VSB	TECHNICAL	FACULTY OF ELECTRICAL	DEPARTMENT
hat	UNIVERSITY	ENGINEERING AND COMPUTER	OF COMPUTER
uh.	OF OSTRAVA	SCIENCE	SCIENCE

Data Visualization

460-4120

Fall 2024 Last update 20. 11. 2024

- Upon now, we dealt with scientific visualization (scivis)
 - Scivis includes visualization of physical simulations, engineering, medical imaging, Earth sciences, etc.
 - Typical datasets consist of samples of continuous quantities over compact domain
- Now, we will focus on more abstract data types
 - Typical datasets: generic graphs and trees, database tables, text, etc.
 - Information visualization (infovis) studies the visual representation of such data

- Infovis is the fastest groving branch of the visualization
- Main goal is to assist users in understanding all the abstract data, i.e. visualize abstract quantities and relations in order to get insight in the data with no physical representation
- Differences:
 - Scivis physical data with inherent spatial placement → mental and physical images overlap → considerably simplifies visualization
 - Infovis information has no innate shape and color and its visualization has purely abstract character

- Three main elements: representation, presentation, and interaction
- Infovis has potentially larger target audience with limited mathematical or engineering background than scivis
- Infovis covers areas such as:
 - Visual reasoning, visual data modeling, visual programming, visual information retrieval and browsing, visualization of program execution, visual languages, visual interface design, and spatial reasoning

- General rules for design of infovis applications:
 - Follow the conventions accepted by that field
 - Integrate with other tools-of-the-trade of the field
- In some taxonomies (Spence), there also exists class of geovisualization (geovis) applications which address a field between the two

- Data domain:
 - Datasets often do not contain spatial information (sample points)
 - No cells with interpolation function or cell notion serves a different purpose
 - Actual spatial layout is of little if any relevance for the content

- Attribute data types in infovis:
 - Data attributes are of more types than numerical values and go beyond the semantic of numerical values
 - A different storage strategy (size of a single attribute is variable)

Data type			Attribute domain	Operations	Examples	
Nominal (categorical)	Qualitative	alitative addition and ultiplication) Categorical*	Unordered set	Comparison $(=, \neq)$	Text, references, syntax elements	
Ordinal	(no addition and multiplication)		Ordered set	Ordering $(=, \neq, <, >)$	Ratings (e.g., bad, average, good)	
Discrete	Quantitative (allow		Integers (Z, N)	Integer arithmetic	Lines of code	
Continuous	interpolation)	-	Reals (R)	Real arithmetic	Code metrics	

Notes:

* A data item belongs to a category rather than the value of quantity

- Another classification of attribute data types:
 - Linear
 - Planar
 - Volumetric
 - Temporal
 - Multidimensional
 - Tree
 - Network
 - Workspace

Spatial aspect

Relational aspect

- Together with eight data types, seven interaction functions infovis application may provide:
 - Overview, zoom, filter, details on demand, relate, history, and extract
- These functions may be related to main steps of visualization pipeline:
 - Filtering, mapping, and rendering
- Data types and interaction types create a matrix of possibilities within which a infovis application may locate its functionality

• Comparison of datasets notion in scivis and infovis

	Scivis	Infovis
Data domain	Spatial R ⁿ	Abstract, nonspatial
Attribute types	Numeric R ^m	Any data types
Data points	Samples of attributes over domain	Tuples of attributes without spatial location
Cells	Support interpolation	Describe relations
Interpolation	Piecewise continuous	Can be nonexistent

Variable	Associative?	Selective?	Ordered?	Quantitative?			
Planar	Yes	Yes	Yes	Yes			
Size		Yes	Yes	Yes			
Brightness		Yes	Yes	Name	Definiti	ion	Fxample
Texture	Yes	Yes	Yes		If a mar	rk is different in this	
Color	Yes	Yes		Associative	attribut out	te, it can be picked	
Orientation	Yes	Yes		Selective	If marks	s are similar in this te they can be	Male/female
Shape	Yes	Sometimes			groupe	d into a family	
	1	I	1	Ordered	The ma ordered	arks can be judged as d	More/fewer, higher/lower, first place/third place
			Bertin, 1967	Quantitativo 7	The ma numeri anothe one and	arks are perceived as ically related to one er/proportional to other	You can tell one is 2x as big as another WITHOUT a legend

Fig. 14. Accuracy ranking of quantitative perceptual tasks. Higher tasks are accomplished more accurately than lower tasks. Cleveland and McGill empirically verified the basic properties of this ranking.

Mackinlay, 1986

Example	Encoding	Ordered	Useful values	Quantitative	Ordinal	Categorical	Relational
• •••	position, placement	yes	infinite	Good	Good	Good	Good
1, 2, 3; A, B, C	text labels	optional alpha or num	infinite	Good	Good	Good	Good
	length	yes	many	Good	Good		
. • •	size, area	yes	many	Good	Good		
/_	angle	yes	medium	Good	Good		
	pattern density	yes	few	Good	Good		
	weight, boldness	yes	few		Good		
	saturation, brightness	yes	few		Good		
	color	no	few (<20)			Good	
	shape, icon	no	medium			Good	
	pattern texture	no	medium			Good	
	enclosure, connection	no	infinite			Good	Good
	line pattern	no	few				Good
ال	line endings	no	few				Good
	line weight	yes	few		Good		

Use this table of common visual properties to help you select an appropriate encoding for your data type. *Designing Data Visualizations, 2011*

Visual properties grouped by the types of data they can be used to encode. *Designing Data Visualizations, 2011*

- Infovis datasets are quite similar to the model used in relational databases or entity-relationship graphs
- Visualization methods:
 - Database tables, trees, graphs, and text

Table Visualization

- Table simplest infovis data; two-dimensional array of rows (records) and columns (attributes)
- Improvements supporting readability:
 - Sorting
 - Filling background of cells using alternate colors
 - Bar graph as a cell background
 - Small glyphs or icons showing trends
 - Sparklines

Tasks completed by team members

(last 26 weeks, YoY change shown in %s)

Team Member	Total Tasks Completed	w1	w2	w3	‱25	w26
Julie	▲ 46%	13	15	19	8 11	19
John	✓ ✓ ▲ 45%	11	18	11	8 14	16
Jabba the hut		15	14	14	🦉 19	12
Johnson	~~~~~~ A 6%	18	17	14	8 12	19
Jeremy	↓ 43%	14	20	10	8 12	20
Josh	✓✓✓✓✓ -33%	15	12	19	8 11	10

Table Visualization

- Sampling issue
 - Text based visualization has fairly limited scalability
 - Zooming out the table visualization
 - We may drop displaying too small text and only show bar graphs
 - Use so called dense pixel displays or space filling displays

Table Visualization

rows of e date valu	qual ie	first sort on name ↓	then so on date	ort and e onti ∳	then ime	evolutio icons	n		
E Table: s	rf1								- 19
Id	cate	gory nam1 🌢	date 2	time 3	open	* hig	h lo	w close	
1611	01	SNP	2004-01-09	12:00	0.146200	· D.14520	0 0.145	200 0.14520	0
1510	<u>ai</u>	SNP	2004-01-09	13:00	0.145200	= 0.14620	0 0.145	200 0.14520	C
1609	bil	SNP	2004-01-09	14:00	0.145200	- 0.14520	0 0.145	200 0.14520	0
1608	ài	SNP	2004-01-09	15:00	0.145200	0,14520	0.144	200 0.14420	0
1607	all	SNP	2004-01-12	11:00	0.144200	D.14420	0.143	200 0.14320	6
1606	all	SNP	2004-01-12	12:00	0.143200	🗢 D.14320	0.142	300 0.14230	0
1605	ail	SNP	2004-01-12	13:00	0,142300	🔹 0.14230	0.140	300 0.14130	0
1604	ail	SNP	2004-01-12	14:00	0.140300	= 0.14030	0.140	300 0.14030	0
1603	oil	SNP	2004-01-12	15:00	0.140300	 D.14130 	0.140	300 0.14130	0
1602	01	SNP	2004-01-13	11:00	0.141300	0.14130	0 0.140	300 0.14030	0
1601	ail	SNP	2004-01-13	12:00	0.140300	D.14230	0 0.140	300 0.14130	0
1600	QÌ	SNP	2004-01-13	19:00	0.141300	D.14230	0.141	300 0.14130	0
1509	gi	SNP	2004-01-13	14:00	0.141300	 D.14230 	0.141	300 0,14230	Q
1598	all	SNP	2004-01-13	15:00	0.141300	0,1423	0 0.141	300 0.14130	0
1597	ai	SNP	2004-01-14	(1:00	0.141300	0.14130	0 0.140	300 0.14030	0
1596	ail	SNP	2004-01-14	12:00	0.141300	= 0,14230	0 0.141	300 0.14130	<u>a</u>
1595	oil	SNP	2004-01-14	13:00	0,142300	= D.14320	0.142	300 0,14230	G
1594	al	SNP	2004-01-14	14:00	0.142300	D,14230	0.141	300 0.14130	0
1593	oi	SNP	2004-01-15	11:00	0.141300	= 0.14Z3	0 0.141	300 0.14130	Q
1592	Di.	SNP	2004-01-15	00:511	0.141300	0.14130	0 0.141	300 0.14130	0
1591	pil	SNP	2004-01-15	13:00	0.141300	- 0,14130	0.141	300 0.14130	0
1590	CI	SNP	2004-01-15	14:00	0,141300	= 0.14230	0 0.141	300 0,14130	U
1589	qi	SNP	2004-01-15	15:00	0.141300	0,1423	0.141	300 0.14230	0
1588	ai	SNP	2004-01-16	11:00	0.141300	D.14130	0.140	300 0.14030	0
1587	01	SNP	2004-01-16	12:00	0.140300	 D.14130 	0,140	300 0.14130	0
1586	01	SNP	2004-01-16	13:00	0.140300	= 0.14030	0 0.140	300 0.14030	C
1585	01	SNP	2004-01-15	14:00	0.140300	= 0.14130	0 0.140	300 0.14030	Q
1584	21	SNP	2004-01-16	15:00	0,140300	0,14130	0 0.140	300 0.14130	0
896	CH.	SNP	2004-07-29	14:00	0.860.00		0 0.960	003 0.9600	R.C.
895	GI	SNP	2004-07-29	15:00	0.855000		0 0.855	000 0.85000	0
894	01	SNP	2004-07-30	12:00	0.860.00	- L.665.L	0 0.860	000 0.8550	U .
895	01	SNP	2004-07-30	15:00	0.860.00		0 0.850	000 0,8500.	<u>u</u>
892	00	ONP	2004-07-30	14:00	0.046.0		0 0.850	000 0.8500	0
891	01	SISP	2004-07-30	15:00	0.860000	- 0.860.U	0 0.850	000 0.85000	0
890	21	SNP	2001-08-02	12:00	0.865000	- 1.265.0	0 0.855	000 0.85500	U .
005	110	CAID	2004-08-02	14.00	0.870000		0 0.855	0.85500	0
000	01	CND	2004-00-02	15.00	0.075000	1	0 0.670	0003 0.0750	
00/	oil oil	SNID	2004-00-02	11000	0.875000		0 0.0/5		C.
000	00	SNID	2001-00-03	11:00	0.075000	0.0.5.1	0 0.875	000 0.5/500	0
864	oil	SNP	2004-08-03	13:00	0.875000	- 0.6750	0 0.875	000 0.87500	0
	13.0			Perone.	1.10.10140	The Law I			
-				1.1			STATISTICS.		1
			Ť	Î		Ť			T
			att	ribute ba	r aranh	6		70.00	elidor

Relation Visualization

- Frequently encountered visualizations of relational datasets:
 - Trees, graphs, and Venn-Euler diagrams

- Trees are a particular type of relational data
- T = (N, E), where N = {n_i} is set of nodes (vertices) connected by edges from set of edges E = {e_i} where each edge e_i is represented as a pair (n_j(parent), n_k(child)) of nodes
- Properties of a tree:
 - There is a unique path between any two nodes in the tree
 - Subsequently, there are no loops
 - Parent may have any number of children; child can have only one parent; leaves have no children
 - Root single node with no parents
 - Depth longest path in the tree

- Node-link visualization (ball and stick) with two degrees of freedom:
 - Position of the glyphs (layout)
 - The appearance of the glyph
- Layout requirements:
 - No or minimal overlapping of nodes and edges
 - Aspect ratio not far from unity
 - Avoid long or unnecessarily bent edges

- Rooted tree layout:
 - All children nodes of the same parent have the same y-coordinate
 - X-axis is used to reflect certain ordering

- Radial tree layout:
 - Use polar coordinate system
 - Always has 1:1 aspect ratio but problems with space allocation

• Bubble tree layout:

- Edges have now considerably different lenghts
- This makes the visual size of the subrees reflect their number of children

- Cone tree layout:
 - Arranged in 3D, may be more compact than other layouts
 - Problems: occlusions, chance of "getting lost" in 3D space

- Tree Maps
 - Slice and dice layout

- Tree Maps
 - Squarified layout

Data Visualization

- Tree Maps
 - Hierarchical layout

Graphs

• Force-directed layout

Fruchterman and Reingold (1991)

$$\mathbf{F}_{a}(n_{i}, n_{j}) = \frac{\|p_{i} - p_{j}\|}{k} (p_{j} - p_{i}), - \frac{k^{2}}{\|p_{i} - p_{j}\|^{2}} (p_{j} - p_{i}) - \frac{k^{2}}{\|p_{i} - p_{i}\|^{2}} (p_{j} - p_{i}) - \frac{k^{2}}{$$

Eades (1984)

$$\begin{aligned} \mathbf{F}_{a}(n_{i},n_{j}) &= k \, \log \, \|p_{i} - p_{j}\|_{\frac{p_{j} - p_{i}}{\|p_{j} - p_{i}\|}} \\ \mathbf{F}_{r}(n_{i},n_{j}) &= -\frac{k}{\|p_{i} - p_{j}\|^{3}}(p_{j} - p_{i}). \end{aligned}$$

 $k = \sqrt{A}/N$ where A is the plot area

The energy function is not monotonic Can get stuck in local minima No clear ordering – where to start reading the plot // initialize random layout first

t = 1.0 // set the initial maximal move

```
do {
 for ( i = 0; i < nodes.length; i++ ) { // compute repulsive force</pre>
   F[i] = 0;
   for ( j = 0; j < nodes.length; j++ ) {</pre>
      if ( i != j )
        F[i].add( Fr( nodes[i].position, nodes[j].position ) );
 for ( k = 0; k < edges.length; k++ ) { // compute attractive force
    i = edges[k].first; // get the first node of the current edge
    j = edges[k].second; // get the second node of the current edge
    fa = Fa( nodes[i].position, nodes[j].position );
    F[i].add( fa );
    F[j].sub( fa );
 for ( i = 0; i < nodes.length; i++ ) { // move nodes by applying forces</pre>
    df = ||F[i]||;
    if ( df > 0 ) {
      ds = F[i] / df * min(\delta, t * df)); // \delta = 0.1
      nodes[i].position.add(ds);
 t -= t * 0.01; // reduce maximal allowed move
} while nodes move;
```

Graphs

Graphs

• Energy based model (Kamada and Kawai)

$$E = \frac{1}{2} \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \left(\frac{\|\boldsymbol{p}_i - \boldsymbol{p}_j\| - d_{ij}}{d_{ij}} \right)^2$$

where d_{ij} is the length (measured as number of edges) of the shortest path in the graph connecting nodes i, j and all d_{ij} can be computed by Floyd-Warshall algorithm

- Minimal energy *E* corresponds to the state when the distances between connected nodes are proportional to the distances in the graph
- From classical mechanics, force is equal to the gradient of the potential energy $F = -\nabla E$

- Graph Splatting
 - Convolve nodes (optionally edges) with Gaussian filter

Matrix Visualization

• (Directed/undirected) Adjacency Matrix

• Order of rows and columns highly impact the visualization (spotting clusters etc.)

