

id Tech 5 Challenges

From Texture Virtualization to Massive Parallelization

> J.M.P. van Waveren senior programmer id Software

Menu

- GPU virtual texturing, a couple of interesting issues
- How virtual texturing got us to a parallel job system
- Widespread use of the job system throughout the engine
- Getting the jobs back onto the (GP) GPU

- Unique, very large virtual textures key to id tech 5 rendering
- Full description beyond the scope of this talk

Texture Pyramid with Sparse Page Residency

Physical Page Texture

Quad-tree of Sparse Texture Pyramid

Very Large = 128k x 128k texels (1024 pages on a side)

218.JNS	219 45	598 45	221 /15	288 45	988 MS	201 10	225 45	35P H2	853 45
									Sector Sector
								1 145	-
	-	220 44	221. 46	722 116	223 46	254 46	225 96	220 40	227 46
-	-	200 41		222 31	-	224 41	2252 M	226 313	227 4(1
	and an Inc	ELD AT							The Branching
					100				
218 48	279 HB	820 HB	821 48	345 10	223 49	229 48	225 HB	226 48	221 48
					H-5 5)	18		1 - C	
	E.	(\mathbf{O}_{i})					F	Postan	
1.010	A214 99	220 - 119	221 749	222 MP	223 11	PH 165	-		221 44
							and the second	Ser Par	
1							Regel	A Care	
			- A	10	100 M	Sec.	Rep	The state of	
50	219 50	220 50		265 50 J	223 S0	E54 20	345 -50	220 50	- FE1 54
14				1	and a		2		
1									
		10.00				sateland/retisering.is	and the second second	·	1288 4.1288

Very Large = 128k x 128k texels (1024 pages on a side)

		48	10000		i a		1		-	
212 42	214 42	216 42	218 42	220 42	222 H2		226 42	225 42	E30 HE	
ere w	214 44	216 44	218 44	220 44		1224 44	226 44	228 44	230 44	232 44
212 4b	219 95	215 46	218 46	220 46	222 Hb	224 46	226 96	228 45	230 H.	232 46
а ча	214-48	216 115	218 48	() () () () () () () () () () () () () (222 48	224, 48	.225 48	229 48	230 48	232 48
50	214 50	216 50	218 55	220 20	222 50	C224 50	226.50	228, 50	210 50	232 6
52	214 22	216 52	218 52 5	220 52	222 Se	224 52	226 52	228 52	53 065	555
100		and the second division of the second divisio				maps/game/wasteland	I/wettspring.tant			1288 x 1288

Beyond Programmable Shading

Very Large = 128k x 128k texels (1024 pages on a side)

Beyond Programmable Shading

Very Large = 128k x 128k texels (1024 pages on a side)

A few interesting issues...

- Texture filtering
- Thrashing due to physical memory oversubscription
- LOD transitions under high latency

Virtual Texturing - Filtering

- We tried no filtering at all
- We tried bilinear filtering without borders
- Bilinear filtering with border works well
- Trilinear filtering reasonably but still expensive
- Anisotropic filtering possible via TXD (texgrad)
 - 4-texel border necessary (max aniso = 4)
 - TEX with implicit derivs ok too (on some hardware)

Beyond Programmable Shading

Virtual Texturing - Thrashing

- Sometimes you need more physical pages than you have
- With conventional virtual memory, you must thrash
- With virtual texturing, you can globally adjust feedback LOD bias until working set fits

32 x 32 pages

1024 Physical Pages

8x8 pages

64 Physical Pages

Beyond Programmable Shading

Virtual Texturing – LOD Snap

- Latency between first need and availability can be high
 - Especially if optical disk read required (>100 msec seek!)
- Visible snap happens when magnified texture changes LOD
- If we used trilinear filtering, blending in detail would be easy
- Instead continuously update physical pages with blended data

Virtual Texturing – LOD Snap

- Upsample coarse page immediately
- Then blend in finer data when available

Virtual Texturing - Management

- Analysis tells us what pages we need
- We fetch what we can

- But this is a real-time app... so no blocking allowed
- Cache handles hits, schedules misses to load in background
- Resident pages managed independent of disk cache
- Physical pages organized as quad-tree per virtual texture
- Linked lists for free, LRU, and locked pages

Virtual Texturing - Feedback

Feedback Analysis

Gen ~breadth-first quad-tree order w/ priority

Color Buffer

Feedback Buffer

Beyond Programmable Shading

Virtual Texturing - Transcode

Transcode

- diffuse, specular, bump and cover/alpha
- specular block scale stored in bump
- Typically 2-6kB input, 40kB output
- Unmap, Transcode, and Map all happen in parallel on platforms that can directly write texture memory

Transcode pipelined to block or row level to reduce memory profile.

Virtual Texturing - Pipeline

 Compute intensive complex system with dependencies that we want to run in parallel on all the different platforms

Game Engine Situation Today

- Logical GPU Architecture Stable
 - DX9 == nirvana for conventional hardware graphics
 - programmable stages, fixed topology
- CPU Architectures all over the map
 - Fast single core model definitely dead
 - Homogenous / Symmetric processors (PC, XBox)
 - big cores w/ cache, 1-2 hardware threads / core
 - some have complicated out-of-order processing
 - Heterogeneous processors (Cell)
 - 1-2 big cores
 - multiple small in-order cores w/ local memory & DMA controller
 - Streaming processors / GPGPU (NVIDIA / AMD GPUs, Intel Larrabee)
 - many cores
 - CUDA / OpenCL

Challenge: one engine to efficiently harness them all

What's the big deal?

- id Tech 5 does a lot of processing
 - Animation blending ~2 msec
 - Collision detection ~4 msec
 - Obstacle avoidance ~4 msec
 - Transparency sorting ~2 msec
 - Virtual texturing ~8 msec
 - Misc processing ~4 msec
 - Rendering ~10 msec
 - Audio ~4 msec
- And at 60 Hz, not much time to do it 16 msec
- Portable parallel software architecture is required

What Software Architecture?

- OS thread factoring
 - Good for small # of cores
 - Not terribly invasive
 - Complexity grows nonlinearly
 - Load balancing tricky
 - Not a good match for cell SPUs
- Small stand-alone job decomposition
 - Quite invasive rewrite
 - Very scalable
 - Almost required by cell SPUs
 - Good for heterogeneous processors

Job Processing System

- Simplicity key to scalability
 - Job has well defined input and output
 - Independent stateless, no stalls, always completes
 - Jobs added to job lists
 - Multiple job lists
 - Job lists fully independent
 - Simple synchronization of jobs within list through "signal" and "synchronize" tokens
 Pipelined Job List

Simple Job List
Job
Job
Job

Phase 1a Jobs				
Signal				
Phase 1b Jobs				
Sync				
Signal				
Phase 2a Jobs				
Sync				
Phase 2b Jobs				

Beyond Programmable Shading

Death by Synchronization

- Synchronization means waiting, waiting destroys parallelism
- Architectural decision: Job processing given 1 frame of latency to complete
 - Results of jobs show up a frame late
 - Requires some algorithm surgery
 - e.g. foliage
 - Rules out some algorithms
 - e.g. screen-space binning of transparency sort
 - But overall, not a bad compromise

Beyond Programmable Shading

id Tech 5 Job Decomposition

- Major parts of of id Tech 5 processing factored into jobs
 - Collision detection
 - Animation blend
 - Obstacle avoidance
 - Virtual texturing
 - Transparency processing (foliage, particles)
 - Cloth simulation
 - Water surface simulation
 - Detail model generation (rocks, pebbles etc.)

Collision Detection

- Two phases
 - Query (continuous collision detection CCD)
 - Check sub-model collisions
 - Merge
 - Find the first collision or gather all contacts
- Player physics does not use delayed detection
 - 16 msec extra delay in user feedback undesirable

Animation Blend

- Animation graph or "web" describes valid transitions
- A stack is used to evaluate a blend tree
 - Leaves are decoded source animations
 - Parents are intermediate blend results
- Tree walking generates a command list for the stack
- Most blending happens in local space (parallel)
- Final phase moves everything to model space

Obstacle Avoidance

- One job per character that wants to avoid obstacles
- Construction of job input comes from a scan of Area Awareness System for potential obstacles and their surroundings

Transparency

- Transparency requires sorting and blending: expensive — Must be handled separately
- Restrict to particle systems and foliage
- Limited buffer size
- Split into a number of jobs
 - Foliage gather
 - Foliage gen
 - Particle gen
 - Transparency sort and index gen
- Tricky to keep these jobs under SPU limits

Jobs on the (GP) GPU

- We are cautiously optimistic about the job model
 - Anticipate CUDA, OpenCL, Larrabee support
 - Easy to add additional job processing resources
 - But this is new territory...

Jobs on the (GP) GPU

- Not enough jobs to fill SIMD / SIMT lanes
- Code paths of different jobs diverge too much
- Jobs are useful as unit of work (latency tolerant & small memory footprint)
- Data parallelism within jobs needs to be exploited
- Split jobs into many fine grained threads
- Data dependencies in input
- Convergence of output data
- Memory access of the fine grained threads is important

Conclusions

- Virtual texturing + great artists = awesome environments
- id Tech 5 does a lot of work and has to exploit parallelism
- Cell forced us to re-factor engine into jobs
- Latency tolerant computational services model attractive
- Jobs are now running on a variety of processors
- Hopefully soon CUDA, OpenCL, Larrabee support

Questions?

- Please complete the course evaluation at: http://www.siggraph.org/courses_evaluation
- Chance to win a SIGGRAPH'09 mug! One winner per course, notified by email in the evening.