
THE END OF THE GPU
ROADMAP

Tim Sweeney
CEO, Founder
Epic Games
tim@epicgames.com

mailto:tim@epicgames.com�

Background:
Epic Games

Background: Epic Games
 Independent game developer
 Located in Raleigh, North Carolina, USA
 Founded in 1991
 Over 30 games released
 Gears of War
 Unreal series

 Unreal Engine 3 is used by 100’s of games

History:
Unreal Engine

Unreal Engine 1
1996-1999

 First modern game engine
 Object-oriented
 Real-time, visual toolset
 Scripting language

 Last major software renderer
 Software texture mapping
 Colored lighting, shadowing
 Volumetric lighting & fog
 Pixel-accurate culling

 25 games shipped

Unreal Engine 2
2000-2005

 PlayStation 2, Xbox, PC
 DirectX 7 graphics
 Single-threaded
 40 games shipped

Unreal Engine 3
2006-2012

 PlayStation 3, Xbox 360, PC
 DirectX 9 graphics
 Pixel shaders
 Advanced lighting & shadowing

 Multithreading (6 threads)
 Advanced physics
 More visual tools
 Game Scripting
 Materials
 Animation
 Cinematics…

 150 games in
development

Unreal Engine 3 Games

Mass Effect (BioWare)

Army of Two (Electronic Arts)

BioShock (2K Games)Undertow (Chair Entertainment)

Game Development: 2009

Gears of War 2: Project Overview

 Project Resources
 15 programmers
 45 artists
 2-year schedule
 $12M development budget

 Software Dependencies
 1 middleware game engine
 ~20 middleware libraries
 Platform libraries

Gears of War 2: Software Dependencies

Gears of War 2
Gameplay Code
~250,000 lines C++, script code

Unreal Engine 3
Middleware Game Engine
~2,000,000 lines C++ code

DirectX
Graphics

OpenAL
Audio

Speed
Tree
Rendering

FaceFX
Face
Animation

Bink
Movie
Codec

ZLib
Data
Compr-
ession

…

Hardware:
History

Computing History

1985 Intel 80386: Scalar, in-order CPU
1989 Intel 80486: Caches!
1993 Pentium: Superscalar execution
1995 Pentium Pro: Out-of-order execution
1999 Pentium 3: Vector floating-point
2003 AMD Opteron: Multi-core
2006 PlayStation 3, Xbox 360: “Many-core”

…and we’re back to in-order execution

Graphics History

1984 3D workstation (SGI)
1997 GPU (3dfx)
2002 DirectX9, Pixel shaders (ATI)
2006 GPU with full programming language

(NVIDIA GeForce 8)
2009? x86 CPU/GPU Hybrid

(Intel Larrabee)

Hardware:
2012-2020

Hardware: 2012-2020

L2 Cache

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

D$ D$ D$ D$ D$

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

Processor

I$

In Order
4 Threads

D$ D$ D$ D$ D$

NVIDIA GeForce 8

 General Purpose GPU
 CUDA “C” Compiler
 DirectX/OpenGL
 Many-core, vector architecture
 Teraflop-class performance

Intel Larrabee

 x86 CPU-GPU Hybrid
 C/C++ Compiler
 DirectX/OpenGL
 Many-core, vector architecture
 Teraflop-class performance

Hardware: 2012-2020

CONCLUSION
CPU, GPU architectures are getting closer

THE GPU TODAY

The GPU Today

 Large frame buffer
 Complicated pipeline
 It’s fixed-function
 But we can specify

shader programs
that execute in certain pipeline stages

Shader Program Limitations

 No random-access memory writes
 Can write to current pixel in frame buffer
 Can’t create data structures

 Can’t traverse data structures
 Can hack it using texture accesses

 Hard to share data between main program
and shaders programs

 Weird programming language
 HLSL rather than C/C++

Result: “The Shader ALU Plateau”

Antialiasing Limitations

 MSAA & Oversampling
 Every 1 bit of output precision costs up to

2X memory & performance!
 Ideally want 10-20 bits

 Discrete sampling (in general)
 Texture filtering only implies antialiasing when

shader equation is linear
 Most shader equations are nonlinear

Aliasing is the #1 visual artifact in Gears of War

Texture Sampling Limitations

 Inherent artifacts of bilinear/trilinear

 Poor approximation of Integrate(color,area)
in the presence of:
 Small triangles
 Texture seams
 Alpha translucency
 Masking

 Fixed-function = poor scalability
 Megatexture, etc

Frame Buffer Model Limitation

 Frame buffer: 1 (or n) layers of 4-vectors,
where n = small constant

 Ineffective for
 General translucency
 Complex shadowing models

 Memory bandwidth requirement =

FPS * Pixel Count * Layers Depth * pow(2,n)

where n = quality of MSAA

Summary of Limitations

 “The Shader ALU Plateau”

 Antialiasing limitations
 Texture Sampling limitations
 Frame Buffer limitations

The Meta-Problem:

 The fixed-function pipeline is
too fixed to solve its problems

 Result:
 All games look similar
 Derive little benefit from Moore’s Law
 Crysis on high-end NVIDIA SLI solution only looks at

most marginally better than top Xbox 360 games

This is a market BEGGING
to be disrupted :-)

SO...

Return to 100% “Software” Rendering

 Bypass the OpenGL/DirectX API
 Implement a 100% software renderer
 Bypass all fixed-function pipeline hardware
 Generate image directly
 Build & traverse complex data structures
 Unlimited possibilities

Could implement this…

 On Intel CPU using C/C++

 On NVIDIA GPU using CUDA (no DirectX)

Software Rendering in Unreal 1 (1998)

Ran 100% on CPU
No GPU required!

Features
 Real-time colored lighting
 Volumetric Fog
 Tiled Rendering
 Occlusion Detection

Software Rendering in 1998 vs 2012

60 MHz Pentium could execute:
16 operations per pixel

at 320x200, 30 Hz

In 2012, a 4 Teraflop processor
would execute:

16000 operations per pixel
at 1920x1080, 60 Hz

Assumption: Using 50% of computing power for graphics, 50% for gameplay

Future Graphics:
Raytracing

 For each pixel
 Cast a ray off into scene
 Determine which objects were hit
 Continue for reflections, refraction, etc

 Consider
 Less efficient than pure rendering
 Can use for reflections in traditional render

Future Graphics:
The REYES Rendering Model

 “Dice” all objects in scene down into sub-pixel-
sized triangles

 Rendering with
 Flat Shading (!)
 Analytic antialiasing
 Per-pixel occlusion

(A-Buffer/BSP)

 Benefits
 Displacement maps for free
 Analytic Antialiasing
 Advanced filtering (Gaussian)
 Eliminates texture sampling

Future Graphics:
The REYES Rendering Model

Today’s Pipeline
 Build 4M poly “high-res” character

 Generate normal maps from
geometry in high-res

 Rendering 20K poly “low-res”
character in-game

Potential 2012 Pipeline
 Build 4M poly “high-res” character

 Render it in-game!

 Advanced LOD scheme assures
proper sub-pixel sized triangles

Future Graphics:
Volumetric Rendering

 Direct Voxel Rendering
 Raycasting
 Efficient for trees, foliage

 Tesselated Volume Rendering
 Marching Cubes
 Marching Tetrahedrons

 Point Clouds
 Signal-Space Volume Rendering
 Fourier Projection Slice Theorem
 Great for clouds, translucent volumetric data

Future Graphics:
Software Tiled Rendering

 Split the frame buffer up into bins
 Example: 1 bin = 8x8 pixels

 Process one bin at a time
 Transform, rasterize all objects in the bin

 Consider
 Cache efficiency
 Deep frame buffers, antialiasing

Hybrid Graphics Algorithms

 Analytic Antialiasing
– Analytic solution, better than 1024x MSAA

 Sort-independent translucency
– Sorted linked-list per pixel of fragments requiring per-pixel memory

allocation, pointer-following, conditional branching (A-Buffer).

 Advanced shadowing techniques
– Physically accurate per-pixel penumbra volumes
– Extension of well-known stencil buffering algorithm
– Requires storing, traversing, and updating a very simple BSP tree per-

pixel with memory allocation and pointed following.

 Scenes with very large numbers of objects
– Fixed-function GPU + API has 10X-100X state change disadvantage

Graphics: 2012-2020
Potential Industry Goals

Achieve movie-quality:
 Antialiasing
 Direct Lighting
 Shadowing
 Particle Effects
 Reflections

Significantly improve:
 Character animation
 Object counts
 Indirect lighting

SOFTWARE IMPLICATIONS

Software Implications

Software must scale to…
• 10’s – 100’s of threads
• Vector instruction sets

Software Implications

Programming Models
• Shared State Concurrency
• Message Passing
• Pure Functional Programming
• Software Transactional Memory

Multithreading in Unreal Engine 3:
“Task Parallelism”

 Gameplay thread
 AI, scripting
 Thousands of interacting objects

 Rendering thread
 Scene traversal, occlusion
 Direct3D command submission

 Pool of helper threads for other work
 Physics Solver
 Animation Updates

Good for 4 threads.
No good for 100 threads!

“Shared State Concurrency”
The standard C++/Java threading model

 Many threads are running

 There is 512MB of data

 Any thread can modify any data at any time

 All synchronization is explicit, manual
 See: LOCK, MUTEX, SEMAPHORE

 No compile-time verification of correctness properties:
 Deadlock-free

 Race-free

 Invariants

Multithreaded Gameplay Simulation:
Manual Synchronization

Idea:
 Update objects in multiple threads
 Each object contains a lock
 “Just lock an object before using it”

Problems:
 “Deadlocks”
 “Data Races”
 Debugging is difficult/expensive

Multithreaded Gameplay Simulation:
“Message Passing”

Idea:
 Update objects in multiple threads
 Each object can only modify itself
 Communicate with other objects by sending

messages

Problems:
 Requires writing 1000’s of message protocols
 Still need synchronization

“Pure Functional” programming style:

• Define algorithms that don’t write to shared
memory or perform I/O operations

(their only effect is to return a result)

Examples:
• Collision Detection

• Physics Solver

• Pixel Shading

Pure Functional Programming

Pure Functional Programming

See: “Implementing Lazy Functional Languages on Stock Hardware”;
Simon Peyton Jones; Journal of Functional Programming 2005

“Inside a function with no side effects,
sub-computations can be run in any order,

or concurrently,
without affecting the function’s result”

With this property:
• A programmer can explicitly multithread the

code, safely.
• Future compilers will be able to automatically

multithread the code, safely.

Multithreaded Gameplay Simulation:
Software Transactional Memory

Idea:
 Update objects in multiple threads
 Each thread runs inside a transaction block

and has an atomic view of its “local” changes to memory
 C++ runtime detects conflicts between transactions

 Non-conflicting transactions are applied to “global” memory
 Conflicting transactions are “rolled back” and re-run

Implemented 100% in software; no custom hardware required.

Problems:
 “Object update” code must be free of side-effects
 Requires C++ runtime support
 Cost around 30% performance

See: “Composable Memory Transactions”; Tim Harris, Simon Marlow, Simon Peyton Jones,
and Maurice Herlihy. ACM Conference on Principles and Practice of Parallel Programming 2005

Vectorization

Supporting “Vector Instruction Sets” efficiently

NVIDIA GeForce 8:
• 8 to 15 cores
• 16-wide vectors

Vectorization

C++, Java compilers generate “scalar” code

GPU Shader compilers generate “vector” code
 Arbitrary vector size (4, 16, 64, …)
 N-wide vectors yield N-wide speedup

Vectorization: “The Old Way”

 “Old Vectors” (SIMD):
Intel SSE, Motorola Altivec

 4-wide vectors

 4-wide arithmetic operations

 Vector loads
Load vector register from vector stored in memory

 Vector swizzle & mask

Future Programming Models:
Vectorization

 “Old Vectors”
Intel SSE, Motorola Altivec

x0 x1 x2 x3

y0 y1 y2 y3

+ + + +

= = = =

z0 z1 z2 z3

vec4 x,y,z;
...
z = x+y;

Vectorization: “New Vectors”

(ATI, NVIDIA GeForce 8, Intel Larrabee)

 16-wide vectors

 16-wide arithmetic

 Vector loads/stores
 Load 16-wide vector register from scalars

from 16 independent memory addresses,
where the addresses are stored in a vector!

 Analogy: Register-indexed constant access in DirectX

 Conditional vector masks

“New SIMD” is better than “Old SIMD”

 “Old Vectors” were only useful when dealing
with vector-like data types:
 “XYZW” vectors from graphics

 4x4 matrices

 “New Vectors” are far more powerful:
Any loop whose body has a statically-known call graph
free of sequential dependencies can be “vectorized”,
or compiled into an equivalent 16-wide vector
program. And it runs up to 16X faster!

“New Vectors” are universal

This code…
 is free of sequential dependencies
 has a statically known call graph
Therefore, we can mechanically transform it into an equivalent

data parallel code fragment.

int n;
cmplx coords[];
int color[] = new int[n]

for(int i=0; i<n; i++) {
int j=0;
cmplx c=cmplx(0,0)
while(mag(c) < 2) {

c=c*c + coords[i];
j++;

}
color[i] = j;

}

(Mandelbrot set generator)

“New Vectors” Translation
for(int i=0; i<n; i++) {

…
}

for(int i=0; i<n; i+=N) {
i_vector={i,i+1,..i+N-1}
i_mask={i<n,i+1<N,i+2<N,..i+N-1<N}
…

}

Standard data-parallel loop setup

Note: Any code outside this loop
(which invokes the loop)
is necessarily scalar!

“New Vectors” Translation

int n;
cmplx coords[];
int color[] = new int[n]

for(int i=0; i<n; i+=N) {
int[N] i_vector={i,i+1,..i+N-1}
bool[N] i_mask={i<n,i+1<N,i+2<N,..i+N-1<N}

complx[N] c_vector={cmplx(0,0),..}

while(1) {
bool[N] while_vector={

i_mask[0] && mag(c_vector[0])<2,
..

}
if(all_false(while_vector))

break;
c_vector=c_vector*c_vector + coords[i..i+N-1 : i_mask]

}
colors[i..i+N-1 : i_mask] = c_vector;

}

int n;
cmplx coords[];
int color[] = new int[n]

for(int i=0; i<n; i++) {
int j=0;
cmplx c=cmplx(0,0)
while(mag(c) < 2) {

c=c*c +
coords[i];

j++;
}
color[i] = j;

}

Loop Index Vector

Loop Mask Vector

Vectorized Loop Variable

Vectorized Conditional:
Propagates loop mask
to local condition

Mask-predicated
vector read

Mask-predicated
vector write

Note: Any code outside this loop
(which invokes the loop)
is necessarily scalar!

Vectorization Tricks

 Vectorization of loops
 Subexpressions independent of loop variable are scalar and can be

lifted out of loop
 Subexpressions dependent on loop variable are vectorized
 Each loop iteraction computes an “active mask” enabling operation

on some subset of the N components
 Vectorization of function calls
 For every scalar function, generate an N-wide vector version of the

function taking an N-wide “active mask”
 Vectorization of conditionals
 Evaluate N-wide conditional and combine it with the current active

mask
 Execute “true” branch if any masked conditions true
 Execute “false” branch if any masked conditions false
 Will often execute both branches

Vectorization Paradigms

 Hand-coded vector operations
 Current approach to SSE/Altivec

 Loop vectorization
 See: Vectorizing compilers

 Run a big function with a big bundle of data
 CUDA/OpenCL

 Nested Data Parallelism
 See NESTL
 Very general set of “vectorization” transforms

for many categories of nested computations

Sequential Execution

Layers: Multithreading & Vectors

Software Transactional Memory

Purely functional core

Physics, collision detection, scene
traversal, path finding ..

Vector (Data Parallel) Subset

Graphics shader programs
Game World State

Hardware I/O

1X

Potential Performance Gains*: 2012-2020

64X

64X

1024X

Up to...
 64X for multithreading
 1024X for multithreading + vectors!

* My estimate of feasibility based on Moore’s Law

Multithreading & Vectorization:
Who Choses?

 Hardware companies impose a limited
model on developers
 Sony Cell, NVIDIA CUDA, Apple OpenCL

 Hardware provides general feature;
languages & runtimes make it nice;
users choose!
 Tradeoffs
 Performance
 Productivity
 Familiarity

HARDWARE IMPLICATIONS

The Graphics Hardware of the Future

All else is just computing!

Future Hardware:
A unified architecture for computing and graphics

Hardware Model
 Three performance dimensions
 Clock rate
 Cores
 Vector width

 Executes two kinds of code:
 Scalar code (like x86, PowerPC)
 Vector code (like GPU shaders or SSE/Altivec)

 Some fixed-function hardware
 Texture sampling
 Rasterization?

Vector Instruction Issues

 A future computing device needs…
 Full vector ISA
 Masking & scatter/gather memory access
 64-bit integer ops & memory addressing

 Full scalar ISA
 Dynamic control-flow is essential

 Efficient support for scalar<->vector transitions
 Initiating a vector computation
 Reducing the results
 Repacking vectors
 Must support billions of transitions per second

Memory System Issues

Effective bandwidth demands will be huge
Typically read 1 byte of memory per FLOP

4 TFLOP of computing power
demands

4 TBPS of effective memory bandwidth!

Yes, really!

Memory System Issues

Threads (GPU)
 Hide memory latency
 Lose data locality

Caches (CPU)
 Expose memory latency
 Exploit data locality

to minimize main
memory bandwidth

Memory System Issues

 Cache coherency is vital
 It should be the default

Revisiting REYES

 “Dice” all objects in scene down into sub-
pixel-sized triangles
 Tile-based setup

 Rendering with
 Flat Shading
 No texture sampling

 Analytic antialiasing
 Per-pixel occlusion

(A-Buffer/BSP) Requires no artificial
software threading
or pipelining.

LESSONS LEARNED

Lessons learned:
Productivity is vital!

Hardware will become 20X faster, but:
 Game budgets will increase less than 2X.

Therefore...
 Developers must be willing to sacrifice performance

in order to gain productivity.
 High-level programming beats

low-level programming.
 Easier hardware beats faster hardware!
 We need great tools: compilers, engines, middleware

libraries...

Lessons learned:
Today’s hardware is too hard!

 If it costs X (time, money, pain) to develop an efficient
single-threaded algorithm, then…
 Multithreaded version costs 2X
 PlayStation 3 Cell version costs 5X
 Current “GPGPU” version is costs: 10X or more

 Over 2X is uneconomical for most software companies!

 This is an argument against:
 Hardware that requires difficult programming techniques
 Non-unified memory architectures
 Limited “GPGPU” programming models

Lessons learned:
Plan Ahead

Previous Generation:
 Lead-time for engine development was 3 years
 Unreal Engine 3:
 2003: development started
 2006: first game shipped

Next Generation:
 Lead-time for engine development is 5 years
 Start in 2009, ship in 2014!

So, let’s get started!

CONCLUSION

END

	THE END OF THE GPU�ROADMAP
	Slide Number 2
	Background: Epic Games
	Slide Number 4
	Unreal Engine 1�1996-1999
	Unreal Engine 2�2000-2005
	Unreal Engine 3�2006-2012
	Unreal Engine 3 Games
	Slide Number 9
	Gears of War 2: Project Overview
	Gears of War 2: Software Dependencies
	Slide Number 12
	Computing History
	Graphics History
	Slide Number 15
	Hardware: 2012-2020
	Hardware: 2012-2020
	THE GPU ToDAY
	The GPU Today
	Shader Program Limitations
	Antialiasing Limitations
	Texture Sampling Limitations
	Frame Buffer Model Limitation
	Summary of Limitations
	The Meta-Problem:
	So...
	Return to 100% “Software” Rendering
	Software Rendering in Unreal 1 (1998)
	Software Rendering in 1998 vs 2012
	Future Graphics: �Raytracing
	Future Graphics:�The REYES Rendering Model
	Future Graphics:�The REYES Rendering Model
	Future Graphics: �Volumetric Rendering
	Future Graphics:�Software Tiled Rendering
	Hybrid Graphics Algorithms
	Graphics: 2012-2020�Potential Industry Goals
	Software Implications
	Software Implications
	Software Implications
	Multithreading in Unreal Engine 3:�“Task Parallelism”
	“Shared State Concurrency” �The standard C++/Java threading model�
	Multithreaded Gameplay Simulation:�Manual Synchronization
	Multithreaded Gameplay Simulation:�“Message Passing”
	Pure Functional Programming
	Pure Functional Programming
	Multithreaded Gameplay Simulation:�Software Transactional Memory
	Vectorization
	Vectorization
	Vectorization: “The Old Way”
	Future Programming Models:�Vectorization
	Vectorization: “New Vectors”
	“New SIMD” is better than “Old SIMD”
	“New Vectors” are universal
	“New Vectors” Translation
	“New Vectors” Translation
	Vectorization Tricks
	Vectorization Paradigms
	 Layers: Multithreading & Vectors
	Potential Performance Gains*: 2012-2020
	Multithreading & Vectorization:�Who Choses?
	Hardware Implications
	The Graphics Hardware of the Future
	Future Hardware:�A unified architecture for computing and graphics
	Vector Instruction Issues
	Memory System Issues
	Memory System Issues
	Memory System Issues
	Revisiting REYES
	Lessons Learned
	Lessons learned:�Productivity is vital!
	Lessons learned:�Today’s hardware is too hard!
	Lessons learned:�Plan Ahead
	CONCLUSION
	END

