VSB	TECHNICAL	FACULTY OF ELECTRICAL	DEPARTMENT
Щ	UNIVERSITY	ENGINEERING AND COMPUTER	OF COMPUTER
	OF OSTRAVA	SCIENCE	SCIENCE

Data Visualization

460-4120

Fall 2024 Last update 13. 11. 2024

Smoothed Particle Hydrodynamics (SPH)

- Developed by Gingold, Monaghan and Lucy in 1977 for astrophysical problems
- Used (but not only) for simulation of fluid dynamics
- The fluid is represented by a particle system
- The key idea is to determine some particle properties by taking an average over neighboring particles (similarity with grid less interpolation methods)

Data Visualization

Grid-based Methods vs SPH

- Traditionally, numerical methods for hydrodynamics are based on discretization (spatial grid, inherently Eulerian)
 - Well developed technique
 - Easy to deal with boundary conditions

- Resolution follows density
- Difficult to implement boundary conditions

Fall 2024

Fundamental Idea Behind SPH

• How to compute density from a collection of point masses?

Method 1: construct a mesh around the points, then sum particles within cell and divide by cell volume Method 2: construct local sample volumes, then sum particles within volumes and divide by volume **Method 3**: weight contributions according to distance from sample point (SPH)

Particle Description

- Each particle is described by a list of its properties
 - Carried by particle: mass m_i (const.), position x_i , velocity v_i ,
 - Computed: force F_i , density ρ_i (varies), pressure P_i , color C_i
 - These properties forms a particle state vector $(m_i, x_i, v_i, F_i, \rho_i, P_i, C_i)$

Density From Collection of Masses

• Density ρ_i at the point x_i is computed (approximated) as a weighted sum of N particle masses m_j as follows

$$\rho_i \approx \sum_{j=1}^N m_j W_{ij}$$

where the smoothing kernel

$$W_{ij} = W(\|\boldsymbol{x}_i - \boldsymbol{x}_j\|, h)$$

and h is smoothing length

• This formulation ensures that the resolution follows density such that $\rho h^3 = const.$

Smoothed Particle Interpolation

- If we know that $\rho_i = \sum_{j \in N_i} m_j W_{ij}$, how we can compute arbitrary (smoothed) physical quantity A_i of *i*-th particle?
- We can use a volume of *i*-th particle $V_i = \frac{m_i}{\rho_i}$ from which $m_i = V_i \rho_i$
- Now we get $\rho_i = \sum_{j \in N_i} V_j \rho_j W_{ij}$ and we have the same quantity on both sides of equation provided that $i \in N_i$

• It also holds that
$$V_i = \frac{m_i}{\rho_i} = \frac{m_i}{\sum_{j \in N_i} m_j W_{ij}}$$

• Now, in general, for arbitrary quantity A_i , we can write the smoothed interpolation as follows

$$A_{i} = \sum_{j \in N_{i}} V_{j} A_{j} W_{ij} = \sum_{j \in N_{i}} \frac{m_{j}}{\sum_{k \in N_{j}} m_{k} W_{jk}} A_{j} W_{ij}$$

Kernel Function

- Kernel function should approximate a delta function, i.e. particles which are closer should contribute more to the local evaluation of fluid properties
- First choice Gaussian kernel

$$W(r,h) = \frac{1}{\pi^{1/3}h^3} e^{-(r/h)^2}$$

- One issue with this function is that the support is not compact and summation must be done over all particles
- One can choose a kernel with compact support (weight vanishes beyond a given distance)
- Better choice Cubic spline kernel (neighborhood contains only particles lying within 2h distance)

Kernel Function

- In general, smoothing kernel can be any function which satisfies the following to properties
 - Normalization

$$\int_{V} W(r,h) \mathrm{d}V = 1$$

• Dirac delta function approximation

$$\lim_{h\to 0} W(r,h) = \delta(r)$$

Cubic Spline Kernel Function

• The smoothing kernel function is defined as follows

$$W_{ij}(r,h) = \frac{3}{2\pi h^3} \begin{cases} \frac{2}{3} - q^2 + \frac{1}{2}q^3 & 0 \le q < 1\\ \frac{1}{6}(2-q)^3 & 1 \le q < 2\\ 0 & q \ge 2 \end{cases}$$

where $q = \frac{r}{h} = \frac{\|x_i - x_j\|}{h}$

Arbitrary Quantity Derivatives

- Repeat that $A_i = \sum_{j \in N_i} V_j A_j W_{ij}$
- Gradient

$$\nabla A_i = \sum_{j \in N_i} V_j A_j \nabla_i W_{ij}$$

• Laplacian

$$\Delta A_i = \sum_{j \in N_i} V_j A_j \Delta_i W_{ij}$$

Kernel Gradient

•
$$\nabla_i W_{ij} = \begin{bmatrix} \frac{\partial W_{ij}}{\partial x_i} \\ \frac{\partial W_{ij}}{\partial y_i} \\ \frac{\partial W_{ij}}{\partial z_i} \end{bmatrix} = \frac{\partial W_{ij}}{\partial q} \nabla_i q = \frac{\partial W_{ij}}{\partial q} \frac{x_i - x_j}{\|x_i - x_j\| h}$$

$$10^{-5}_{-10}_{-1,0}_{-0,5}_{-0,0}_{-0,5}_{-1,0}_$$

Note that
$$\frac{\partial}{\partial x} \left(\frac{|x|}{h} \right) = \frac{x}{|x|h} = \frac{x}{\sqrt{x^2}h} = \frac{\operatorname{sgn} x}{h}$$

$$\bullet \frac{\partial W_{ij}}{\partial q} = \frac{3}{2\pi h^3} \begin{cases} -2q + \frac{3}{2}q^2 & 0 \le q < 1\\ -\frac{1}{2}(2-q)^2 & 1 \le q < 2\\ 0 & q \ge 2 \end{cases}$$

Kernel Laplacian

•
$$\Delta_i W_{ij} = \frac{\partial^2 W_{ij}}{\partial x_i^2} + \frac{\partial^2 W_{ij}}{\partial y_i^2} + \frac{\partial^2 W_{ij}}{\partial z_i^2} = \frac{\partial^2 W_{ij}}{\partial q^2} \frac{1}{h^2} + \frac{\partial W_{ij}}{\partial q} \frac{2}{h}$$

•
$$\frac{\partial^2 W_{ij}}{\partial q^2} = \frac{3}{2\pi h^3} \begin{cases} -2+3q & 0 \le q < 1\\ 2-q & 1 \le q < 2\\ 0 & q \ge 2 \end{cases}$$

Fluid Dynamics

• Govern by Navier-Stokes equation (momentum equation)

$$\boldsymbol{a} = \frac{\partial \boldsymbol{v}}{\partial t} = -\frac{1}{\rho} \nabla p + \frac{\mu}{\rho} \Delta \boldsymbol{v} + \frac{1}{\rho} \mathbf{F}_{ext} + \boldsymbol{g}$$
$$\overset{\boldsymbol{a}^{P}}{\boldsymbol{a}^{P}} = \mathbf{a}^{V} \qquad \mathbf{a}^{E} = \mathbf{a}^{G}$$

- It stems from motion equation in elasticity
- \boldsymbol{v} is a velocity field, p is a pressure field, ρ is a density field
- Note: dynamic (absolute) viscosity μ and kinematic viscosity (momentum diffusivity) $\nu = \frac{\mu}{\rho}$

Fluid Dynamics

- Velocities and positions of particles are calculated from acting forces
- Three forces are applied on each particle (external force is excluded here)
 - Gravity force $F_i^G = m_i g$
 - Fluid pressure force $\mathbf{F}_i^P = -V_i \sum_{j \in N_i} V_j p_j \nabla_i W_{ij}$
 - Fluid viscosity force $F_i^V = m_i v \sum_{j \in N_i} V_j v_j \Delta_i W_{ij}$

Gravity Force

• The steady gain in speed of mass particle caused exclusively by the force of gravitational attraction is give by

0

$$\boldsymbol{F}_{i}^{G} = m_{i}\boldsymbol{g}$$

Fluid Pressure Force

• We compute fluid pressure force induced by pressure term from NSE as follows

$$\boldsymbol{F}_{i}^{P} = m_{i}\boldsymbol{a}_{i}^{P} = m_{i}\left(-\frac{1}{\rho_{i}}\nabla p_{i}\right) = -V_{i}\nabla p_{i} = -V_{i}\sum_{j\in N_{i}}V_{j}p_{j}\nabla_{i}W_{ij}$$

$$\underbrace{p_{i}+p_{j}}_{2} \quad \text{action} \neq \text{reaction}$$
symetrization needed

- Pressure force depends on the difference (i.e. gradient) of pressure
- There is no pressure force (i.e. no acceleration) in areas with constant pressure

$$\mathbf{F}_{i}^{P} = \mathbf{0} \qquad \qquad \left\| \mathbf{F}_{i}^{P} \right\| >$$

Fluid Pressure Force

• Pressure at x_i can be computed via the ideal gas state equation

$$p_i = k(\rho_i - \rho)$$

where k is a gas constant that depends on the temperature and ρ is a rest (reference) density

• Here, we use Cole equation

$$p_i = B\left(\left(\frac{\rho_i}{\rho}\right)^{\gamma} - 1\right)$$

where B is tuneable gas constant with presure units and adiabatic index $\gamma \cong 7$

Fluid Viscosity Force

• We compute fluid viscosity force induced by viscosity term from NSE as follows

$$F_{i}^{V} = m_{i} \boldsymbol{a}_{i}^{V} = m_{i} \frac{\mu}{\rho_{i}} \Delta \boldsymbol{v}_{i} = m_{i} \nu \Delta \boldsymbol{v}_{i} = m_{i} \nu \sum_{j \in N_{i}} V_{j} \boldsymbol{v}_{j} \Delta_{i} W_{ij}$$
Material density is constant in case of incompressible flow (i.e. resist volume change) but it is not absolutely true here
$$V_{j} \boldsymbol{v}_{j} - \boldsymbol{v}_{i} \text{ asymmetric again force depends on velocity differences only}$$

- Viscosity causes loss of energy due to internal friction
- In viscous flow, particles should move together with the same velocity
- Resulting force is minimizing velocity difference between neighboring particles

Particles Position Update

- For every *i*-th particle compute force $F_i = F_i^P + F_i^V + F_i^G$ using its neighborhood set N_i
- Update the velocity $v_i += \frac{F_i}{m_i} \Delta t$
- Update the position $x_i += v_i \Delta t$

Kernel Variants

• Other various kernels were developed to improve numerical stability

Kernel Variants

• Other various kernels were developed to improve numerical stability

•
$$\Delta W_{ij}(r,h) = \begin{cases} \frac{45}{\pi h^6}(h-r) & 0 \le r < h \\ 0 & r \ge h \end{cases}$$

• These kernels can be used in the following simplified formulas for computing accelerations from the original NSE

•
$$\boldsymbol{a}_{i}^{G} = \boldsymbol{g}$$

• $\boldsymbol{a}_{i}^{P} = -\sum_{j \in N_{i}, j \neq i} \left(\frac{p_{i}}{\rho_{i}^{2}} + \frac{p_{j}}{\rho_{j}^{2}} \right) m_{j} \nabla W_{ij}$
• $\boldsymbol{a}_{i}^{V} = \frac{\mu}{\rho_{i}} \sum_{j \in N_{i}, j \neq i} (\boldsymbol{v}_{j} - \boldsymbol{v}_{i}) \frac{m_{j}}{\rho_{j}} \Delta W_{ij}$

Algorithm

```
Init particles (m_i = m/n, v_i = 0, x_i \in \text{cube})

For each time step:

Init neighborhoods

Compute densities

Compute pressures from densities

For each i-th particle:

Compute acceleration a_i = a_i^G + a_i^P + a_i^V

Update velocity v_i += a_i \Delta t

Update position x_i += v_i \Delta t

Check boundaries (prevent particle from leaving simulation domain)
```

kNN Radius Search

typedef std::vector<int> Neighbourhood;

Neighborhood SPHSolver::GetNeighborhood(const int i, const float r) {
 Neighborhood indices;
 std::vector<float> distances;

```
Vector3f x_i = particles_[i].position;
std::vector<float> query{ x_i.x, x_i.y, x_i.z };
cvflann::SearchParams search_params;
```

int n = search_index_->radiusSearch(query,indices,distances,r*r,search_params);

```
if ( n > 0 ) return Neighborhood( &indices[0], &indices[n] );
return Neighborhood( 0 );
```

Search Index

typedef cv::flann::GenericIndex<cv::flann::L2<float>> SearchIndex;

```
int SPHSolver::InitSearchIndex() {
```

```
cv::Mat features( n_, 3, CV_32FC1 );
```

```
for ( int i = 0; i < n_; ++i ) {</pre>
```

```
const Vector3f & position = particles_[i].position;
```

```
features.at<float>( i, 0 ) = position.x;
features.at<float>( i, 1 ) = position.y;
features.at<float>( i, 2 ) = position.z;
```

```
}
search_index_ = std::make_unique<SearchIndex>( features,
```

```
cvflann::KDTreeSingleIndexParams( 10, false ) );
```

Parameters Settings

- $n = 40 \times 40 \times 40$ particles
- $\rho = 1000 \text{ kg} \cdot \text{m}^{-3}$ (rest density)
- $g = (0,0,-9.81) \text{ m} \cdot \text{s}^{-2}$
- B = 3.0 (fluid stiffness)
- h = 0.055 m (smoothing length)
- Simulation domain size $1\times1\times1$ m
- Initial particle separation 0.018 m
- $\mu = 3.5 \text{ N} \cdot \text{s} \cdot \text{m}^{-2}$ (dynamic or absolute viscosity)
- $\Delta t = 0.001 \text{ s}$

SPH Results

SPH Results

Iso Surface Reconstruction

- Originally published in Marching cubes: A high resolution 3D surface construction algorithm". ACM SIGGRAPH Computer Graphics (1987)
- Topological issues fixes and further improvements were presented later
- The goal is to extract a polygonal mesh of an isosurface from the 3D discrete scalar field
- Elements of such 3D scalar field are called voxels (CT and MRI scans)
- In general, the algorithm determines the polygons needed to represent the part of isosurface passing by the give voxel (cube)

- 1. Assign a scalar value to each vertex of a cube
- If the scalar field value at the given vertex is bellow a certain threshold (isovalue), assign 0 to the appropriate bit, otherwise set this bit to 1

In total, we get 2⁸ = 256 possible assignments (two states {inside, outside} in 8 vertices of a cube)

- 2. Based on step 1, we connect points on 12 line segments of the cube
- Some lookup table contains 256 entries of 12 bits representing connected midpoints on line segments

 Of the 256 different combinations 2 will not give any object, 8 will result in a triangle placed in every corner of the cube and so on

- 3. Set proper positions of all vertices x_{iso} on segments x_i , x_j via interpolation
- Interpolation weights are derived from known functional values at selected vertices of given cube

$$\Delta f = \frac{f_{iso} - f_i}{f_j - f_i}$$

• Final point for each vertex of the triangle is computed as follows

$$\boldsymbol{x}_{iso} = \boldsymbol{x}_i + (\boldsymbol{x}_j - \boldsymbol{x}_i) \Delta f$$

Used indexing: Note that vertex and edge indices may differ in a particular implementation, e.g. https://paulbourke.net/geometry/polygonise/

Marching Cubes Results

Original SPH particles

Marching Cubes iso-surface reconstructions with two different sizes of sampling steps producing different amount of details

Note that presented images are captured at different times

References and Further Readings

- MÜLLER, Matthias; CHARYPAR, David; GROSS, Markus H. Particle-based fluid simulation for interactive applications. In: *Symposium on Computer animation*. 2003.
- IHMSEN, Markus, et al. SPH fluids in computer graphics. 2014.
- KOSCHIER, Dan, et al. Smoothed particle hydrodynamics techniques for the physics based simulation of fluids and solids. 2024.
- VIOLEAU, Damien; ISSA, Reza. Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. *International Journal for Numerical Methods in Fluids*, 2007.
- SUTTI, Marco. SPH treatment of boundaries and application to moving objects. École polytechnique fédérale de Lausanne. 2014.

Technical Notes

Expected directory structure:

Created VS solution

• How to set paths for OpenCV and VTK libraries...

MC Property Pages		? ×	MC Property Pages		? ×	
Configuration: Active(Debug)	✓ Platform: Active	e(x64) ~ Configuration Manager	Configuration: Active(Debug)	✓ <u>P</u> latform: Ac	tive(x64) ~ C <u>o</u> nfiguration Manager	
▲ Configuration Properties ▲	✓ General		Configuration Properties Debugger to launch:			
General	Executable Directories	<pre>\$(VC ExecutablePath x64);\$(CommonExecutablePath)</pre>	General	Local Windows Debugger 🗸 🗸 🗸		
Advanced	Include Directories	//libs/opencv/include;\$(IncludePath)	Advanced			
Debugging	External Include Directories	\$(VC_IncludePath);\$(WindowsSDK_IncludePath);	Debugging	Command	\$(TargetPath)	
VC++ Directories	Reference Directories	\$(VC_ReferencesPath_v64);	VC++ Directories ▷ C/C++ ▲ Linker General Input Manifest File Debugging System Optimization Embedded IDL Windows Metadata	Command Arguments		
b C/C++	Library Directories	//libs/opencv/lib;\$(LibraryPath)		Working Directory	\$(ProjectDir)	
General	Library WinRT Directories	\$(WindowsSDK_MetadataPath);		Attach	No	
Input	Source Directories	\$(VC_SourcePath);		Debugger Type	Auto	
Manifest File	Exclude Directories	\$(CommonExcludePath);\$(VC_ExecutablePath_x64);\$(VC_Libr		Environment	PATH=%PATH%://libs/opencv/bin://libs/vtk/bin	
Debugging	 Public Project Content 			Merge Environment	Yes	
System	Public Include Directories			SOL Debugging	No	
Optimization	All Header Files are Public	No		Amp Default Accelerator	WARP software accelerator	
Embedded IDL	Public C++ Module Directories					
Windows Metadata	All Modules are Public	No				
Advanced			Advanced			
All Options			All Options			
Command Line			Command Line			
Manifest Tool			Manifest Tool			
XML Document Genera	XML Document Genera		XML Document Genera			
Browse Information	Executable Directories	ecutable Directories		Command		
Build Events v Path to use when searching for executable files while building a VC++ project. Corresponds to		Build Events	The debug command to execute.			
< >	environment variable PATH.		< >			
		OK Cancel Apply			OK Cancel Apply	

Technical Notes

• How to set paths for OpenCV and VTK libraries...

Technical Notes

