VSB TECHNICAL FACULTY OF ELECTRICAL DEPARTMENT
|| || UNIVERSITY | ENGINEERING AND COMPUTER | OF COMPUTER
| OF OSTRAVA SCIENCE SCIENCE

Data Visualization

460-4120

Fall 2024
Last update 13. 11. 2024

Smoothed Particle Hydrodynamics (SPH)

* Developed by Gingold, Monaghan and Lucy in 1977 for astrophysical problems
* Used (but not only) for simulation of fluid dynamics
* The fluid is represented by a particle system

* The key idea is to determine some particle properties by taking an average over
neighboring particles (similarity with grid less interpolation methods)

Fall 2024 Data Visualization

Grid-based Methods vs SPH

* Traditionally, numerical methods for hydrodynamics are based on discretization
(spatial grid, inherently Eulerian)

* Well developed technique
* Easy to deal with boundary conditions

e SPH — discretization on mass (discrete fluid elements, inherently Lagrangian)

* Resolution follows density
* Difficult to implement boundary conditions ./2\6{
o'
T ‘5‘
&

®h

Fall 2024 Data Visualization

Fundamental Idea Behind SPH

* How to compute density from a collection of point masses?

Method 1: construct a mesh
around the points, then sum
particles within cell and divide
by cell volume

e _=m
A 0\\
£)
o -
© ®\0 %oy
A o/
~—_
(] o Py

Method 2: construct local
sample volumes, then sum
particles within volumes and
divide by volume

® _——o
/7 A
/R
{\0 ol
® % \e %% ,
N e/
~—
(]) Py

Method 3: weight contributions
according to distance from
sample point (SPH)

Particle Description

* Each particle is described by a list of its properties
 Carried by particle: mass m; (const.), position x;, velocity v;,
* Computed: force F;, density p; (varies), pressure P;, color C;

* These properties forms a particle state vector (m;, x;, v;, F;, pi, P;, C;)

Density From Collection of Masses

* Density p; at the point x; is computed (approximated) as a weighted sum of N
particle masses m; as follows .
pi = Z m; Wi;
j=1
where the smoothing kernel

Wy = W([|x; —x;

, h)
and h is smoothing length

* This formulation ensures that the resolution follows density such that
ph3 = const.

Smoothed Particle Interpolation

If we know that p; = Y. ;cy, m;W;;, how we can compute arbitrary (smoothed)
physical quantity A4; Ofl th partlcle?

* We can use a volume of i-th particle V; = p‘ from which m; = V;p;

Now we get p; = Z]EN V]p]W and we have the same quantity on both sides of
equation provided that [€ N;

It also holds that V; = — =
Pi ZjENl- m;Wi;

Now, in general, for arbitrary quantity A;, we can write the smoothed
interpolation as follows

m;
_ _]
Ai = E V]A]WU = E A]Wl]

JEN; JEN;

mi

Kernel Function

* Kernel function should approximate a delta function, i.e. particles which are
closer should contribute more to the local evaluation of fluid properties

* First choice — Gaussian kernel

W(r, h) = e~ (r/h)?

7-[1/3;13
* One issue with this function is that the support is not compact and summation
must be done over all particles

* One can choose a kernel with compact support (weight vanishes beyond a given
distance)

e Better choice — Cubic spline kernel (neighborhood contains only particles lying
within 2h distance)

Kernel Function

* In general, smoothing kernel can be any function which satisfies the following to
properties

* Normalization

j W(r,h)dV =1
%

* Dirac delta function approximation

’111_1)1(1) W(r,h) =6(r)

Cubic Spline Kernel Function

* The smoothing kernel function is defined as follows

W;i(r,h) =

21h3

N
where q = % _| — il

Fall 2024

9

2 2+13 0<g<1
34"t 54 <q

1
E(Z—Q)S 1Sq<2

Data Visualization

10

Arbitrary Quantity Derivatives
* Repeat that A; = X jen, ViAjWi;

e Gradient
JEN;
e Laplacian

JEN;

Kernel Gradient

aWij
axi
. _ aWij _ aWij L aWij Xi—Xj
ViWij loay; | g Viq = dq ||xi—x;||n
aWij
_ aZi .
a (—2q+§q2 0<g<l1
Wiy 3 1
aq = s —5(2—61)2 l<qg<?2

Fall 2024 Data Visualization

0
Note that — (
ox

| x|

h

)

__x __ x _ sgnx
|x|h Vx2h h

12

Kernel Laplacian

* AWy =

27+

0q?

Fall 2024

aZWij aZWij aZWij _ aZWij 1 aWijz
0x? dy? 0z? 0q?2 h2 dq h

l l

(—2+3qg 0<g<1
 2—q 1<g<?2
0 q=2

3
21Th3

\

Data Visualization

13

Fluid Dynamics

* Govern by Navier-Stokes equation (momentum equation)

A Sy Nt S
a=—=——Vp+—-»Av g

Jat p p p
a’ a’ at a’

* |t stems from motion equation in elasticity
* v is a velocity field, p is a pressure field, p is a density field

* Note: dynamic (absolute) viscosity 4 and kinematic viscosity (momentum

diffusivity) v = %

Fluid Dynamics

* Velocities and positions of particles are calculated from acting forces
* Three forces are applied on each particle (externalferce-is-excluded-here)

* Gravity force F? =m;g
* Fluid pressure force F{ = —V; Y. icn, Vip; ViW;;

* Fluid viscosity force F{-/ = m;V ZjeNi VivjA;Wi;

Gravity Force

* The steady gain in speed of mass particle caused exclusively by the force of
gravitational attraction is give by

F{ =mg

)
)
L)

g = (0,0,—9.81)

Fluid Pressure Force

* We compute fluid pressure force induced by pressure term from NSE as follows
1
Ff=miaf=mi(__|7pl) —ViVp; = =V, z

EN;
JEN Di + Pj action # reaction

2 symetrization needed

* Pressure force depends on the difference (i.e. gradient) of pressure

* There is no pressure force (i.e. no acceleration) in areas with constant pressure

Fall 2024 Data Visualization 17

Fluid Pressure Force

* Pressure at x; can be computed via the ideal gas state equation

pi = k(pi—p)
where k is a gas constant that depends on the temperature and p is a rest
* Here, we use Cole equation

(reference) density
\Y
pi =B <&> —1
p

where B is tuneable gas constant with presure units and adiabaticindexy = 7

Fluid Viscosity Force

We compute fluid viscosity force induced by viscosity term from NSE as follows

F{/ = mia‘i/ = m; Avi = m; Avi = m;Vv z V]U]ALWLJ
JEN; _ _
v; —v; asymmetric again
force depends on velocity
differences only

Material density is constant in case of
incompressible flow (i.e. resist volume
change) but it is not absolutely true here

Viscosity causes loss of energy due to internal friction

In viscous flow, particles should move together with the same velocity

Resulting force is minimizing velocity difference between neighboring particles

Fall 2024 Data Visualization 19

Particles Position Update

* For every i-th particle compute force F; = le_a + F{-/ + Fl-G using its neighborhood
set N;

* Update the velocity v; += %At

* Update the position x; += v;At

Kernel Variants

* Other various kernels were developed to improve numerical stability

ﬁ 2 __ ..2\3
* W;i(r,h) = 64nh9(h r<)°> 0<r<h

0 r>h
((
SR 0<r<e
_ B (h—p)2 1(1,1,1)]]
* VWi(r,h) =4 mhe Y e<r<h
\”xi—xj” —
\ 0 r>h

Kernel Variants

* Other various kernels were developed to improve numerical stability

45
.AWij(r,h)z{%(h—T) 0<r<h
0 r=h

* These kernels can be used in the following simplified formulas for computing
accelerations from the original NSE

[] G —
a; =49
o« nP — pi , Pj
a; = —jen,j+i (y + p> m; VWi;
i J

vV _ M mj
*a; = p_iZjENi,jii(vj — vi)p_jAWij

Algorithm

Init particles (m; =m/n, v; =0, x; € cube)
For each time step:
Init neighborhoods

Compute densities
Compute pressures from densities

For each i-th particle:

Compute acceleration a; =af +al +a/

Update velocity v; += a;At

Update position x; += v;At

Check boundaries (prevent particle from leaving simulation domain)

KNN Radius Search

typedef std::vector<int> Neighbourhood;

Neighborhood SPHSolver::GetNeighborhood(const int i, const float r) {
Neighborhood indices;
std: :vector<float> distances;

Vector3f x 1 = particles [i].position;
std: :vector<float> query{ x i.x, x i.y, x i.z };
cvflann: :SearchParams search_params;

int n = search_index_->radiusSearch(query,indices,distances,r*r,search_params);

if (n > @) return Neighborhood(&indices[@], &indices[n]);
return Neighborhood(0);

Search Index

typedef cv::flann::GenericIndex<cv::flann::L2<float>> SearchlIndex;
int SPHSolver::InitSearchIndex() {
cv::Mat features(n_, 3, CV_32FC1);
for ((int 1 =0; i < n_; ++i) {
const Vector3f & position = particles [i].position;

features.at<float>(i, @) = position.x;
features.at<float>(i, 1) = position.y;
features.at<float>(i, 2) = position.z;

}

search_index_ = std::make_unique<SearchIndex>(features,
cvflann: :KDTreeSingleIndexParams(10, false));

Parameters Settings

e n =40 X 40 X 40 particles

* p = 1000 kg:m~3 (rest density)

« g =1(0,0,-9.81) m-s?

« B = 3.0 (fluid stiffness)

e h = 0.055 m (smoothing length)

e Simulation domainsize1 X1 X 1m

* |nitial particle separation 0.018 m

« 1 = 3.5N-ssm2(dynamic or absolute viscosity)
« At = 0.001 s

SPH Results

\

Fall 2024

SPH Results

Fall 2024

Data Visualization

29

Iso Surface Reconstruction

~ Waterials
chrome
liquid
shiny
matte.
flat
textured
colors.
muliColors
plastic
toon1
toon2
hatching
dotted
+ Material o

* Point ight

* Directional light orientation

ulation

Close Controls

Marching Cubes

* Originally published in Marching cubes: A high resolution 3D surface construction
algorithm". ACM SIGGRAPH Computer Graphics (1987)

» Topological issues fixes and further improvements were presented later

* The goal is to extract a polygonal mesh of an isosurface from the 3D discrete
scalar field

* Elements of such 3D scalar field are called voxels (CT and MRI scans)

* |In general, the algorithm determines the polygons needed to represent the part
of isosurface passing by the give voxel (cube)

Marching Cubes

* 1. Assign a scalar value to each vertex of a cube

* If the scalar field value at the given vertex is bellow a certain threshold (iso-
value), assign 0 to the appropriate bit, otherwise set this bit to 1

// 4\\\ 5
/ =~ — 0)
// 7 6/\\\
/ \ ~
< ! \\\
~<] 7 iso-surface
~_ ! /7
~ 1 /

0
O LSB MSB
e g 7

cell 30/ 204

O 0 0 0 0 0 1 1

* In total, we get 2% = 256 possible assignments (two states {inside, outside} in 8
vertices of a cube)

Marching Cubes

» 2. Based on step 1, we connect points on 12 line segments of the cube

* Some lookup table contains 256 entries of 12 bits representing connected mid-
points on line segments

4 9
7 |
044 _—__57/5 first triangle
rgl & |/ |9
[= N
11f———===%10
3/0(5"/ LSB MSB
voxel ¢~ & 1
2
row (00000011);=3 0 O O O O (1 0 (1 0 O 1

_ . second triangle : .
* Of the 256 different combinations 2 will not give any object, 8 will result in a

triangle placed in every corner of the cube and so on

Marching Cubes

* 3. Set proper positions of all vertices x;5, on segments x;, x; via interpolation

* Interpolation weights are derived from known functional values at selected
vertices of given cube
fiso A

Af =72
j i

* Final point for each vertex of the triangle is computed as follows
Xiso = Xx; + (x; — x;)Af

Used indexing: Note that vertex and edge indices may
differ in a particular implementation, e.g.
https://paulbourke.net/geometry/polygonise/

Fall 2024 Data Visualization

34

Marching Cubes Results

Original SPH particles Marching Cubes iso-surface reconstructions with two different sizes of
sampling steps producing different amount of details

Note that presented images are captured at different times

Fall 2024 Data Visualization 35

References and Further Readings

e MULLER, Matthias; CHARYPAR, David; GROSS, Markus H. Particle-based fluid
simulation for interactive applications. In: Symposium on Computer animation.
2003.

* IHMSEN, Markus, et al. SPH fluids in computer graphics. 2014.

e KOSCHIER, Dan, et al. Smoothed particle hydrodynamics techniques for the
physics based simulation of fluids and solids. 2024.

* VIOLEAU, Damien; ISSA, Reza. Numerical modelling of complex turbulent
free-surface flows with the SPH method: an overview. International Journal for
Numerical Methods in Fluids, 2007.

* SUTTI, Marco. SPH treatment of boundaries and application to moving objects.
Ecole polytechnique fédérale de Lausanne. 2014.

Expected directory structure:

Mame Ext Size Date Time Attr Mame Ext Size Date Time Attr
. .. DI 11/772022 10:26:18 AM .. DIR 11/772022 10:27:34 AM
e(: r l I (:a Ote S libs DIR 11/7/2022 10:27:34AM<— | | | opencv DIR 11/7/2022 10:27:54 AM
MC DIR 11/772022 10:26:30 AM vik DIk 117772022 10:33:00 AM
* Howt t paths for O CV and VTK lib
OW 10 set patns 1or en an loraries...
MC Property Pages ? * MC Property Pages ? *
Configuration: | Active(Debug) ~ | Platform: | Active(x64) ~ Configuration Manager... Configuration: | Active(Debug) ~ | Platform: | Active(x64) v Cenfiguration Manager...
4 Configuration Properties w General 4 Configuration Properties » | Debuggerto launch:
General Executable Directories SV ExecutablePath x64):5(CommonExecutablePath General Local Windows Debugger i
Advanced Include Directories -/ .flibsfopencufinclude;${IncludePath) Advanced
DEbUQQHQ — External Include Directories 3 Debuggng : Command S(TargetPath)
Reference Directories AL VC++ Directories
PR ‘ . : rﬂuﬂnmm I b C/Ces Command Arguments
2 Linker Library Directories ol wflibs/opencu/lib;$LibraryPath) . Li-rlker Working Directory §(ProjectDir)
- I Library WinRT Directories S(WindowsSDK_MetadataPath); - | Attach Mo
enera . . enera
Input Source Dlr.ectorlés S(VC_SourcePath); . Input Debugger Type Auto
Manifest File Exclu-de Dlrectorles S(CommonExcludePath);$(VC_ExecutablePath_x84):5(VC_Libr Manifest File Environment I PﬁTH=%PﬂTH%;.J.JIibsfopencufhin;..f..flibs.l’vtk!hinI
Debugging e Puhl_“: PmJecth}ntent.: Debugging Merge Environment Yes
System Public Inclut?le Dlrectorle-s System 5QL Debugging Mo
Optimization All Header Files are Public Mo Optimization Amp Default Accelerator WARP software accelerator
Embedded DL Public C++ Module Directories Embedded IDL
Windows Metadata All Modules are Public Mo Windows Metadata
Advanced Advanced
All Options All Options

Command Line
I Manifest Tool
I XML Document Genera
I- Browse Information
I> Build Events v

Executable Directories

Path to use when searching for executable files while building a YC++ project. Corresponds te

environment variable PATH.

Cancel

Apply

Fall 2024

Command Line
I Manifest Tool
I+ XML Decument Genera
I Browse Information
I+ Build Events

Command
The debug command to execute,

Cancel Apply

Data Visualization

37

Technical Notes

* How to set paths for OpenCV and VTK libraries...

Configuration: | Active(Debug)

[
F]

Fall 2024

4 Configuration Properties

General
Advanced
Debugging
WC++ Directories
C/C++
Linker
General
Input
Manifest File
Debugging

~ | Platform: | Active(x64) e Configuration Manager...

Additional Dependencies
Ignore All Default Libraries
Ignore Specific Default Libraries
Muodule Definition File

Add Module to Assembly
Embed Managed Resource File
Force Symbol References
Delay Loaded Dlls

Assembly Link Resource

opencv_cored50d.lib;opencv_highguid 50d.lib;opency_imgd

Additicnal Dependencies

lbpencv_cored50d.lib
opency_highguid30d.lib
opency_imgcodecsd50d.lib
opency_imgprocdi0d.lib
opency_flannd50d.lib
opencv_vizd30d.lib

Data Visualization

38

Technical Notes

= <opencv2/opencv.hpp>
<opencv2/viz.hpp>

e Add half.hpp into your project from
half_float: :half; http://half.sourceforge.net/index.html

test()

cv::viz::Viz3d window("VD-SPH");
window.spinOnce(1l, true);

cv::Vec3f cam_pos(1.0f, 2.0f, 1.5f), cam_focal_point(0.0f, 0.0f, 0.25f), cam_y_dir(0.6f, 0.0f, -1.06f);
cv::Affine3f cam_pose = cv::viz::makeCameraPose(cam_pos, cam_focal_point, cam_y_dir);
window.setViewerPose(cam_pose);

cv::viz::WCube domain(cv::Point3d(-0.5, -0.5, 0.0), cv::Point3d(0.5, 0.5, 1.0), true, cv::viz::Color::red());
window.showWidget("domain"”, domain);

cv::viz::WPlane plane(cv::Size2d(1.0, 1.0), cv::viz::Color::yellow());
window.showWidget("plane"”, plane);

window.spinOnce(10000, true);
half half_float_value = half(0.0f);

return 0;

main()

return test();

Fall 2024 Data Visualization

