-wide vector
program. And it runs up to 16X faster!

“New Vectors” are universal

This code…
 is free of sequential dependencies
 has a statically known call graph
Therefore, we can mechanically transform it into an equivalent

data parallel code fragment.

int n;
cmplx coords[];
int color[] = new int[n]

for(int i=0; i<n; i++) {
int j=0;
cmplx c=cmplx(0,0)
while(mag(c) < 2) {

c=c*c + coords[i];
j++;

}
color[i] = j;

}

(Mandelbrot set generator)

“New Vectors” Translation
for(int i=0; i<n; i++) {

…
}

for(int i=0; i<n; i+=N) {
i_vector={i,i+1,..i+N-1}
i_mask={i<n,i+1<N,i+2<N,..i+N-1<N}
…

}

Standard data-parallel loop setup

Note: Any code outside this loop
(which invokes the loop)
is necessarily scalar!

“New Vectors” Translation

int n;
cmplx coords[];
int color[] = new int[n]

for(int i=0; i<n; i+=N) {
int[N] i_vector={i,i+1,..i+N-1}
bool[N] i_mask={i<n,i+1<N,i+2<N,..i+N-1<N}

complx[N] c_vector={cmplx(0,0),..}

while(1) {
bool[N] while_vector={

i_mask[0] && mag(c_vector[0])<2,
..

}
if(all_false(while_vector))

break;
c_vector=c_vector*c_vector + coords[i..i+N-1 : i_mask]

}
colors[i..i+N-1 : i_mask] = c_vector;

}

int n;
cmplx coords[];
int color[] = new int[n]

for(int i=0; i<n; i++) {
int j=0;
cmplx c=cmplx(0,0)
while(mag(c) < 2) {

c=c*c +
coords[i];

j++;
}
color[i] = j;

}

Loop Index Vector

Loop Mask Vector

Vectorized Loop Variable

Vectorized Conditional:
Propagates loop mask
to local condition

Mask-predicated
vector read

Mask-predicated
vector write

Note: Any code outside this loop
(which invokes the loop)
is necessarily scalar!

Vectorization Tricks

 Vectorization of loops
 Subexpressions independent of loop variable are scalar and can be

lifted out of loop
 Subexpressions dependent on loop variable are vectorized
 Each loop iteraction computes an “active mask” enabling operation

on some subset of the N components
 Vectorization of function calls
 For every scalar function, generate an N-wide vector version of the

function taking an N-wide “active mask”
 Vectorization of conditionals
 Evaluate N-wide conditional and combine it with the current active

mask
 Execute “true” branch if any masked conditions true
 Execute “false” branch if any masked conditions false
 Will often execute both branches

Vectorization Paradigms

 Hand-coded vector operations
 Current approach to SSE/Altivec

 Loop vectorization
 See: Vectorizing compilers

 Run a big function with a big bundle of data
 CUDA/OpenCL

 Nested Data Parallelism
 See NESTL
 Very general set of “vectorization” transforms

for many categories of nested computations

Sequential Execution

Layers: Multithreading & Vectors

Software Transactional Memory

Purely functional core

Physics, collision detection, scene
traversal, path finding ..

Vector (Data Parallel) Subset

Graphics shader programs
Game World State

Hardware I/O

1X

Potential Performance Gains*: 2012-2020

64X

64X

1024X

Up to...
 64X for multithreading
 1024X for multithreading + vectors!

* My estimate of feasibility based on Moore’s Law

Multithreading & Vectorization:
Who Choses?

 Hardware companies impose a limited
model on developers
 Sony Cell, NVIDIA CUDA, Apple OpenCL

 Hardware provides general feature;
languages & runtimes make it nice;
users choose!
 Tradeoffs
 Performance
 Productivity
 Familiarity

HARDWARE IMPLICATIONS

The Graphics Hardware of the Future

All else is just computing!

Future Hardware:
A unified architecture for computing and graphics

Hardware Model
 Three performance dimensions
 Clock rate
 Cores
 Vector width

 Executes two kinds of code:
 Scalar code (like x86, PowerPC)
 Vector code (like GPU shaders or SSE/Altivec)

 Some fixed-function hardware
 Texture sampling
 Rasterization?

Vector Instruction Issues

 A future computing device needs…
 Full vector ISA
 Masking & scatter/gather memory access
 64-bit integer ops & memory addressing

 Full scalar ISA
 Dynamic control-flow is essential

 Efficient support for scalar<->vector transitions
 Initiating a vector computation
 Reducing the results
 Repacking vectors
 Must support billions of transitions per second

Memory System Issues

Effective bandwidth demands will be huge
Typically read 1 byte of memory per FLOP

4 TFLOP of computing power
demands

4 TBPS of effective memory bandwidth!

Yes, really!

Memory System Issues

Threads (GPU)
 Hide memory latency
 Lose data locality

Caches (CPU)
 Expose memory latency
 Exploit data locality

to minimize main
memory bandwidth

Memory System Issues

 Cache coherency is vital
 It should be the default

Revisiting REYES

 “Dice” all objects in scene down into sub-
pixel-sized triangles
 Tile-based setup

 Rendering with
 Flat Shading
 No texture sampling

 Analytic antialiasing
 Per-pixel occlusion

(A-Buffer/BSP) Requires no artificial
software threading
or pipelining.

LESSONS LEARNED

Lessons learned:
Productivity is vital!

Hardware will become 20X faster, but:
 Game budgets will increase less than 2X.

Therefore...
 Developers must be willing to sacrifice performance

in order to gain productivity.
 High-level programming beats

low-level programming.
 Easier hardware beats faster hardware!
 We need great tools: compilers, engines, middleware

libraries...

Lessons learned:
Today’s hardware is too hard!

 If it costs X (time, money, pain) to develop an efficient
single-threaded algorithm, then…
 Multithreaded version costs 2X
 PlayStation 3 Cell version costs 5X
 Current “GPGPU” version is costs: 10X or more

 Over 2X is uneconomical for most software companies!

 This is an argument against:
 Hardware that requires difficult programming techniques
 Non-unified memory architectures
 Limited “GPGPU” programming models

Lessons learned:
Plan Ahead

Previous Generation:
 Lead-time for engine development was 3 years
 Unreal Engine 3:
 2003: development started
 2006: first game shipped

Next Generation:
 Lead-time for engine development is 5 years
 Start in 2009, ship in 2014!

So, let’s get started!

CONCLUSION

END

	THE END OF THE GPU�ROADMAP
	Slide Number 2
	Background: Epic Games
	Slide Number 4
	Unreal Engine 1�1996-1999
	Unreal Engine 2�2000-2005
	Unreal Engine 3�2006-2012
	Unreal Engine 3 Games
	Slide Number 9
	Gears of War 2: Project Overview
	Gears of War 2: Software Dependencies
	Slide Number 12
	Computing History
	Graphics History
	Slide Number 15
	Hardware: 2012-2020
	Hardware: 2012-2020
	THE GPU ToDAY
	The GPU Today
	Shader Program Limitations
	Antialiasing Limitations
	Texture Sampling Limitations
	Frame Buffer Model Limitation
	Summary of Limitations
	The Meta-Problem:
	So...
	Return to 100% “Software” Rendering
	Software Rendering in Unreal 1 (1998)
	Software Rendering in 1998 vs 2012
	Future Graphics: �Raytracing
	Future Graphics:�The REYES Rendering Model
	Future Graphics:�The REYES Rendering Model
	Future Graphics: �Volumetric Rendering
	Future Graphics:�Software Tiled Rendering
	Hybrid Graphics Algorithms
	Graphics: 2012-2020�Potential Industry Goals
	Software Implications
	Software Implications
	Software Implications
	Multithreading in Unreal Engine 3:�“Task Parallelism”
	“Shared State Concurrency” �The standard C++/Java threading model�
	Multithreaded Gameplay Simulation:�Manual Synchronization
	Multithreaded Gameplay Simulation:�“Message Passing”
	Pure Functional Programming
	Pure Functional Programming
	Multithreaded Gameplay Simulation:�Software Transactional Memory
	Vectorization
	Vectorization
	Vectorization: “The Old Way”
	Future Programming Models:�Vectorization
	Vectorization: “New Vectors”
	“New SIMD” is better than “Old SIMD”
	“New Vectors” are universal
	“New Vectors” Translation
	“New Vectors” Translation
	Vectorization Tricks
	Vectorization Paradigms
	 Layers: Multithreading & Vectors
	Potential Performance Gains*: 2012-2020
	Multithreading & Vectorization:�Who Choses?
	Hardware Implications
	The Graphics Hardware of the Future
	Future Hardware:�A unified architecture for computing and graphics
	Vector Instruction Issues
	Memory System Issues
	Memory System Issues
	Memory System Issues
	Revisiting REYES
	Lessons Learned
	Lessons learned:�Productivity is vital!
	Lessons learned:�Today’s hardware is too hard!
	Lessons learned:�Plan Ahead
	CONCLUSION
	END

