Data Visualization

460-4120

Fall 2023
Last update 25. 10. 2023

Tensor Data Visualization

- $0^{\text {th }}$ order tensors - scalars (magnitude, 1 value)
- $1^{\text {st }}$ order tensors - vectors (magnitude + direction, e.g. 3 values in 3D space)
- $2^{\text {nd }}$ order tensors - dyads (quantities that have magnitude and two directions, represents variation of magnitude, e.g. 3×3 values)
- $3^{\text {rd }}$ order tensors - triads (e.g. $3 \times 3 \times 3$ values)
- $4^{\text {rd }}$ order tensors - Einstein's general relativity required a tensor of rank $4(x, y, z, t)$, i.e. $4 \times 4 \times 4 \times 4=256$ components
- and so on...
- Tensors (together with scalars and vectors) are important quantities in many fields: mechanics, electrodynamics, fluid mechanic, crystal structure, general relativity and others
- But the visualization of tensors is quite challenging

Graphical Representation of Dyad

Stress Tensor in 2D

Force acting along the axis perpendiculary to the sides ($\sigma=\frac{F_{\text {normal }}}{A}$) causes stretching ($\sigma_{x x}>0$ or $\sigma_{y y}>0$) or compression ($\sigma_{x x}<0$ or $\sigma_{y y}<0$)

Force acting along the sides ($\tau=\frac{F_{\text {parallel }}}{A}$) causes shear stress ($\tau_{x y} \neq 0$ or $\tau_{y x} \neq 0$)

Stress Tensor in 3D

- Cauchy stress tensor - 2nd order tensor
- Completely define the state of stress at a point inside a material

$$
\left[T_{1}^{(\mathbf{n})} \quad T_{2}^{(\mathbf{n})} \quad T_{3}^{(\mathbf{n})}\right]=\left[\begin{array}{lll}
n_{1} & n_{2} & n_{3}
\end{array}\right] \cdot\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]
$$

Second Order Tensors

- May be defined as an operator that acts on a vector \boldsymbol{u} generating another vector \boldsymbol{v}, so that $\mathbf{T}(\boldsymbol{u})=\boldsymbol{v}$ or $\mathbf{T} \cdot \boldsymbol{u}=\boldsymbol{v}$
- T is a mapping that takes one vector as input, and gives one vector as output T: $V \rightarrow V$, where V is a vector space
- It is a linear operator (linear transformation) so it holds that \mathbf{T} is
- distributive $\mathbf{T}(\boldsymbol{a}+\boldsymbol{b})=\mathbf{T a}+\mathbf{T} \boldsymbol{b}$
- associative $\mathbf{T}(k \boldsymbol{a})=k \mathbf{T}(\boldsymbol{a})$
for all $\boldsymbol{a}, \boldsymbol{b} \in V$ and $k \in \mathbb{R}$
- Tensors \mathbf{S} and \mathbf{T} are equal iff $\mathbf{S} \cdot \boldsymbol{v}=\mathbf{T} \cdot \boldsymbol{u}$ for any $\boldsymbol{u}, \boldsymbol{v} \in V$

Second Order Tensor Example

- Operator which transforms every vector into its mirror-image with respect to a given plane

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\mathrm{T}_{\widehat{\boldsymbol{n}}} \cdot \boldsymbol{u}=\mathrm{T}_{\widehat{n}}(\boldsymbol{u})=\boldsymbol{v}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

- Note that the situation will be the same in 3D

Second Order Tensor Example

- Operator which transforms force vector \boldsymbol{f} into the moment/torque vector $\boldsymbol{r} \times \boldsymbol{f}$

$$
\left[\begin{array}{ccc}
0 & -r_{z} & r_{y} \\
r_{z} & 0 & -r_{x} \\
-r_{y} & r_{x} & 0
\end{array}\right] \cdot \boldsymbol{f}=\mathbf{T}_{r} \cdot \boldsymbol{f}=\mathbf{T}_{r}(\boldsymbol{f})=\boldsymbol{r} \times \boldsymbol{f}
$$

Tensor Product (Dyad)

- The tensor product of two vectors \boldsymbol{u} and \boldsymbol{v} is written as $\boldsymbol{u} \otimes \boldsymbol{v}$
- Dot product $\boldsymbol{u} \cdot \boldsymbol{v}$
- Cross product $\boldsymbol{u} \times \boldsymbol{v}$
- Direct sum $\boldsymbol{u} \oplus \boldsymbol{v}$
„making new vectors from old"
- Tensor (outer) product $\boldsymbol{u} \otimes \boldsymbol{v}$
$\boldsymbol{u} \oplus \boldsymbol{v}=\left[\begin{array}{l}\boldsymbol{u} \\ \boldsymbol{v}\end{array}\right]$

Tensor Product (Dyad)

- Tensor product of two vectors (dyad transformation) can be defined as follows

$$
(u \otimes v) w=u(v \cdot w)
$$

- It transforms a vector \boldsymbol{w} into a new vector with the direction of \boldsymbol{u} and length of $\|u\|(v \cdot w)$

- Note that the tensor product is not commutative

Let us have two vectors $u:=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right]$ and $v:=\left[\begin{array}{c}7 \\ 6 \\ -5\end{array}\right]$
and if their tensor (outer) product is
$u \cdot v^{\mathrm{T}}=\left[\begin{array}{rrr}7 & 6 & -5 \\ -14 & -12 & 10 \\ 21 & 18 & -15\end{array}\right]$
then for an arbitrary vector w , e.g. $\quad w:=\left[\begin{array}{c}-1 \\ 4 \\ 3\end{array}\right]$
the following equality must hold
$\left(u \cdot v^{\mathrm{T}}\right) \cdot w=\left[\begin{array}{r}2 \\ -4 \\ 6\end{array}\right]=u \cdot(v \cdot w)=\left[\begin{array}{r}2 \\ -4 \\ 6\end{array}\right]$

Projection Tensor

- Consider the dyad $\hat{\boldsymbol{e}} \otimes \hat{\boldsymbol{e}}$ then from the definition we get

$$
(\hat{\boldsymbol{e}} \otimes \hat{\boldsymbol{e}}) \boldsymbol{u}=\hat{\boldsymbol{e}}(\hat{\boldsymbol{e}} \cdot \boldsymbol{u})
$$

- $\widehat{\boldsymbol{e}} \otimes \hat{\boldsymbol{e}}$ is called projection tensor

Tensor Data Visualization

- Scalar field, e.g. $s: \mathbb{R}^{3} \rightarrow \mathbb{R}$
- Vector field, e.g. $\boldsymbol{u}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
- Tensor field, e.g. $\mathbf{T}: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$
- With tensor fields, we measure some magnitude at some point and in some direction
- Tensors are independent of the coordinate systems

Tensor Data Visualization

- Tensor attributes are high-dimensional generalization of vectors and matrices
- In other words, tensor data encode some spatial property that varies as a function of position and direction
- A tensor with rank (order) r in a n-dimensional space has r indices and n^{r} components (r is a number representing simultaneous directions)
- Scalars ($r=0$) ... n^{0} component with no index (value)
- Vectors ($r=1$) ... n^{1} components with only one index (vector[i])
- Matrices ($r=2$) ... n^{2} components with two indices (matrix[i][j])
- Tensors ($r \geq 3$)

Tensor Data Visualization

$$
\begin{aligned}
& \text { Only where } \frac{\partial f}{\partial x}(x)=0 \text {, otherwise } k=\frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{3 / 2}} \\
& x_{0}: f(x)=0, k(x)=\frac{\partial^{2} f}{\partial x^{2}}(x) \stackrel{\left(1+y^{2}\right.}{=} 0 \\
& x_{1}: f(x)=-x^{2}, k(0)=\frac{\partial^{2} f}{\partial x^{2}}(0)=-2 \\
& x_{2}: f(x)=2 x^{2}, k(0)=\frac{\partial^{2} f}{\partial x^{2}}(0)=4
\end{aligned}
$$

- Example: curvature of a planar curve
- In local $x y$ coordinate system, a curve can be described as $y=f(x)$ (explicit curve) in the neighborhood of a point x_{0} where $f\left(x_{0}\right)=0$
- Signed curvature is then defined as $k(x)=\frac{\partial^{2} f}{\partial x^{2}}\left(x_{0}\right)$

- How quickly normal \boldsymbol{n} changes around x_{0}

Curvature of Plane Curves

- Let $c(t)=(x(t), y(t))$ be a proper ($\mathrm{d} c / \mathrm{d} t$ is defined, differentiable and nowhere equal to the zero vector) parametric representation of a plane curve then the signed curvature is

$$
k=\frac{x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}}{\left(x^{\prime 2}+y^{\prime 2}\right)^{3 / 2}}
$$

- Example: $x(t)=r \cos (t)+x_{0} ; \mathrm{y}(t)=r \sin (t)+x_{0}$

$$
k=\frac{r \sin (t) r \sin (t)+r \cos (t) r \cos (t)}{\left(r^{2} \sin ^{2}(t)+r^{2} \cos ^{2}(t)+\right)^{3 / 2}}=\cdots=\frac{r^{2}}{r^{3}}=\frac{1}{r}
$$

Tensor Data Visualization

- Example: curvature of a surface
- In local $x y z$ coordinate system, a surface can be described as $\mathrm{z}=f(x, y)$ (explicit surface) in the neighborhood of a point x_{0} where $f\left(x_{0}\right)=0$
- Definition of a curvature is analogous with planar case but in which direction to look for changes? This implies that the curvature of a surface at some point cannot be descibed with a single number
- We have to compute $C\left(x_{0}\right)=\frac{\partial^{2} f}{\partial \boldsymbol{s}^{2}}\left(x_{0}\right)=\boldsymbol{s}^{T} H \boldsymbol{s}$ where H is called the Hessian of f

$$
H=\left[\begin{array}{cc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}}
\end{array}\right]
$$

The problem is that we need to construct local coordinate systems at every point on surface and it is not obvious how to do that
and \boldsymbol{s} is the direction in which we look for the surface (normal) curvature

Tensor Data Visualization

- Example: curvature of a surface
- Solution is to let the surface be describe by an implicit function $f(x, y, z)=0$
- Then we can express the curvature of the surface f as

$$
C\left(x_{0}, \boldsymbol{s}\right)=\frac{\partial^{2} f}{\partial \boldsymbol{s}^{2}}\left(x_{0}\right)=\frac{\boldsymbol{s}^{T} H \boldsymbol{s}}{\left\|\nabla f\left(x_{0}\right)\right\|},
$$

where H is the 3×3 Hessian matrix in global coordinate system

$$
H=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x^{2}} & \frac{\partial^{2} f}{\partial x \partial y} & \frac{\partial^{2} f}{\partial x \partial z} \\
\frac{\partial^{2} f}{\partial y \partial x} & \frac{\partial^{2} f}{\partial y^{2}} & \frac{\partial^{2} f}{\partial y \partial z} \\
\frac{\partial^{2} f}{\partial z \partial x} & \frac{\partial^{2} f}{\partial z \partial y} & \frac{\partial^{2} f}{\partial z^{2}}
\end{array}\right] \quad \begin{aligned}
& \text { A curvature tensor of the given surface } \\
& \\
& \text { fis fully described by } 3 \times 3 \text { matrix of } \\
& \text { 2nd order derivatives } \\
& \text { Recall that } \mathbf{T}: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \mathbb{R}
\end{aligned}
$$

Tensor Data Visualization

- Tensor fields are common quantity in engineering and physical sciences:
- Stress, strain, diffusion, velocity gradients, etc.
- Mostly second-order tensors - interpreted as a linear transformation between vectors (represented in 3D by 3×3 matrices):
- Stress to strain, force to deformation
- Special case - symmetric second-order tensors:
- Can be viewed as anisotropic ellipsoids (eigenvectors and eigenvalues are principal axes of the diffusion ellipsoids)

Tensor Data Visualization

- Example: diffusion tensor
- Consider an anisotropic material
- We have to compute diffusivity at a point \mathbf{x} in a direction \mathbf{s}

$$
D(\mathbf{x}, \mathbf{s})=\frac{\partial^{2} f}{\partial \mathbf{s}^{2}}(\mathbf{x}) \quad \mathrm{f} . . . \text { speed of water motion in tissue }
$$

- Application: Diffusion of water in the human brain tissue
- Strong along neural fibers
- Weak across fibers

Tensor Data Visualization

- Example: diffusion tensor
- Compute Hessian in R^{3}
- Select some slice of interest
- Visualize all components of H using color mapping
- We get 9 images, some are same due to the symmetry
- But we do not really care about diffusion along x, y, z axes

(a) h_{x}
(c) $h_{x z}$

Tensor Data Visualization

- Principal component analysis
α... angle of s with local coordinate axis \mathbf{x}_{0}
$\left.C(\mathbf{x}, \mathbf{s})=\frac{\partial^{2} f}{\partial \mathbf{s}^{2}}(\mathbf{x})=\mathbf{s}^{T} \mathbf{H s}=h_{11} \cos ^{2} \alpha+\left(h_{12}+h_{21}\right) \sin \alpha \cos (\alpha), \sin (\alpha)\right)$.
We are looking for extremal curvature

$$
\begin{array}{ll}
\frac{\partial C}{\partial \alpha}(\mathbf{x}, \mathbf{s})=0 \quad & -h_{11} \cos \alpha \sin \alpha-\frac{h_{12}+h_{21}}{2}\left(\sin ^{2} \alpha-\cos ^{2} \alpha\right)+h_{22} \sin \alpha \cos \alpha=0 \\
& \begin{array}{l}
h_{11} \cos \alpha+h_{12} \sin \alpha=\lambda \cos \alpha \\
h_{21} \cos \alpha+h_{22} \sin \alpha=\lambda \sin \alpha
\end{array}
\end{array}
$$

- This is equivalent to a system of equations in matrix form

$$
\begin{aligned}
H \mathbf{s} & =\lambda \mathbf{s} \quad \text { Note that the matrix } H \text { only stretches (eigen) vector } \mathbf{s} \\
(H-\lambda I) \mathbf{s} & =0
\end{aligned}
$$

Tensor Data Visualization

- Principal component analysis
- Mean diffusivity

$$
\mu=\frac{1}{3}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)
$$

- White = strong mean diff.
- Black = weak mean diff.

- Other measures: (fractional/relative) anisotropy

Tensor Data Visualization

Tensor Data Visualization

(b)

(r)
a) ellipsoids
b) cuboids
c) cylinders
d) superquadrics

Superquadrics look arguably most 'natural'

Tensor Data Visualization

- Tensor visualization:
- Component visualization
- Anisotropy visualization
- Major eigenvector visualization
- Fiber tracking
- Basic fiber tracking
- Stream tubes
- Hyperstreamlines

Fiber Tracking

- Similar to streamlines in case of vector fields visualization
- Tracks the direction of the major eigenvectors
- Tubes have circular crossection
- Color indicates the local direction of the hyperstreamlines
- Mostly used for DT-MRI tensors

Hyperstreamlines

- Extension of fiber tracking that enables us to visualize direction information from the tensor field beyond the major eigenvector
- Construct stream tubes in the direction of major eigenvector
- Circular cross section is replaced by an elliptical cross section controlled by medium and minor eigenvector

