Data Visualization

460-4120

Fall 2023
Last update 4. 10. 2023

The Data as a Quantity

- Quantities can be classified in two categories:
- Intrinsically continuous (scientific visualization, or scivis)
- e.g. pressure, temperature, position, speed, density, force, color, light intensity etc.
- Intrinsically discrete (information visualization, or infovis)
- e.g. text, hypertext, content of web pages, database records etc.
- Sampled data - originally continuous data represented in a finite approximative form
- Corollary of the difference between sampled and discrete data:

In the case of sampled data, we can go back to a continuous approximation of the original (intrinsically) continuous data but it make no sense for (intrinsically) discrete data

Continuous Data

- Continuous data as a function:

$$
f: D \rightarrow C
$$

- Intuitive interpretation of continuity:

(a)

Discontinuous function

(b)

(c)

High-order Ck cont.

Datasets and Dimensions

- Let the triplet $D=(D, C, f)$ define a continuous dataset
- We assume that $f: D \rightarrow C$
- D refers to a function domain, C is the function codomain
- d is the geometrical dimension of the space \mathbb{R}^{d} into which D is embedded
- s represents the topological dimension of D itself (e.g. plane in the Euclidean space \mathbb{R}^{3} has $s=2$)
- It holds that $s \leq d$
- s is number of independent variables required to represent the domain D
- Codimension of an object of some d and s is the difference $d-s$

Datasets and Dimensions

- Virtually all data-visualization applications fix geometrical dimension to $d=3$
- Only the topological dimension varies $s=\{1,2,3\}$
- $s=1$ corresponds to curves
- $s=2$ corresponds to surfaces
- $s=3$ corresponds to the volumetric datasets
- Topological dimension and dataset dimension are often used interchangeably
- Topological dimension is important in case of sampled datasets and when choosing a grid cell type

Datasets and Dimensions

- Function values are called dataset attributes
- The dimensionality c of the function codomain C is also called the attribute dimension
- Typically ranges from 1 to 4
- E.g. temperature assigned to some point in the Euclidean space \mathbb{R}^{3} has $c=1$ (it is a scalar value)

Sampled Data

- Typically, continuous functional representation of data is not available
- Moreover, several operations (filtering, simplification, analysis etc.) on continous data are not efficient
- Visualization applications work predominantly with sampled datasets
- Important operations relating continuous and sampled data:
- Sampling - quite straightforward
- Reconstruction - more complicated, the goal is to recover an approximated version of the original continuous data

Sampled Data

- Reconstruction employs interpolation of the values of the function between its sample points
- Two basic forms of sampling strategies:
- Uniform
- Non-uniform (e.g. respecting the distribution of the importance of the sampled data)
- Sampled dataset should be accurate (up to an user-specified error), minimal (w.r.t. an error), generic (operations), efficient (algorithmically), and simple (implementation) [Schroeder et al. 2006]

Sampled Data

- Sampled dataset $\left\{f_{i}, p_{i}\right\}$ consists of a set of N sample points and values
- Interpolation - the reconstructed function should equal the original one at all sample points, i.e. $\tilde{f}\left(p_{i}\right)=f\left(p_{i}\right)=f_{i}$

Basis/interpolation functions

- One way to define reconstruction function: $\tilde{f}=\sum_{i=1}^{N} f_{i} \phi_{i}$
- Subsequently, we get $\tilde{f}\left(p_{j}\right)=\sum_{i=1}^{N} f_{i} \phi_{i}\left(p_{j}\right)=f\left(p_{j}\right)=f_{j}$ for $\forall j$
- Orthogonality basis function $\phi_{i}\left(p_{j}\right)= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}$
- Normality of basis function

$$
\sum_{i=1}^{N} \phi_{i}(x)=1, \forall x \in \mathrm{D}
$$

Sampled Data

Domain Subdivision

- A grid (aka mesh) is a subdivision of a domain D into a collection of cells (aka elements)
- Most commonly used cells:
- Polylines in \mathbb{R}
- Polygons in \mathbb{R}^{2}
- Polyhedra in \mathbb{R}^{3}

- Union of cells cover entire domain D and cells are non-overlapping, and vertices are sample points

Constant Basis Function

constant, zero-order continuity global basis function

- Simplest set of basis function:

$$
\phi_{i}^{0}(x)= \begin{cases}1, & x \in c_{i} \\ 0, & x \notin c_{i}\end{cases}
$$

- Sample points are inside the grid cells
- Nearest-neighbor interpolation
- Virtually no computation cost
- Work with any cell shape and in any dimension
- Provide a poor, staircase-like approximation
- We can provide a better (i.e. more continuous) reconstruction of the original function

Linear Basis Functions

- Linear basis function - next simplest basis functions
- Need to make some assumption about the cell types used in the grid
- Assume quadrilateral cells having 4 vertices
- Reference quad cell in $\mathbb{R}^{2}: v_{1}=(0,0), v_{2}=(1,0), v_{3}=(1,1), v_{4}=(0,1)$

Set of local basis functions

$$
\begin{aligned}
& \Phi_{1}^{1}(r, s)=(1-r)(1-s) \\
& \Phi_{2}^{1}(r, s)=r(1-s) \\
& \Phi_{3}^{1}(r, s)=r s \\
& \Phi_{4}^{1}(r, s)=(1-r) s \\
& \uparrow \\
& \quad \text { reference coordinates }
\end{aligned}
$$

Barycentric Coordinates

- A simplex is a convex hull of $k+1$ points in a k-dimensional space
- Barycentric coordinates provide a simple way to interpolate over simplices
- In case of (planar) triangles, $k=2 \quad p 1:=\left[\begin{array}{cc}27.2 \\ 11.8\end{array}\right] \quad p 2:=\left[\begin{array}{cc}{[6.4 .4} \\ 16.3\end{array}\right] \quad p 3:=\left[\begin{array}{c}44.6 \\ 40.9\end{array}\right]$

$$
A 1:=232.2 \quad A 2:=186.24 \quad A 3:=137.37
$$

$$
\begin{aligned}
& A:=A 1+A 2+A 3=555.81 \\
& r:=\frac{A 1}{A}=0.418 \quad s:=\frac{A 2}{A}=0.335 \quad t:=\frac{A 3}{A}=0.247 \\
& r+s+t=1 \\
& p:=r \cdot p 1+s \cdot p 2+t \cdot p 3=\left[\begin{array}{l}
45.8 \\
20.5
\end{array}\right] \\
& p:=r \cdot p 1+s \cdot p 2+(1-r-s) \cdot p 3=\left[\begin{array}{l}
45.8 \\
20.5
\end{array}\right]
\end{aligned}
$$

or in the rearranged form more common in CG

From this equation is clear what the barycentric coordinates r and s actually mean
$p:=r \cdot p 1+s \cdot p 2+1 \cdot p 3-r \cdot p 3-s \cdot p 3=\left[\begin{array}{l}45.8 \\ 20.5\end{array}\right]$
$\longrightarrow p:=r \cdot(p 1-p 3)+s \cdot(p 2-p 3)+1 \cdot p 3=\left[\begin{array}{l}45.8 \\ 20.5\end{array}\right]$

Barycentric Coordinates for Triangles

- Barycentric (area) coordinates $[r, s, t]$ describe location of a point \boldsymbol{p} in a triangle in relation to vertices \boldsymbol{v}_{i}

$$
\boldsymbol{p}=[r, s, t]=r \boldsymbol{v}_{1}+s \boldsymbol{v}_{2}+t \boldsymbol{v}_{3},
$$

where $r, s, t \geq 0$ and $r+s+t=1$

- Coordinates corresponds to the signed area of the opposite subtriangle divided by area of the triangle
- Note that the point \boldsymbol{p} is uniquely defined by any two of the three barycentric coordinates, e.g. r and s

$$
\boldsymbol{p}=[r, s]=r \boldsymbol{v}_{1}+s \boldsymbol{v}_{2}+(1-r-s) \boldsymbol{v}_{3} \text { or } T(r, s)=\sum_{i=1}^{3} \boldsymbol{v}_{i} \Phi_{i}^{1}(r, s)
$$

- In the same way, we can interpolate any quantity (or function) inside the triangle

Forward Transformations

- Given any cell type having n vertices \boldsymbol{p}_{i} in \mathbb{R}^{3}, we define transformation T that maps from a point $[r, s]$ in reference cell coordinate system to a point $[x, y, z]$ in the actual cell as follows

$$
\boldsymbol{p}=[x, y, z]=T(r, s)=\sum_{i=1}^{n} \boldsymbol{p}_{i} \Phi_{i}^{1}(r, s)
$$

- T maps the reference cell to the world cell
- T^{-1} maps points $[x, y, z]$ in the world cell to points $[r, s]$ in the reference cell

Backward Transformation

- Having T^{-1}, we can rewrite the reconstruction function $\tilde{f}=\sum_{i=1}^{n} f_{i} \Phi_{i}$ for quad cell as

$$
\tilde{f}(x, y, z)=\sum_{i=1}^{4} f_{i} \Phi_{i}^{1}\left(T^{-1}(x, y, z)\right)
$$

- To compute T^{-1}, we have to invert the expression $T(r, s)=\sum_{i=1}^{n} p_{i} \Phi_{i}^{1}(r, s)$
- Given a rectangular cell this yields
- Given a rectangular cell, this yields

$$
T_{\text {rect }}^{-1}(x, y, z)=(r, s)=\left(\frac{\left(p-p_{1}\right) \cdot\left(p_{2}-p_{1}\right)}{\left\|p_{2}-p_{1}\right\|^{2}}, \frac{\left(p-p_{1}\right) \cdot\left(p_{4}-p_{1}\right)}{\left\|p_{4}-p_{1}\right\|^{2}}\right)
$$

- Now, we have a simple way how to reconstruct a piecewise C^{1} function from samples on any rectangular grid. Arbitrary quad cells require some more elaborated numerical solution for obtaining r, s

Backward Transformation for Triangles

- Same situation but with triangle cell (simplest cell in 2D)
- Three linear basis functions

$$
\begin{aligned}
& \Phi_{1}^{1}(r, s)=r \\
& \Phi_{2}^{1}(r, s)=s \\
& \Phi_{3}^{1}(r, s)=1-r-s
\end{aligned}
$$

- The transformation T^{-1} for triangular cells

$$
T_{\mathrm{tri}}^{-1}(x, y, z)=(r, s)=\left(\frac{\left\|\left(p-p_{1}\right) \times\left(p_{3}-p_{1}\right)\right\|}{\left\|\left(p_{2}-p_{1}\right) \times\left(p_{3}-p_{1}\right)\right\|}, \frac{\left\|\left(p-p_{1}\right) \times\left(p_{2}-p_{1}\right)\right\|}{\left\|\left(p_{3}-p_{1}\right) \times\left(p_{2}-p_{1}\right)\right\|}\right)
$$

Cells

Line Cell

Line Cell

$$
\begin{aligned}
& \Phi_{1}^{1}(r) \\
& \Phi_{2}^{1}(r)
\end{aligned}
$$

$$
T_{\operatorname{lin}}^{-1}(x, y, z)
$$

Line Cell

$$
\begin{aligned}
& \Phi_{1}^{1}(r)=1-r \quad T_{\operatorname{lin}}^{-1}(x, y, z)=\frac{\left\|p-p_{1}\right\|}{\left\|p_{2}-p_{1}\right\|} \\
& \Phi_{2}^{1}(r)=r . \\
& \uparrow_{\text {two linear basis functions }}
\end{aligned}
$$

Rectangular Cell

$$
\begin{aligned}
& \Phi_{1}^{1}(r, s)=(1-r)(1-s), \\
& \Phi_{2}^{1}(r, s)=r(1-s), \\
& \Phi_{3}^{1}(r, s)=r s, \\
& \Phi_{4}^{1}(r, s)=(1-r) s . \\
& T_{\text {rect }}^{-1}(x, y, z)=(r, s)=\left(\frac{\left(p-p_{1}\right) \cdot\left(p_{2}-p_{1}\right)}{\left\|p_{2}-p_{1}\right\|^{2}}, \frac{\left(p-p_{1}\right) \cdot\left(p_{4}-p_{1}\right)}{\left\|p_{4}-p_{1}\right\|^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Phi_{1}^{1}(r, s)=(1-r)(1-s), \\
& \Phi_{2}^{1}(r, s)=r(1-s), \\
& \Phi_{3}^{1}(r, s)=r s, \\
& \Phi_{4}^{1}(r, s)=(1-r) s .
\end{aligned}
$$

- The world coordinates of a point \boldsymbol{p} on the given quadrilateral cell with known parametric coordinates r, s can be computed as follows

$$
\boldsymbol{p}=(x, y, z)^{T}=T_{\text {quad }}(r, s)=\sum_{i=0}^{4} \boldsymbol{p}_{i} \Phi_{i}^{1}(r, s),
$$

where $T_{\text {quad }}$ is a simple bilinear interpolation on a rectangle

$$
T_{\text {quad }}(\mathrm{r}, \mathrm{~s})=(1-\mathrm{s})\left[(1-\mathrm{r}) \boldsymbol{p}_{1}+r \boldsymbol{p}_{2}\right]+\mathrm{s}\left[r \boldsymbol{p}_{3}+(1-\mathrm{r}) \boldsymbol{p}_{4}\right]
$$

- Typically, we would like to obtain interpolated quantity f at this point

$$
\tilde{f}(x, y, z)=\sum_{i=1}^{4} f_{i} \Phi_{i}^{1}\left(T_{\text {quad }}^{-1}(x, y, z)\right)
$$

General Quad Cell

We are looking for the interpolated valued of f at the point \boldsymbol{p} and to do so, we need to find the corresponding point \boldsymbol{q} in reference coordinates to be able to evaluate $\tilde{f}(\boldsymbol{p})$.

General Quad Cell

To find the zeroes of a single vector-valued function $\boldsymbol{F}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k \text { or } m}$ we may use Newton's method:

- One solution is to numerically solve for r, s as functions of $x, y(, z)$ by Newton's method (note that $\boldsymbol{T}_{\text {quad }}=\boldsymbol{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ here)

$$
\binom{r^{t+1}}{s^{t+1}}=\binom{r^{t}}{s^{t}}-\boldsymbol{J}_{T}^{-1}\left(r^{t}, s^{t}\right)(\boldsymbol{T}(r, s)-\boldsymbol{p})
$$

where \boldsymbol{J}_{T}^{-1} is the generalized inverse of the non-square Jacobian matrix
Also note that matrix J_{T} evolves over time as well as r and s get updated during iterations

$$
\boldsymbol{J}_{T}(r, s)=\left(\begin{array}{cc}
\vdots & \vdots \\
\frac{\partial \boldsymbol{T}}{\partial r}(r, s) & \frac{\partial \boldsymbol{T}}{\partial s}(r, s) \\
\vdots & \vdots
\end{array}\right)_{2 \text { or } 3 \times 2} \begin{gathered}
\begin{array}{c}
\text { Matrix describes direction and } \\
\text { speed of position changes of } \boldsymbol{T} \\
\text { when } r, s \text { are varied. }
\end{array} \\
\end{gathered}
$$

General Quad Cell

- It is easy to see that

$$
\frac{\partial \boldsymbol{T}}{\partial r}(r, s)=(s-1)\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{2}\right)+s\left(\boldsymbol{p}_{3}-\boldsymbol{p}_{4}\right)
$$

and

$$
\frac{\partial \boldsymbol{T}}{\partial s}(r, s)=(r-1)\left(\boldsymbol{p}_{1}-\boldsymbol{p}_{4}\right)+r\left(\boldsymbol{p}_{3}-\boldsymbol{p}_{2}\right)
$$

- The pseudo inverse of J_{T} can be computed by function cv::invert(J, J_inv, cv::DECOMP_SVD); // C++ (but it is terribly slow) J_inv = numpy.linalg.pinv(J) \# Python

Example on General Quad Cell

- Test example for the afore described procedure:

For the cell with vertices $\boldsymbol{p}_{1}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \boldsymbol{p}_{2}=\left(\begin{array}{c}3 \\ 0.25 \\ 1\end{array}\right), \boldsymbol{p}_{3}=\left(\begin{array}{l}4 \\ 3 \\ 1\end{array}\right), \boldsymbol{p}_{4}=\left(\begin{array}{c}0 \\ 3.5 \\ 1\end{array}\right)$ and the query point $\boldsymbol{p}=\left(\begin{array}{c}1.8 \\ 2.7 \\ 1\end{array}\right)$ we get $r=0.445$ and $s=0.818$ just after 3 iterations while the initial estimates of r^{0} and s^{0} are set to 0.5 .

- If you get the same r and s for given vertices, your implementation is probably correct

Exercise

- Typically, finite-element meshes are generated from constructive-solid-geometry (CSG) models during finite element analysis (FEA) used in engineering
- Triangular and quadrilateral subdivisions of simulation domains are the most common

