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• 0th order tensors – scalars (magnitude, 1 value)

• 1st order tensors – vectors (magnitude + direction, e.g. 3 values in 3D space)

• 2nd order tensors – dyads (quantities that have magnitude and two directions, represents 
variation of magnitude, e.g. 3×3 values)

• 3rd order tensors – triads (e.g. 3×3×3 values)

• 4rd order tensors – Einstein's general relativity required a tensor of rank 4 (𝑥, 𝑦, 𝑧, 𝑡), i.e. 
4×4×4×4 = 256 components

• and so on…

• Tensors (together with scalars and vectors) are important quantities in many fields: 
mechanics, electrodynamics, fluid mechanic, crystal structure, general relativity and 
others

• But the visualization of tensors is quite challenging

The total number of indices required to 
identify each component uniquely is equal to 
the dimension of the array, and is called the 
order, degree or rank of the tensor



Graphical Representation of Dyad
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Stress Tensor in 2D
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Stress Tensor in 3D
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• Cauchy stress tensor – 2nd order tensor

• Completely define the state of stress at a point inside a material



Second Order Tensors

• May be defined as an operator that acts on a vector 𝒖 generating another vector 
𝒗, so that 𝐓 𝒖 = 𝒗 or 𝐓 ∙ 𝒖 = 𝒗

• 𝐓 is a mapping that takes one vector as input, and gives one vector as output

𝐓: 𝑉 → 𝑉, where 𝑉 is a vector space

• It is a linear operator (linear transformation) so it holds that 𝐓 is

• distributive 𝐓 𝒂 + 𝒃 = 𝐓𝒂 + 𝐓𝒃

• associative 𝐓 𝑘𝒂 = 𝑘𝐓 𝒂

for all 𝒂, 𝒃 ∈ 𝑉 and 𝑘 ∈ ℝ

• Tensors 𝐒 and 𝐓 are equal iff 𝐒 ∙ 𝒗 = 𝐓 ∙ 𝒖 for any 𝒖, 𝒗 ∈ 𝑉
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Second Order Tensor Example

• Operator which transforms every vector into its mirror-image with respect to a 
given plane

−1 0
0 1

−1
1

= 𝐓ෝ𝒏 ∙ 𝒖 = 𝐓ෝ𝒏 𝒖 = 𝒗 =
1
1

• Note that the situation will be the same in 3D
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• Operator which transforms force vector 𝒇 into the moment/torque vector 𝒓 × 𝒇
0 −𝑟𝑧 𝑟𝑦
𝑟𝑧 0 −𝑟𝑥
−𝑟𝑦 𝑟𝑥 0

∙ 𝒇 = 𝐓𝑟 ∙ 𝒇 = 𝐓𝑟 𝒇 = 𝒓 × 𝒇

Second Order Tensor Example
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Tensor Product (Dyad)

• The tensor product of two vectors 𝒖 and 𝒗 is written as 𝒖⊗ 𝒗

• Dot product 𝒖 ∙ 𝒗

• Cross product 𝒖 × 𝒗

• Direct sum 𝒖⊕ 𝒗

• Tensor (outer) product 𝒖⊗ 𝒗

𝒖⊕ 𝒗 =
𝒖
𝒗

𝒖⊗ 𝒗 =

𝑢1
𝑢2
𝑢3

𝑣1
𝑣2

=

𝑢1𝑣1
𝑢1𝑣2
𝑢2𝑣1
𝑢2𝑣2
𝑢3𝑣1
𝑢3𝑣2

⇔

𝑢1𝑣1 𝑢1𝑣2
𝑢2𝑣1 𝑢2𝑣2
𝑢3𝑣1 𝑢3𝑣2

= 𝒖𝒗T
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„making new vectors from old“
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ℝ𝑚 ⊗ℝ𝑛 is isomorphism to ℝ𝑚𝑛

1st order 
tensor with 
dimension 3

1st order 
tensor with 
dimension 2

2nd order tensor with 
dimensions (3, 2)



Tensor Product (Dyad)

• Tensor product of two vectors (dyad transformation) can be defined as follows
𝒖⊗ 𝒗 𝒘 = 𝒖 𝒗 ∙ 𝒘

• It transforms a vector 𝒘 into a new vector with the direction of 𝒖 and length of 
𝒖 𝒗 ∙ 𝒘

• Note that the tensor product is not commutative
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Projection Tensor

• Consider the dyad ො𝒆⊗ ො𝒆 then from the definition we get
ො𝒆 ⊗ ො𝒆 𝒖 = ො𝒆 ො𝒆 ∙ 𝒖

• ො𝒆⊗ ො𝒆 is called projection tensor
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Tensor Data Visualization
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• Scalar field, e.g. 𝑠: ℝ3 → ℝ

• Vector field, e.g. 𝒖: ℝ3 → ℝ3

• Tensor field, e.g. 𝐓: ℝ3 × ℝ3 → ℝ

• With tensor fields, we measure some magnitude at some point and in some 
direction

• Tensors are independent of the coordinate systems



Tensor Data Visualization
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• Tensor attributes are high-dimensional generalization of vectors and matrices

• In other words, tensor data encode some spatial property that varies as a 
function of position and direction

• A tensor with rank (order) 𝑟 in a 𝑛-dimensional space has 𝑟 indices and 𝑛𝑟

components (𝑟 is a number representing simultaneous directions)

• Scalars (𝑟 = 0) … 𝑛0 component with no index (value)

• Vectors (𝑟 = 1) … 𝑛1 components with only one index (vector[𝑖])

• Matrices (𝑟 = 2) … 𝑛2 components with two indices (matrix[𝑖][𝑗])

• Tensors (𝑟 ≥ 3)



Tensor Data Visualization
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• Example: curvature of a planar curve

• In local 𝑥𝑦 coordinate system, a curve can be described as 𝑦 = 𝑓(𝑥) (explicit 
curve) in the neighborhood of a point 𝑥0 where 𝑓 𝑥0 = 0

• Signed curvature is then defined as 𝑘 𝑥 =
𝜕2𝑓

𝜕𝑥2
(𝑥0)

• Alternative definitions of curvature

• 𝑘(𝑥) = 1/radius of circle tangent to 𝑓 at 𝑥0

• How quickly normal 𝒏 changes around 𝑥0

𝑥0: 𝑓 𝑥 = 0, 𝑘 𝑥 =
𝜕2𝑓

𝜕𝑥2
𝑥 = 0

𝑥1: 𝑓 𝑥 = −𝑥2, 𝑘 0 =
𝜕2𝑓

𝜕𝑥2
0 = −2

𝑥2: 𝑓 𝑥 = 2𝑥2, 𝑘 0 =
𝜕2𝑓

𝜕𝑥2
0 = 4

𝑥1 𝑥

𝑦

𝑓𝑦

𝑥
𝑥2

𝑥0
𝑘(𝑥) = 0, flat

𝑘 𝑥 < 0, concavity

𝑘 𝑥 > 0, convexity

𝑦 𝑥a single number

Only where
𝜕𝑓

𝜕𝑥
𝑥 = 0,  otherwise 𝑘 =

𝑦′′

1+𝑦′
2 Τ3 2



Curvature of Plane Curves

• Let 𝑐(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be a proper (d𝑐/d𝑡 is defined, differentiable and nowhere
equal to the zero vector) parametric representation of a plane curve then the
signed curvature is

𝑘 =
𝑥′𝑦′′ − 𝑦′𝑥′′

𝑥′2 + 𝑦′2
Τ3 2

• Example: 𝑥 𝑡 = 𝑟 cos 𝑡 + 𝑥0; y 𝑡 = 𝑟 sin(𝑡) + 𝑥0

𝑘 =
𝑟 sin(𝑡) 𝑟 sin(𝑡) + 𝑟 cos 𝑡 𝑟 cos(𝑡)

𝑟2 sin2 𝑡 + 𝑟2 cos2 𝑡 + Τ3 2 = ⋯ =
𝑟2

𝑟3
=

1

𝑟
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Tensor Data Visualization
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• Example: curvature of a surface

• In local 𝑥𝑦𝑧 coordinate system, a surface can be described as z = 𝑓(𝑥, 𝑦) (explicit surface) in 
the neighborhood of a point 𝑥0 where 𝑓 𝑥0 = 0

• Definition of a curvature is analogous with planar case but in which direction to look for 
changes? This implies that the curvature of a surface at some point cannot be descibed with
a single number

• We have to compute 𝐶 𝑥0 =
𝜕2𝑓

𝜕𝒔2
𝑥0 = 𝒔𝑇𝐻𝒔 where 𝐻 is called the Hessian of 𝑓

𝐻 =

𝜕2𝑓

𝜕𝑥2
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦𝜕𝑥

𝜕2𝑓

𝜕𝑦2

and 𝒔 is the direction in which we look for the surface (normal) curvature

The problem is that we need to construct 
local coordinate systems at every point on 
surface and it is not obvious how to do that



Tensor Data Visualization
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• Example: curvature of a surface

• Solution is to let the surface be describe by an implicit function 𝑓 𝑥, 𝑦, 𝑧 = 0

• Then we can express the curvature of the surface 𝑓 as

𝐶 𝑥0, 𝒔 =
𝜕2𝑓

𝜕𝒔2
𝑥0 =

𝒔𝑇𝐻𝒔

𝛻𝑓 𝑥0
,

where 𝐻 is the 3×3 Hessian matrix in global coordinate system

𝐻 =

𝜕2𝑓

𝜕𝑥2
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑧

𝜕2𝑓

𝜕𝑦𝜕𝑥

𝜕2𝑓

𝜕𝑦2
𝜕2𝑓

𝜕𝑦𝜕𝑧

𝜕2𝑓

𝜕𝑧𝜕𝑥

𝜕2𝑓

𝜕𝑧𝜕𝑦

𝜕2𝑓

𝜕𝑧2

A curvature tensor of the given surface
𝑓 is fully described by 3×3 matrix of 
2nd order derivatives

Recall that 𝐓: ℝ3 × ℝ3 → ℝ



Tensor Data Visualization
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• Tensor fields are common quantity in engineering and physical sciences:

• Stress, strain, diffusion, velocity gradients, etc.

• Mostly second-order tensors – interpreted as a linear transformation between 
vectors (represented in 3D by 3x3 matrices):

• Stress to strain, force to deformation

• Special case – symmetric second-order tensors:

• Can be viewed as anisotropic ellipsoids
(eigenvectors and eigenvalues are principal
axes of the diffusion ellipsoids)



Tensor Data Visualization
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• Example: diffusion tensor

• Consider an anisotropic material 

• We have to compute diffusivity at a point x in a direction s

• Application: Diffusion of water in the human brain tissue

• Strong along neural fibers

• Weak across fibers

)(),(
2

2

x
s

sx





f
D f … speed of water motion in tissue



Tensor Data Visualization
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• Example: diffusion tensor

• Compute Hessian in R3

• Select some slice of interest

• Visualize all components of H using color 
mapping

• We get 9 images, some are same due to 
the symmetry

• But we do not really care about diffusion 
along x, y, z axes



Tensor Data Visualization
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• Principal component analysis

• This is equivalent to a system of equations in matrix form

α … angle of s with local coordinate axis x0

 2

222112

2

112

2

coscossin)(cos)(),( hhhh
f

C T 



 Hssx

s
sx

0),( 



sx



C

We are looking for extremal curvature

ss H

0)(  sIH 

𝒔T = cos(𝛼 , sin(𝛼))

Note that the matrix 𝐻 only stretches (eigen) vector 𝐬

→

From linear algebra, this is equivalent to det 𝐻 − 𝜆𝐼 = 0



Tensor Data Visualization
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• Principal component analysis

• Mean diffusivity

• White = strong mean diff.

• Black = weak mean diff.

• Other measures: (fractional/relative) anisotropy

 321
3

1
 



Tensor Data Visualization
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Tensor Data Visualization
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Tensor Data Visualization
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• Tensor visualization:

• Component visualization

• Anisotropy visualization

• Major eigenvector visualization

• Fiber tracking

• Basic fiber tracking

• Stream tubes

• Hyperstreamlines



Fiber Tracking

• Similar to streamlines in case of 
vector fields visualization

• Tracks the direction of the major 
eigenvectors

• Tubes have circular crossection

• Color indicates the local direction 
of the hyperstreamlines

• Mostly used for DT-MRI tensors
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Source: White Matter Fibres Of The Human Brain by Alfred 
Pasieka



Hyperstreamlines

• Extension of  fiber tracking that 
enables us to visualize direction 
information from the tensor field 
beyond the major eigenvector

• Construct stream tubes in the 
direction of major eigenvector

• Circular cross section is replaced by 
an elliptical cross section 
controlled by medium and minor  
eigenvector
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Source: SHEN, Wei; PANG, Alex. Anisotropy based seeding 
for hyperstreamline. Proceedings of IASTED Computer 
Graphics and Imaging (CGIM), 2004.


