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The total number of indices required to
identify each component uniquely is equal to

Te n SO r D ata Vl S u a | | Zatl O n the dimension of the array, and is called the

order, degree or rank of the tensor

* Ot order tensors — scalars (magnitude, 1 value)
e 1st order tensors — vectors (magnitude + direction, e.g. 3 values in 3D space)

« 2nd order tensors — dyads (quantities that have magnitude and two directions, represents
variation of magnitude, e.g. 3x3 values)

 3rd order tensors — triads (e.g. 3x3x3 values)

4" order tensors — Einstein's general relativity required a tensor of rank 4 (x, y, z, t), i.e.
4x4x4x4 = 256 components

e and so on...

* Tensors (together with scalars and vectors) are important quantities in many fields:
mechanics, electrodynamics, fluid mechanic, crystal structure, general relativity and
others

e But the visualization of tensors is quite challenging



Graphical Representation of Dyad
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Stress Tensor in 2D

Fnormal

Force acting along the axis perpendiculary to the sides (o = ) causes

stretching (ox, > 0 or g,,,, > 0) or compression (g, < 0 or gy, < 0)
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Stress Tensor in 3D

* Cauchy stress tensor — 2nd order tensor
* Completely define the state of stress at a point inside a material
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Second Order Tensors

* May be defined as an operator that acts on a vector u generating another vector
v,sothat T(u) =vorT-u=v
* T is a mapping that takes one vector as input, and gives one vector as output
T:V — V, where V is a vector space

* It is a linear operator (linear transformation) so it holds that T is
e distributive T(a+ b) = Ta+ Thb
* associative T(ka) = kT(a)
foralla,b e Vandk € R

e TensorsSand Tareequaliff S-v=T- -uforanyu,veVvlv



Second Order Tensor Example

e Operator which transforms every vector into its mirror-image with respect to a
given plane

O = meu= e =o= [}

)

 Note that the situation will be the same in 3D



Second Order Tensor Example

* Operator which transforms force vector f into the moment/torque vectorr X f

0O - n
Tz 0 |- f=T-f=T.(f)=rxf
—Ty Ty 0
r X rx f
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Tensor Product (Dyad)

* The tensor product of two vectors u and v is writtenasu @ v
* Dot productu - v
* Cross productu X v
* Directsumu @ v
e Tensor (outer) product u @ v

wov=[!

uR@Rv =

,making new vectors from old“

U
15t order 15t order

tensor with  tensor with
dimension 3 dimension 2

U1V17 &
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U3V ) |
2"% order tensor with
L U3 V5] dimensions (3, 2)

R™ & R" is isomorphism to R™"

= Uuv



Tensor Product (Dyad)

e Tensor product of two vectors (dyad transformation) can be defined as follows
(U@ vIw=uw- -w)
* It transforms a vector w into a new vector with the direction of u and length of
lull(v - w)

1 7
v Let us have two vectors u::[—2] and v::l 6 ‘
3 -5

w and if their tensor (outer) product is

7 6 -5
w-v'=|-14 —12 10

21 18 15

then for an arbitrary vector w, e.g. w:=

(u @ v)w

the following equality must hold

2 2
—4] = fu{v-w):[—4]

6

* Note that the tensor product is not commutative st} s



Projection Tensor

* Consider the dyad e ) e then from the definition we get
(e®@e)u=e(e-u)

v P

Pui

Pv e

o
<

2 @ eis called projection tensor



Tensor Data Visualization

* Scalar field, e.g. s: R3 - R
* Vector field, e.g. u: R® - R?
* Tensor field,e.g. T: R3 X R3 - R

* With tensor fields, we measure some magnitude at some point and in some
direction

* Tensors are independent of the coordinate systems



Tensor Data Visualization

e Tensor attributes are high-dimensional generalization of vectors and matrices

* |n other words, tensor data encode some spatial property that varies as a
function of position and direction

* A tensor with rank (order) r in a n-dimensional space has r indices and n”
components (7 is a number representing simultaneous directions)

* Scalars (r = 0) ... n° component with no index (value)
* Vectors (r = 1) ... n! components with only one index (vector[i])

* Matrices (r = 2) ... n> components with two indices (matrix[i][j])
e Tensors (r = 3)
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* Example: curvature of a planar curve

* In local xy coordinate system, a curve can be described as y = f(x) (explicit

curve) in the neighborhood of a point x, where f(x)) =0
y

* Signed curvature is then defined as k(x) = ax2 (xo) k(x) < 0, concavity
a single number y

e Alternative definitions of curvature

* k(x) = 1/radius of circle tangentto f at x5 k() =0, flat
0

* How quickly normal n changes around x, k(x) > 0, convexity



Curvature of Plane Curves

* Letc(t) = (x(t),y(t)) be a proper (dc/dt is defined, differentiable and nowhere
equal to the zero vector) parametric representation of a plane curve then the

signed curvature is
k xlyll _ ylxll
3/2

@)

* Example: x(t) = rcos(t) + xg; y(t) = rsin(t) + x,

__rsin(t) rsin(t) + r cos(t) r cos(t) _re_1
 (rZsin2(t) + r2 cos2(t)+)3/2 3 ¢

k



Tensor Data Visualization

* Example: curvature of a surface

* In|local xyz coordinate systemja surface can be described as z = f(x, y) (explicit surface) in
the neighborhood of a point x, where f(x,) = 0

* Definition of a curvature is analogous with planar case but in which direction to look for
changes? This implies that the curvature of a surface at some point cannot be descibed with
a single number

* We have to compute C(x,) = (xo) 2— STHS2 where H is called the Hessian of f
ax]; axafy The problem is that we need to cons‘truct
H = 5 ) local coordinate systems at every pointon —
f f surface and it is not obvious how to do that
dydx  0y?

and s is the direction in which we look for the surface (normal) curvature
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Tensor Data Visualization

e Example: curvature of a surface

* Solution is to let the surface be describe by an implicit function f(x,y,z) = 0
* Then we can express the curvature of the surface f as

C(xo,8) = 62f (Xo) =

IVf(xo)II

where H is the 3x3 Hessian matrlx in global coordinate system

0*f 0f 0]

0x? 0xdy 0x0z

b= a%f  9%f 9%f
dydx dy? 0yoz

d%f 0% f  9%f
|0z0x 0z0y  0z2 |

A curvature tensor of the given surface

f is fully described by 3x3 matrix of
2nd order derivatives

Recallthat T: R3 X R3 - R



Tensor Data Visualization

* Tensor fields are common quantity in engineering and physical sciences:
* Stress, strain, diffusion, velocity gradients, etc.

* Mostly second-order tensors — interpreted as a linear transformation between
vectors (represented in 3D by 3x3 matrices):

e Stress to strain, force to deformation
* Special case — symmetric second-order tensors:

* Can be viewed as anisotropic ellipsoids
(eigenvectors and eigenvalues are principal
axes of the diffusion ellipsoids)




Tensor Data Visualization

* Example: diffusion tensor
* Consider an anisotropic material

* We have to compute diffusivity at a point x in a direction s

o’ f
> (X) f ... speed of water motion in tissue
S

",
* Application: Diffusion of water in the human brain tissue

D(Xx,s) =

e Strong along neural fibers

 Weak across fibers



Tensor Data Visualization

* Example: diffusion tensor

* Compute Hessian in R3

Select some slice of interest

Visualize all components of H using color
mapping

We get 9 images, some are same due to
the symmetry

But we do not really care about diffusion
along x, y, z axes
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Tensor Data Visualization

* Principal component analysis a ... angle of s with local coordinate axis x,

02 f sT = (cos(a), sin(a))

C(x,s) = x (X)=s'Hs=h,cos®’ a+(h,+h,)sinacosa +h,,cos’ a
We are looking for extremal curvature
oC hia + h: . .
I (X’ S) =0 - —hjicosasina — %(sing o — cos? a) + hazsinacosa = 0
ox

hi1cosa + higsinae = Acosa

hoicosa + hossinay = Asina

* This is equivalent to a system of equations in matrix form
Hs = AS Note that the matrix H only stretches (eigen) vector s

(H-Al)s=0 From linear algebra, this is equivalent to det(H — AI) = 0



Tensor Data Visualization

sagittal slice

* Principal component analysis

Mean diffusivity
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I~ axial slice

White = strong mean diff.

Black = weak mean diff.

% coronal slice

Other measures: (fractional/relative) anisotropy
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Tensor Data Visualization
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Tensor Data Visualization
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a) ellipsoids
b) cuboids
c) cylinders
d) superquadrics

look arguably
most ‘natural’
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Tensor Data Visualization

e Tensor visualization:

 Component visualization

* Anisotropy visualization

* Major eigenvector visualization
* Fiber tracking

* Basic fiber tracking

e Stream tubes

* Hyperstreamlines



Fiber Tracking

e Similar to streamlines in case of
vector fields visualization

Tracks the direction of the major
eigenvectors

* Tubes have circular crossection

e Color indicates the local direction
of the hyperstreamlines

* Mostly used for DT-MRI tensors

\ f;‘

Source: White Mattergfibre '*‘ﬁf The Human Brain by Alfred

. W
Pasieka
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Hyperstreamlines

* Extension of fiber tracking that
enables us to visualize direction
information from the tensor field
beyond the major eigenvector

* Construct stream tubes in the
direction of major eigenvector

 Circular cross section is replaced by
an elliptical cross section
controlled by medium and minor

: e ;";,4'/" A |
eigenvector Source: SHEN Wﬂj PANG Al Amsotropy based seeding
for hyperstreamline! Proceedlhgs of IASTED Computer

Graphics and /magmg (CG/M) 2004.

0.001 0.034 0,085 0.150 0.223 0.895
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