
Data Visualization
460-4120

Fall 2024

Last update 13. 11. 2024

Smoothed Particle Hydrodynamics (SPH)

Fall 2024 Data Visualization 2

• Developed by Gingold, Monaghan and Lucy in 1977 for astrophysical problems

• Used (but not only) for simulation of fluid dynamics

• The fluid is represented by a particle system

• The key idea is to determine some particle properties by taking an average over
neighboring particles (similarity with grid less interpolation methods)

Grid-based Methods vs SPH

• Traditionally, numerical methods for hydrodynamics are based on discretization
(spatial grid, inherently Eulerian)

• Well developed technique

• Easy to deal with boundary conditions

• SPH – discretization on mass (discrete fluid elements, inherently Lagrangian)

• Resolution follows density

• Difficult to implement boundary conditions

Fall 2024 Data Visualization 3

Fundamental Idea Behind SPH

• How to compute density from a collection of point masses?

Fall 2024 Data Visualization 4

Method 1: construct a mesh
around the points, then sum
particles within cell and divide
by cell volume

Method 3: weight contributions
according to distance from
sample point (SPH)

Method 2: construct local
sample volumes, then sum
particles within volumes and
divide by volume

𝑅 𝑅

Particle Description

• Each particle is described by a list of its properties

• Carried by particle: mass 𝑚𝑖 (const.), position 𝒙𝑖, velocity 𝒗𝑖,

• Computed: force 𝑭𝑖, density 𝜌𝑖 (varies), pressure 𝑃𝑖, color 𝑪𝑖

• These properties forms a particle state vector (𝑚𝑖 , 𝒙𝑖 , 𝒗𝑖 , 𝑭𝑖 , 𝜌𝑖 , 𝑃𝑖 , 𝑪𝑖)

Fall 2024 Data Visualization 5

Density From Collection of Masses

• Density 𝜌𝑖 at the point 𝒙𝑖 is computed (approximated) as a weighted sum of 𝑁
particle masses 𝑚𝑗 as follows

𝜌𝑖 ≈෍

𝑗=1

𝑁

𝑚𝑗𝑊𝑖𝑗

where the smoothing kernel
𝑊𝑖𝑗 = 𝑊(𝒙𝑖 − 𝒙𝑗 , ℎ)

and ℎ is smoothing length

• This formulation ensures that the resolution follows density such that
𝜌ℎ3 = 𝑐𝑜𝑛𝑠𝑡.

Fall 2024 Data Visualization 6

Smoothed Particle Interpolation

• If we know that 𝜌𝑖 = σ𝑗∈𝑁𝑖
𝑚𝑗𝑊𝑖𝑗, how we can compute arbitrary (smoothed)

physical quantity 𝐴𝑖 of 𝑖-th particle?

• We can use a volume of 𝑖-th particle 𝑉𝑖 =
𝑚𝑖

𝜌𝑖
from which 𝑚𝑖 = 𝑉𝑖𝜌𝑖

• Now we get 𝜌𝑖 = σ𝑗∈𝑁𝑖
𝑉𝑗𝜌𝑗𝑊𝑖𝑗 and we have the same quantity on both sides of

equation provided that 𝑖 ∈ 𝑁𝑖
• It also holds that 𝑉𝑖 =

𝑚𝑖

𝜌𝑖
=

𝑚𝑖

σ𝑗∈𝑁𝑖
𝑚𝑗𝑊𝑖𝑗

• Now, in general, for arbitrary quantity 𝐴𝑖, we can write the smoothed
interpolation as follows

𝐴𝑖 = ෍

𝑗∈𝑁𝑖

𝑉𝑗𝐴𝑗𝑊𝑖𝑗 = ෍

𝑗∈𝑁𝑖

𝑚𝑗

σ𝑘∈𝑁𝑗
𝑚𝑘𝑊𝑗𝑘

𝐴𝑗𝑊𝑖𝑗

Fall 2024 Data Visualization 7

𝜌𝑗

Kernel Function

• Kernel function should approximate a delta function, i.e. particles which are
closer should contribute more to the local evaluation of fluid properties

• First choice – Gaussian kernel

𝑊 𝑟, ℎ =
1

𝜋 Τ1 3ℎ3
𝑒− Τ𝑟 ℎ 2

• One issue with this function is that the support is not compact and summation
must be done over all particles

• One can choose a kernel with compact support (weight vanishes beyond a given
distance)

• Better choice – Cubic spline kernel (neighborhood contains only particles lying
within 2ℎ distance)

Fall 2024 Data Visualization 8

Kernel Function

• In general, smoothing kernel can be any function which satisfies the following to
properties

• Normalization

න
𝑉

𝑊 𝑟, ℎ d𝑉 = 1

• Dirac delta function approximation

lim
ℎ→0

𝑊 𝑟, ℎ = 𝛿(𝑟)

Fall 2024 Data Visualization 9

Cubic Spline Kernel Function

• The smoothing kernel function is defined as follows

𝑊𝑖𝑗 𝑟, ℎ =
3

2𝜋ℎ3

2

3
− 𝑞2 +

1

2
𝑞3 0 ≤ 𝑞 < 1

1

6
2 − 𝑞 3 1 ≤ 𝑞 < 2

0 𝑞 ≥ 2

where 𝑞 =
𝑟

ℎ
=

𝒙𝑖−𝒙𝑗

ℎ

Fall 2024 Data Visualization 10

Arbitrary Quantity Derivatives

• Repeat that 𝐴𝑖 = σ𝑗∈𝑁𝑖
𝑉𝑗𝐴𝑗𝑊𝑖𝑗

• Gradient

𝛻𝐴𝑖 = ෍

𝑗∈𝑁𝑖

𝑉𝑗𝐴𝑗𝛻𝑖𝑊𝑖𝑗

• Laplacian

∆𝐴𝑖 = ෍

𝑗∈𝑁𝑖

𝑉𝑗𝐴𝑗∆𝑖𝑊𝑖𝑗

Fall 2024 Data Visualization 11

Kernel Gradient

• 𝛻𝑖𝑊𝑖𝑗 =

𝜕𝑊𝑖𝑗

𝜕𝑥𝑖
𝜕𝑊𝑖𝑗

𝜕𝑦𝑖
𝜕𝑊𝑖𝑗

𝜕𝑧𝑖

=
𝜕𝑊𝑖𝑗

𝜕𝑞
𝛻𝑖𝑞 =

𝜕𝑊𝑖𝑗

𝜕𝑞

𝒙𝑖−𝒙𝑗

𝒙𝑖−𝒙𝑗 ℎ

•
𝜕𝑊𝑖𝑗

𝜕𝑞
=

3

2𝜋ℎ3

−2𝑞 +
3

2
𝑞2 0 ≤ 𝑞 < 1

−
1

2
2 − 𝑞 2 1 ≤ 𝑞 < 2

0 𝑞 ≥ 2

Fall 2024 Data Visualization 12

Note that
𝜕

𝜕𝑥

𝑥

ℎ
=

𝑥

𝑥 ℎ
=

𝑥

𝑥2ℎ
=

sgn 𝑥

ℎ

Kernel Laplacian

• ∆𝑖𝑊𝑖𝑗 =
𝜕2𝑊𝑖𝑗

𝜕𝑥𝑖
2 +

𝜕2𝑊𝑖𝑗

𝜕𝑦𝑖
2 +

𝜕2𝑊𝑖𝑗

𝜕𝑧𝑖
2 =

𝜕2𝑊𝑖𝑗

𝜕𝑞2
1

ℎ2
+

𝜕𝑊𝑖𝑗

𝜕𝑞

2

ℎ

•
𝜕2𝑊𝑖𝑗

𝜕𝑞2
=

3

2𝜋ℎ3
ቐ

−2 + 3𝑞 0 ≤ 𝑞 < 1
2 − 𝑞 1 ≤ 𝑞 < 2
0 𝑞 ≥ 2

Fall 2024 Data Visualization 13

Fluid Dynamics

• Govern by Navier-Stokes equation (momentum equation)

𝒂 =
𝜕𝒗

𝜕𝑡
= −

1

𝜌
𝛻𝑝 +

𝜇

𝜌
∆𝒗 +

1

𝜌
𝑭𝑒𝑥𝑡 + 𝒈

• It stems from motion equation in elasticity

• 𝒗 is a velocity field, 𝑝 is a pressure field, 𝜌 is a density field

• Note: dynamic (absolute) viscosity 𝜇 and kinematic viscosity (momentum
diffusivity) 𝜈 =

𝜇

𝜌

Fall 2024 Data Visualization 14

𝒂𝑃 𝒂𝑉 𝒂𝐸 𝒂𝐺

Fluid Dynamics

• Velocities and positions of particles are calculated from acting forces

• Three forces are applied on each particle (external force is excluded here)

• Gravity force 𝑭𝑖
𝐺 = 𝑚𝑖𝒈

• Fluid pressure force 𝑭𝑖
𝑃 = −𝑉𝑖 σ𝑗∈𝑁𝑖

𝑉𝑗𝑝𝑗𝛻𝑖𝑊𝑖𝑗

• Fluid viscosity force 𝑭𝑖
𝑉 = 𝑚𝑖𝜈 σ𝑗∈𝑁𝑖

𝑉𝑗𝒗𝑗∆𝑖𝑊𝑖𝑗

Fall 2024 Data Visualization 15

Gravity Force

• The steady gain in speed of mass particle caused exclusively by the force of
gravitational attraction is give by

𝑭𝑖
𝐺 = 𝑚𝑖𝒈

Fall 2024 Data Visualization 16

𝑭𝑖
𝐺

𝑚𝑖

𝒈 = (0,0, −9.81)
𝑥

𝑧

Fluid Pressure Force

• We compute fluid pressure force induced by pressure term from NSE as follows

𝑭𝑖
𝑃 = 𝑚𝑖𝒂𝑖

𝑃 = 𝑚𝑖 −
1

𝜌𝑖
𝛻𝑝𝑖 = −𝑉𝑖𝛻𝑝𝑖 = −𝑉𝑖 ෍

𝑗∈𝑁𝑖

𝑉𝑗𝑝𝑗𝛻𝑖𝑊𝑖𝑗

• Pressure force depends on the difference (i.e. gradient) of pressure

• There is no pressure force (i.e. no acceleration) in areas with constant pressure

Fall 2024 Data Visualization 17

𝑭𝑖
𝑃 = 𝟎 𝑭𝑖

𝑃 > 0

𝑝𝑖 + 𝑝𝑗

2

action ≠ reaction
symetrization needed

Fluid Pressure Force

• Pressure at 𝒙𝑖 can be computed via the ideal gas state equation
𝑝𝑖 = 𝑘(𝜌𝑖−𝜌)

where 𝑘 is a gas constant that depends on the temperature and 𝜌 is a rest
(reference) density

• Here, we use Cole equation

𝑝𝑖 = 𝐵
𝜌𝑖
𝜌

𝛾

− 1

where 𝐵 is tuneable gas constant with presure units and adiabatic index 𝛾 ≅ 7

Fall 2024 Data Visualization 18

Fluid Viscosity Force

• We compute fluid viscosity force induced by viscosity term from NSE as follows

𝑭𝑖
𝑉 = 𝑚𝑖𝒂𝑖

𝑉 = 𝑚𝑖

𝜇

𝜌𝑖
∆𝒗𝑖 = 𝑚𝑖𝜈∆𝒗𝑖 = 𝑚𝑖𝜈 ෍

𝑗∈𝑁𝑖

𝑉𝑗𝒗𝑗∆𝑖𝑊𝑖𝑗

• Viscosity causes loss of energy due to internal friction

• In viscous flow, particles should move together with the same velocity

• Resulting force is minimizing velocity difference between neighboring particles

Fall 2024 Data Visualization 19

Material density is constant in case of
incompressible flow (i.e. resist volume
change) but it is not absolutely true here

𝒗𝑗 − 𝒗𝑖 asymmetric again
force depends on velocity

differences only

Particles Position Update

• For every 𝑖-th particle compute force 𝑭𝑖 = 𝑭𝑖
𝑃 + 𝑭𝑖

𝑉 + 𝑭𝑖
𝐺 using its neighborhood

set 𝑁𝑖

• Update the velocity 𝒗𝑖 +=
𝑭𝑖

𝑚𝑖
∆𝑡

• Update the position 𝒙𝑖 += 𝒗𝑖∆𝑡

Fall 2024 Data Visualization 20

Kernel Variants

• Other various kernels were developed to improve numerical stability

• 𝑊𝑖𝑗 𝑟, ℎ = ൝
315

64𝜋ℎ9
ℎ2 − 𝑟2 3 0 ≤ 𝑟 < ℎ

0 𝑟 ≥ ℎ

• 𝛻𝑊𝑖𝑗 𝑟, ℎ =
−

45

𝜋ℎ6
ℎ − 𝑟 2 ൞

1,1,1

1,1,1
0 ≤ 𝑟 < 𝜀

𝒙𝑖−𝒙𝑗

𝒙𝑖−𝒙𝒋
𝜀 ≤ 𝑟 < ℎ

𝟎 𝑟 ≥ ℎ

Fall 2024 Data Visualization 21

Kernel Variants

• Other various kernels were developed to improve numerical stability

• ∆𝑊𝑖𝑗 𝑟, ℎ = ൝
45

𝜋ℎ6
ℎ − 𝑟 0 ≤ 𝑟 < ℎ

0 𝑟 ≥ ℎ

• These kernels can be used in the following simplified formulas for computing
accelerations from the original NSE

• 𝒂𝑖
𝐺 = 𝒈

• 𝒂𝑖
𝑃 = −σ𝑗∈𝑁𝑖,𝑗≠𝑖

𝑝𝑖

𝜌𝑖
2 +

𝑝𝑗

𝜌𝑗
2 𝑚𝑗 𝛻𝑊𝑖𝑗

• 𝒂𝑖
𝑉 =

𝜇

𝜌𝑖
σ𝑗∈𝑁𝑖,𝑗≠𝑖

𝒗𝑗 − 𝒗𝑖
𝑚𝑗

𝜌𝑗
∆𝑊𝑖𝑗

Fall 2024 Data Visualization 22

Algorithm

Init particles (𝑚𝑖 = Τ𝑚 𝑛, 𝒗𝑖 = 𝟎, 𝒙𝑖 ∈ cube)

For each time step:

Init neighborhoods
Compute densities
Compute pressures from densities

For each 𝑖-th particle:

Compute acceleration 𝒂𝑖 = 𝒂𝑖
𝐺 + 𝒂𝑖

𝑃 + 𝒂𝑖
𝑉

Update velocity 𝒗𝑖 += 𝒂𝑖Δ𝑡
Update position 𝒙𝑖 += 𝒗𝑖Δ𝑡
Check boundaries (prevent particle from leaving simulation domain)

Fall 2024 Data Visualization 23

kNN Radius Search

typedef std::vector<int> Neighbourhood;

Neighborhood SPHSolver::GetNeighborhood(const int i, const float r) {

Neighborhood indices;

std::vector<float> distances;

Vector3f x_i = particles_[i].position;

std::vector<float> query{ x_i.x, x_i.y, x_i.z };

cvflann::SearchParams search_params;

int n = search_index_->radiusSearch(query,indices,distances,r*r,search_params);

if (n > 0) return Neighborhood(&indices[0], &indices[n]);

return Neighborhood(0);

}

Fall 2024 Data Visualization 24

Search Index

typedef cv::flann::GenericIndex<cv::flann::L2<float>> SearchIndex;

int SPHSolver::InitSearchIndex() {

cv::Mat features(n_, 3, CV_32FC1);

for (int i = 0; i < n_; ++i) {

const Vector3f & position = particles_[i].position;

features.at<float>(i, 0) = position.x;
features.at<float>(i, 1) = position.y;
features.at<float>(i, 2) = position.z;

}

search_index_ = std::make_unique<SearchIndex>(features,
cvflann::KDTreeSingleIndexParams(10, false));

}

Fall 2024 Data Visualization 25

Parameters Settings

• 𝑛 = 40 × 40 × 40 particles

• 𝜌 = 1000 kg·m-3 (rest density)

• 𝒈 = (0,0,−9.81) m·s-2

• 𝐵 = 3.0 (fluid stiffness)

• ℎ = 0.055 m (smoothing length)

• Simulation domain size 1 × 1 × 1 m

• Initial particle separation 0.018 m

• 𝜇 = 3.5 N·s·m-2 (dynamic or absolute viscosity)

• Δ𝑡 = 0.001 s

Fall 2024 Data Visualization 27

SPH Results

Fall 2024 Data Visualization 28

SPH Results

Fall 2024 Data Visualization 29

Iso Surface Reconstruction

Fall 2024 Data Visualization 30

Marching Cubes

• Originally published in Marching cubes: A high resolution 3D surface construction
algorithm". ACM SIGGRAPH Computer Graphics (1987)

• Topological issues fixes and further improvements were presented later

• The goal is to extract a polygonal mesh of an isosurface from the 3D discrete
scalar field

• Elements of such 3D scalar field are called voxels (CT and MRI scans)

• In general, the algorithm determines the polygons needed to represent the part
of isosurface passing by the give voxel (cube)

Fall 2024 Data Visualization 31

Marching Cubes

• 1. Assign a scalar value to each vertex of a cube

• If the scalar field value at the given vertex is bellow a certain threshold (iso-
value), assign 0 to the appropriate bit, otherwise set this bit to 1

• In total, we get 28 = 256 possible assignments (two states {inside, outside} in 8
vertices of a cube)

Fall 2024 Data Visualization 32

0 1 2 3 4 5 6 7

0 0 0 0 0 0 1 1

7 6

54

3 2

10
iso-surface

cell
LSB MSB

Marching Cubes

• 2. Based on step 1, we connect points on 12 line segments of the cube

• Some lookup table contains 256 entries of 12 bits representing connected mid-
points on line segments

• Of the 256 different combinations 2 will not give any object, 8 will result in a
triangle placed in every corner of the cube and so on

Fall 2024 Data Visualization 33

7

6
5

4

11 10

98

voxel 0 1 2 3 4 5 6 7 8 9 10 11

0 0 0 0 0 1 0 1 0 0 1 1

3
1

0

2

first triangle

second triangle

row (00000011)B = 3

⋮

⋮

LSB MSB

Marching Cubes

• 3. Set proper positions of all vertices 𝒙𝑖𝑠𝑜 on segments 𝒙𝑖, 𝒙𝑗 via interpolation

• Interpolation weights are derived from known functional values at selected
vertices of given cube

∆𝑓 =
𝑓𝑖𝑠𝑜 − 𝑓𝑖
𝑓𝑗 − 𝑓𝑖

• Final point for each vertex of the triangle is computed as follows
𝒙𝑖𝑠𝑜 = 𝒙𝑖 + 𝒙𝑗 − 𝒙𝑖 ∆𝑓

Fall 2024 Data Visualization 34

𝑓7, 𝒙7 6

54

2

10

voxel𝑓3, 𝒙3

𝑓𝑖𝑠𝑜, 𝒙𝑖𝑠𝑜

Used indexing: Note that vertex and edge indices may
differ in a particular implementation, e.g.
https://paulbourke.net/geometry/polygonise/

Marching Cubes Results

Fall 2024 Data Visualization 35

Original SPH particles Marching Cubes iso-surface reconstructions with two different sizes of
sampling steps producing different amount of details

Note that presented images are captured at different times

References and Further Readings

• MÜLLER, Matthias; CHARYPAR, David; GROSS, Markus H. Particle-based fluid
simulation for interactive applications. In: Symposium on Computer animation.
2003.

• IHMSEN, Markus, et al. SPH fluids in computer graphics. 2014.

• KOSCHIER, Dan, et al. Smoothed particle hydrodynamics techniques for the
physics based simulation of fluids and solids. 2024.

• VIOLEAU, Damien; ISSA, Reza. Numerical modelling of complex turbulent
free‐surface flows with the SPH method: an overview. International Journal for
Numerical Methods in Fluids, 2007.

• SUTTI, Marco. SPH treatment of boundaries and application to moving objects.
École polytechnique fédérale de Lausanne. 2014.

Fall 2024 Data Visualization 36

Technical Notes

• How to set paths for OpenCV and VTK libraries…

Fall 2024 Data Visualization 37

Expected directory structure:

Created VS solution

Technical Notes

• How to set paths for OpenCV and VTK libraries…

Fall 2024 Data Visualization 38

Technical Notes

Fall 2024 Data Visualization 39

Add half.hpp into your project from
http://half.sourceforge.net/index.html

