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Smoothed Particle Hydrodynamics (SPH)
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• Developed by Gingold, Monaghan and Lucy in 1977 for astrophysical problems

• Used (but not only) for simulation of fluid dynamics

• The fluid is represented by a particle system

• The key idea is to determine some particle properties by taking an average over 
neighboring particles (similarity with grid less interpolation methods)



Grid-based Methods vs SPH

• Traditionally, numerical methods for hydrodynamics are based on discretization 
(spatial grid, inherently Eulerian)

• Well developed technique

• Easy to deal with boundary conditions

• SPH – discretization on mass (discrete fluid elements, inherently Lagrangian)

• Resolution follows density

• Difficult to implement boundary conditions

Fall 2024 Data Visualization 3



Fundamental Idea Behind SPH

• How to compute density from a collection of point masses?
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Method 1: construct a mesh 
around the points, then sum 
particles within cell and divide 
by cell volume

Method 3: weight contributions 
according to distance from 
sample point (SPH)

Method 2: construct local 
sample volumes, then sum 
particles within volumes and 
divide by volume

𝑅 𝑅



Particle Description

• Each particle is described by a list of its properties

• Carried by particle: mass 𝑚𝑖 (const.), position 𝒙𝑖, velocity 𝒗𝑖,

• Computed: force 𝑭𝑖, density 𝜌𝑖 (varies), pressure 𝑃𝑖, color 𝑪𝑖

• These properties forms a particle state vector (𝑚𝑖 , 𝒙𝑖 , 𝒗𝑖 , 𝑭𝑖 , 𝜌𝑖 , 𝑃𝑖 , 𝑪𝑖)
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Density From Collection of Masses

• Density 𝜌𝑖 at the point 𝒙𝑖 is computed (approximated) as a weighted sum of 𝑁
particle masses 𝑚𝑗 as follows

𝜌𝑖 ≈෍

𝑗=1

𝑁

𝑚𝑗𝑊𝑖𝑗

where the smoothing kernel
𝑊𝑖𝑗 = 𝑊( 𝒙𝑖 − 𝒙𝑗 , ℎ)

and ℎ is smoothing length

• This formulation ensures that the resolution follows density such that
𝜌ℎ3 = 𝑐𝑜𝑛𝑠𝑡.
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Smoothed Particle Interpolation

• If we know that 𝜌𝑖 = σ𝑗∈𝑁𝑖
𝑚𝑗𝑊𝑖𝑗, how we can compute arbitrary (smoothed) 

physical quantity 𝐴𝑖 of 𝑖-th particle?

• We can use a volume of 𝑖-th particle 𝑉𝑖 =
𝑚𝑖

𝜌𝑖
from which 𝑚𝑖 = 𝑉𝑖𝜌𝑖

• Now we get 𝜌𝑖 = σ𝑗∈𝑁𝑖
𝑉𝑗𝜌𝑗𝑊𝑖𝑗 and we have the same quantity on both sides of 

equation provided that 𝑖 ∈ 𝑁𝑖
• It also holds that 𝑉𝑖 =

𝑚𝑖

𝜌𝑖
=

𝑚𝑖

σ𝑗∈𝑁𝑖
𝑚𝑗𝑊𝑖𝑗

• Now, in general, for arbitrary quantity 𝐴𝑖, we can write the smoothed
interpolation as follows

𝐴𝑖 = ෍

𝑗∈𝑁𝑖

𝑉𝑗𝐴𝑗𝑊𝑖𝑗 = ෍

𝑗∈𝑁𝑖

𝑚𝑗

σ𝑘∈𝑁𝑗
𝑚𝑘𝑊𝑗𝑘

𝐴𝑗𝑊𝑖𝑗
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Kernel Function

• Kernel function should approximate a delta function, i.e. particles which are 
closer should contribute more to the local evaluation of fluid properties

• First choice – Gaussian kernel

𝑊 𝑟, ℎ =
1

𝜋 Τ1 3ℎ3
𝑒− Τ𝑟 ℎ 2

• One issue with this function is that the support is not compact and summation 
must be done over all particles

• One can choose a kernel with compact support (weight vanishes beyond a given 
distance)

• Better choice – Cubic spline kernel (neighborhood contains only particles lying 
within 2ℎ distance)
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Kernel Function

• In general, smoothing kernel can be any function which satisfies the following to 
properties

• Normalization

න
𝑉

𝑊 𝑟, ℎ d𝑉 = 1

• Dirac delta function approximation

lim
ℎ→0

𝑊 𝑟, ℎ = 𝛿(𝑟)
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Cubic Spline Kernel Function

• The smoothing kernel function is defined as follows

𝑊𝑖𝑗 𝑟, ℎ =
3

2𝜋ℎ3

2

3
− 𝑞2 +

1

2
𝑞3 0 ≤ 𝑞 < 1

1

6
2 − 𝑞 3 1 ≤ 𝑞 < 2

0 𝑞 ≥ 2

where 𝑞 =
𝑟

ℎ
=

𝒙𝑖−𝒙𝑗

ℎ
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Arbitrary Quantity Derivatives

• Repeat that 𝐴𝑖 = σ𝑗∈𝑁𝑖
𝑉𝑗𝐴𝑗𝑊𝑖𝑗

• Gradient

𝛻𝐴𝑖 = ෍

𝑗∈𝑁𝑖

𝑉𝑗𝐴𝑗𝛻𝑖𝑊𝑖𝑗

• Laplacian

∆𝐴𝑖 = ෍

𝑗∈𝑁𝑖

𝑉𝑗𝐴𝑗∆𝑖𝑊𝑖𝑗

Fall 2024 Data Visualization 11



Kernel Gradient

• 𝛻𝑖𝑊𝑖𝑗 =

𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝜕𝑊𝑖𝑗

𝜕𝑦𝑖
𝜕𝑊𝑖𝑗

𝜕𝑧𝑖

=
𝜕𝑊𝑖𝑗

𝜕𝑞
𝛻𝑖𝑞 =

𝜕𝑊𝑖𝑗

𝜕𝑞

𝒙𝑖−𝒙𝑗

𝒙𝑖−𝒙𝑗 ℎ

•
𝜕𝑊𝑖𝑗

𝜕𝑞
=

3

2𝜋ℎ3

−2𝑞 +
3

2
𝑞2 0 ≤ 𝑞 < 1

−
1

2
2 − 𝑞 2 1 ≤ 𝑞 < 2

0 𝑞 ≥ 2
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Note that
𝜕

𝜕𝑥

𝑥

ℎ
=

𝑥

𝑥 ℎ
=

𝑥

𝑥2ℎ
=

sgn 𝑥

ℎ



Kernel Laplacian 

• ∆𝑖𝑊𝑖𝑗 =
𝜕2𝑊𝑖𝑗

𝜕𝑥𝑖
2 +

𝜕2𝑊𝑖𝑗

𝜕𝑦𝑖
2 +

𝜕2𝑊𝑖𝑗

𝜕𝑧𝑖
2 =

𝜕2𝑊𝑖𝑗

𝜕𝑞2
1

ℎ2
+

𝜕𝑊𝑖𝑗

𝜕𝑞

2

ℎ

•
𝜕2𝑊𝑖𝑗

𝜕𝑞2
=

3

2𝜋ℎ3
ቐ

−2 + 3𝑞 0 ≤ 𝑞 < 1
2 − 𝑞 1 ≤ 𝑞 < 2
0 𝑞 ≥ 2
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Fluid Dynamics

• Govern by Navier-Stokes equation (momentum equation)

𝒂 =
𝜕𝒗

𝜕𝑡
= −

1

𝜌
𝛻𝑝 +

𝜇

𝜌
∆𝒗 +

1

𝜌
𝑭𝑒𝑥𝑡 + 𝒈

• It stems from motion equation in elasticity

• 𝒗 is a velocity field, 𝑝 is a pressure field, 𝜌 is a density field

• Note: dynamic (absolute) viscosity 𝜇 and kinematic viscosity (momentum 
diffusivity) 𝜈 =

𝜇

𝜌
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𝒂𝑃 𝒂𝑉 𝒂𝐸 𝒂𝐺



Fluid Dynamics

• Velocities and positions of particles are calculated from acting forces

• Three forces are applied on each particle (external force is excluded here)

• Gravity force 𝑭𝑖
𝐺 = 𝑚𝑖𝒈

• Fluid pressure force 𝑭𝑖
𝑃 = −𝑉𝑖 σ𝑗∈𝑁𝑖

𝑉𝑗𝑝𝑗𝛻𝑖𝑊𝑖𝑗

• Fluid viscosity force 𝑭𝑖
𝑉 = 𝑚𝑖𝜈 σ𝑗∈𝑁𝑖

𝑉𝑗𝒗𝑗∆𝑖𝑊𝑖𝑗
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Gravity Force

• The steady gain in speed of mass particle caused exclusively by the force of 
gravitational attraction is give by

𝑭𝑖
𝐺 = 𝑚𝑖𝒈
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𝑭𝑖
𝐺

𝑚𝑖

𝒈 = (0,0, −9.81)
𝑥

𝑧



Fluid Pressure Force

• We compute fluid pressure force induced by pressure term from NSE as follows

𝑭𝑖
𝑃 = 𝑚𝑖𝒂𝑖

𝑃 = 𝑚𝑖 −
1

𝜌𝑖
𝛻𝑝𝑖 = −𝑉𝑖𝛻𝑝𝑖 = −𝑉𝑖 ෍

𝑗∈𝑁𝑖

𝑉𝑗𝑝𝑗𝛻𝑖𝑊𝑖𝑗

• Pressure force depends on the difference (i.e. gradient) of pressure

• There is no pressure force (i.e. no acceleration) in areas with constant pressure
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𝑭𝑖
𝑃 = 𝟎 𝑭𝑖

𝑃 > 0

𝑝𝑖 + 𝑝𝑗

2

action ≠ reaction
symetrization needed



Fluid Pressure Force

• Pressure at 𝒙𝑖 can be computed via the ideal gas state equation
𝑝𝑖 = 𝑘(𝜌𝑖−𝜌)

where 𝑘 is a gas constant that depends on the temperature and 𝜌 is a rest 
(reference) density

• Here, we use Cole equation

𝑝𝑖 = 𝐵
𝜌𝑖
𝜌

𝛾

− 1

where 𝐵 is tuneable gas constant with presure units and adiabatic index 𝛾 ≅ 7
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Fluid Viscosity Force

• We compute fluid viscosity force induced by viscosity term from NSE as follows

𝑭𝑖
𝑉 = 𝑚𝑖𝒂𝑖

𝑉 = 𝑚𝑖

𝜇

𝜌𝑖
∆𝒗𝑖 = 𝑚𝑖𝜈∆𝒗𝑖 = 𝑚𝑖𝜈 ෍

𝑗∈𝑁𝑖

𝑉𝑗𝒗𝑗∆𝑖𝑊𝑖𝑗

• Viscosity causes loss of energy due to internal friction

• In viscous flow, particles should move together with the same velocity

• Resulting force is minimizing velocity difference between neighboring particles
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Material density is constant in case of 
incompressible flow (i.e. resist volume 
change) but it is not absolutely true here

𝒗𝑗 − 𝒗𝑖 asymmetric again
force depends on velocity 

differences only



Particles Position Update

• For every 𝑖-th particle compute force 𝑭𝑖 = 𝑭𝑖
𝑃 + 𝑭𝑖

𝑉 + 𝑭𝑖
𝐺 using its neighborhood 

set 𝑁𝑖

• Update the velocity 𝒗𝑖 +=
𝑭𝑖

𝑚𝑖
∆𝑡

• Update the position 𝒙𝑖 += 𝒗𝑖∆𝑡
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Kernel Variants

• Other various kernels were developed to improve numerical stability

• 𝑊𝑖𝑗 𝑟, ℎ = ൝
315

64𝜋ℎ9
ℎ2 − 𝑟2 3 0 ≤ 𝑟 < ℎ

0 𝑟 ≥ ℎ

• 𝛻𝑊𝑖𝑗 𝑟, ℎ =
−

45

𝜋ℎ6
ℎ − 𝑟 2 ൞

1,1,1

1,1,1
0 ≤ 𝑟 < 𝜀

𝒙𝑖−𝒙𝑗

𝒙𝑖−𝒙𝒋
𝜀 ≤ 𝑟 < ℎ

𝟎 𝑟 ≥ ℎ
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Kernel Variants

• Other various kernels were developed to improve numerical stability

• ∆𝑊𝑖𝑗 𝑟, ℎ = ൝
45

𝜋ℎ6
ℎ − 𝑟 0 ≤ 𝑟 < ℎ

0 𝑟 ≥ ℎ

• These kernels can be used in the following simplified formulas for computing
accelerations from the original NSE

• 𝒂𝑖
𝐺 = 𝒈

• 𝒂𝑖
𝑃 = −σ𝑗∈𝑁𝑖,𝑗≠𝑖

𝑝𝑖

𝜌𝑖
2 +

𝑝𝑗

𝜌𝑗
2 𝑚𝑗 𝛻𝑊𝑖𝑗

• 𝒂𝑖
𝑉 =

𝜇

𝜌𝑖
σ𝑗∈𝑁𝑖,𝑗≠𝑖

𝒗𝑗 − 𝒗𝑖
𝑚𝑗

𝜌𝑗
∆𝑊𝑖𝑗
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Algorithm

Init particles (𝑚𝑖 = Τ𝑚 𝑛, 𝒗𝑖 = 𝟎, 𝒙𝑖 ∈ cube)

For each time step:

Init neighborhoods
Compute densities
Compute pressures from densities

For each 𝑖-th particle:

Compute acceleration 𝒂𝑖 = 𝒂𝑖
𝐺 + 𝒂𝑖

𝑃 + 𝒂𝑖
𝑉

Update velocity 𝒗𝑖 += 𝒂𝑖Δ𝑡
Update position 𝒙𝑖 += 𝒗𝑖Δ𝑡
Check boundaries (prevent particle from leaving simulation domain)
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kNN Radius Search

typedef std::vector<int> Neighbourhood;

Neighborhood SPHSolver::GetNeighborhood( const int i, const float r ) {

Neighborhood indices;

std::vector<float> distances;

Vector3f x_i = particles_[i].position;

std::vector<float> query{ x_i.x, x_i.y, x_i.z };

cvflann::SearchParams search_params;

int n = search_index_->radiusSearch(query,indices,distances,r*r,search_params);

if ( n > 0 ) return Neighborhood( &indices[0], &indices[n] );

return Neighborhood( 0 );

}
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Search Index

typedef cv::flann::GenericIndex<cv::flann::L2<float>> SearchIndex;

int SPHSolver::InitSearchIndex() {

cv::Mat features( n_, 3, CV_32FC1 );

for ( int i = 0; i < n_; ++i ) {

const Vector3f & position = particles_[i].position;

features.at<float>( i, 0 ) = position.x;
features.at<float>( i, 1 ) = position.y;
features.at<float>( i, 2 ) = position.z;

}

search_index_ = std::make_unique<SearchIndex>( features, 
cvflann::KDTreeSingleIndexParams( 10, false ) );

}
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Parameters Settings

• 𝑛 = 40 × 40 × 40 particles

• 𝜌 = 1000 kg·m-3 (rest density)

• 𝒈 = (0,0,−9.81) m·s-2

• 𝐵 = 3.0 (fluid stiffness)

• ℎ = 0.055 m (smoothing length)

• Simulation domain size 1 × 1 × 1 m

• Initial particle separation 0.018 m

• 𝜇 = 3.5 N·s·m-2 (dynamic or absolute viscosity)

• Δ𝑡 = 0.001 s
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SPH Results
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SPH Results
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Iso Surface Reconstruction
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Marching Cubes

• Originally published in Marching cubes: A high resolution 3D surface construction 
algorithm". ACM SIGGRAPH Computer Graphics (1987)

• Topological issues fixes and further improvements were presented later

• The goal is to extract a polygonal mesh of an isosurface from the 3D discrete 
scalar field

• Elements of such 3D scalar field are called voxels (CT and MRI scans)

• In general, the algorithm determines the polygons needed to represent the part 
of isosurface passing by the give voxel (cube)
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Marching Cubes

• 1. Assign a scalar value to each vertex of a cube

• If the scalar field value at the given vertex is bellow a certain threshold (iso-
value), assign 0 to the appropriate bit, otherwise set this bit to 1

• In total, we get 28 = 256 possible assignments (two states {inside, outside} in 8 
vertices of a cube)
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Marching Cubes

• 2. Based on step 1, we connect points on 12 line segments of the cube

• Some lookup table contains 256 entries of 12 bits representing connected mid-
points on line segments

• Of the 256 different combinations 2 will not give any object, 8 will result in a 
triangle placed in every corner of the cube and so on
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Marching Cubes

• 3. Set proper positions of all vertices 𝒙𝑖𝑠𝑜 on segments 𝒙𝑖, 𝒙𝑗 via interpolation

• Interpolation weights are derived from known functional values at selected 
vertices of given cube

∆𝑓 =
𝑓𝑖𝑠𝑜 − 𝑓𝑖
𝑓𝑗 − 𝑓𝑖

• Final point for each vertex of the triangle is computed as follows 
𝒙𝑖𝑠𝑜 = 𝒙𝑖 + 𝒙𝑗 − 𝒙𝑖 ∆𝑓
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𝑓7, 𝒙7 6

54

2
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voxel𝑓3, 𝒙3

𝑓𝑖𝑠𝑜, 𝒙𝑖𝑠𝑜

Used indexing: Note that vertex and edge indices may 
differ in a particular implementation, e.g.
https://paulbourke.net/geometry/polygonise/



Marching Cubes Results
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Original SPH particles Marching Cubes iso-surface reconstructions with two different sizes of 
sampling steps producing different amount of details

Note that presented images are captured at different times
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Technical Notes

• How to set paths for OpenCV and VTK libraries…
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Expected directory structure:

Created VS solution



Technical Notes

• How to set paths for OpenCV and VTK libraries…
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Technical Notes

Fall 2024 Data Visualization 39

Add half.hpp into your project from
http://half.sourceforge.net/index.html


