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The Data as a Quantity

* Quantities can be classified in two categories:
* Intrinsically continuous (scientific visualization, or scivis)

e e.g. pressure, temperature, position, speed, density, force, color, light
intensity etc.

* Intrinsically discrete (information visualization, or infovis)
e e.g. text, hypertext, content of web pages, database records etc.
» Sampled data — originally continuous data represented in a finite approximative
form
* Corollary of the difference between sampled and discrete data:

In the case of sampled data, we can go back to a continuous approximation of
the original (intrinsically) continuous data but it make no sense for (intrinsically)
discrete data



Continuous Data

 Continuous data as a function:
f:D—-C

* Intuitive interpretation of continuity:
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Discontinuous function First-order C, cont. High-order C, cont.

Source: Data Visualization: Principles and Practice
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Datasets and Dimensions

* Let the triplet D = (D, C, f) define a continuous dataset

* We assumethat f:D = C

e D refers to a function domain, C is the function codomain

* d is the geometrical dimension of the space R¢ into which D is embedded

* s represents the topological dimension of D itself (e.g. plane in the Euclidean
space R3 has s = 2)

* ltholdsthats < d
* s is number of independent variables required to represent the domain D

* Codimension of an object of some d and s is the difference d- s



Datasets and Dimensions

 Virtually all data-visualization applications fix geometrical dimensiontod = 3
* Only the topological dimension varies s = {1, 2, 3}

s = 1 corresponds to curves

* § = 2 corresponds to surfaces

s = 3 corresponds to the volumetric datasets
* Topological dimension and dataset dimension are often used interchangeably

» Topological dimension is important in case of sampled datasets and when
choosing a grid cell type



Datasets and Dimensions

 Function values are called dataset attributes

* The dimensionality ¢ of the function codomain C is also called the attribute
dimension

* Typically ranges from 1to 4

* E.g. temperature assigned to some point in the Euclidean space R3 has ¢ = 1 (it is
a scalar value)



Sampled Data

* Typically, continuous functional representation of data is not available

* Moreover, several operations (filtering, simplification, analysis etc.) on continous
data are not efficient

* Visualization applications work predominantly with sampled datasets
* Important operations relating continuous and sampled data:
* Sampling — quite straightforward

* Reconstruction — more complicated, the goal is to recover an approximated
version of the original continuous data



Sampled Data

* Reconstruction employs interpolation of the values of the function between its
sample points

* Two basic forms of sampling strategies:
* Uniform

* Non-uniform (e.g. respecting the distribution of the importance of the
sampled data)

» Sampled dataset should be accurate (up to an user-specified error), minimal
(w.r.t. an error), generic (operations), efficient (algorithmically), and simple
(implementation) [Schroeder et al. 2006]



Sampled Data

Sampled dataset {f;, p;} consists of a set of N sample points and values

Interpolation - the reconstructed function should equal the original one at all
sample points, i.e. f(p;) = f(p;) = f; Basis/interpolation functions

One way to define reconstruction function: f = Y. fi¢;
Subsequently, we get f(pj) = ﬁvzlfigbi(pj) =f(pj) = fj for Vj

1, i=j
0, 1#]

Orthogonality basis function ¢i(p;) = {

N
Normality of basis function ) _ ¢i(z) = 1,V € D
i=1



Sampled Data
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samplin . ’
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transform T .
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Source: Data Visualization: Principles and Practice
reference bases @}, @} P
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Domain Subdivision

* A grid (aka mesh) is a subdivision of a domain D into a collection of cells (aka
elements)

* Most commonly used cells:

* Polylines in R T T,
* Polygons in R? E
* Polyhedrain R? A

* Union of cells cover entire domain D and cells

are non-overlapping, and vertices are sample points
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Domain Subdivision

* The most common domain discretization used in SciVis are simplicial
complexes

* A d-simplex is the convex hull of d 4+ 1 affinely independent points in
R? is d-dimensional

* A simplicial complex is a finite collection of simplices that contains all
faces of any simplex and where the intersection of two simplicesis
empty or a face of both

0-simplex 1-simplex 2-simplex 3-simplex



Constant Basis Function

constant, zero-order continuity global basis function

1, c C;
* Simplest set of basis function: @5 (x) = { 0 i ¢ E

* Sample points are inside the grid cells

* Nearest-neighbor interpolation

Virtually no computation cost

Work with any cell shape and in any dimension

Provide a poor, staircase-like approximation

 We can provide a better (i.e. more continuous) reconstruction of the original
function



Linear Basis Functions

Linear basis function — next simplest basis functions
Need to make some assumption about the cell types used in the grid

Assume quadrilateral cells having 4 vertices
Reference quad cell in R?: v, = (0,0), v, = (1,0),v; = (1,1), v, = (0,1)

Bi(r,s) = (1-r)(1—s),
1 p— -
Set of local basis functions (I)Q(T’ 8) - T(l 3):
(I)il%(rra 3) — Ts,
Oy (r,s) = (1 —1)s:

reference coordinates



Barycentric Coordinates

e Asimplexis a convex hull of k + 1 points in a k-dimensional space

* Barycentric coordinates provide a simple way to interpolate over simplices

* In case of (planar) triangles, k = 2
Ps

From this equation is clear what the barycentric
coordinates r and s actually mean

L [272 ,._[68.4 4. [46.6
Pr=1118 Pe=116.3 Po=110.9
Al:=232.2 A2:2186.24  A3:=137.37

A:=A14+A2+A3=555.81

T::£:0.418 s::£:0.335 t::£:0.247
A A A

r+s+t=1 1-r—s=0.247
20.5

p::r-p1+8-p2+t-p3:[45'8]

 [45.8]

p::r-p1+s-p2+(1—r—s)-p3

~|20.5)

or in the rearranged form

p=rpl+s.p2+1.p3—r-p3—s-p3= 45'8]

20.5
45.8]

p::T-(Pl_p3)+s'(p2_p3)+14}3:{20.5



Barycentric Coordinates for Triangles

Barycentric (area) coordinates |7, s, t] describe location of a point p in a triangle
in relation to vertices v,

p = |rst] =rv, +sv, +tv,,
wherer,s,t = 0Oandr+s+t=1

Coordinates corresponds to the signed area of the opposite subtriangle divided
by area of the triangle

Note that the point p is uniquely defined by any two of the three barycentric
coordinates, e.g. 7 and s

p=1[rs]=rv,+sv, +(1—r—5)v,0rT(r,s) = Y;_, ;D] (,5)

In the same way, we can interpolate any quantity (or function) inside the triangle



Forward Transformations

* Given any cell type having n vertices p; in R3, we define transformation T that
maps from a point [r, s] in reference cell coordinate system to a point [x, y, z] in
the actual cell as follows

n
p=[xy2=T(rs)=) pdlers)
1=

* T maps the reference cell to the world cell

e T~1 maps points [x, v, z] in the world cell to points [r, s] in the reference cell



Backward Transformation

* Having T~1, we can rewrite the reconstructlon function f Z _1 [i P,

for quad cell as
: f(x,y,z Zf@l (@, 9, 2))

* To compute T, we have to invert the expression 1'(r, s) Zp@l (7, s)

* Given a rectangular cell, this yields

—1 — (. g) — (p—p1)-(p2—p1) (D—p1) (pa—p1)
Trectl,9,2) = 129) ( lp2 =pil2 7 llpa—pall? )

* Now, we have a simple way how to reconstruct a piecewise C! function from
samples on any rectangular grid. Arbitrary quad cells require some more
elaborated numerical solution for obtaining r, s



Backward Transformation for Triangles

e Same situation but with triangle cell (simplest cell in 2D)
* Three linear basis functions

ol(r,s) =r

di(r,s) =s

oi(r,s)=1—-r—s

* The transformation T ™! for triangular cells

1 B A [(p=p1) x(p3—p1)| |(p—p1) x (P2 — p1)| )
Lo (@.9,2) = (1.5) = (Il(pz —p1) x (p3s —p1)||" |(ps —p1) % (P2 — p1)|




Cells

hexahedron

AN

£
% rectangular solid (box) pyramid prism Source: Data Visualization: Principles and Practice
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Line Cell
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reference line cell

Source: Data Visualization: Principles and Practice
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Line Cell

Fall 2024

Pa

-1
Tlin
N

reference line cell

i (r) i
(I)l( ) Tllin (xayvz)

\)
-ﬁ

Data Visualization

Source: Data Visualization: Principles and Practice
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Line Cell

reference line cell

Pi(r)=1—r lp — 1]
T_l x? y? Z —
d3(r) =1 in { ) |p2 — 1]

T

[\

two linear basis functions

Source: Data Visualization: Principles and Practice
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Rectangular Cell

dl(r,s) = (1 —7)(1 —s)
O3(r,s) =7r(1 - s),
®i(r,s) =rs,

di(r,s) = (1—1)s

p—p1)-(p2—p1) (P—p1) (P4 —p1)

Tide2) = o) = (

Fall 2024
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* The world coordinates of a point p on the given quadrilateral cell with known
parametric coordinates 7, s can be computed as follows

4 1
— (X Y, Z)T quad(r S) — Lii=0 picbi (T, S) ’
where Tj,44 is a 5|mple bilinear interpolation on a rectangle

Tquaa(r,s) = (1 =s)[(1 =1)py +rpz| + s[rpz + (1 —1)p4]

* Typically, we would like to obtain mterpolated quantity f at this point
fayd =y fid} (a2

Unlike in previous cases, we cannot
guess inverse of Ty, directly.



General Quad Cell

rasterized image

(P4, f2) s, reference quad

(Ps3, f3)

+ + + + + + + +

(p.f@)=17)
+

v, = (0,0) v;=(1,1)

Tquad(ri S) - (x, Y Z)

S .

T (x,v,2) > (1,5 >

cell

P, f1) P2 f2)

We are looking for the interpolated valued of f at the point p and to do so, we need to find the corresponding
point q in reference coordinates to be able to evaluate f(p).
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To find the zeroes of a single vector-valued function
F: R¥ — R*°"™ \ye may use Newton's method:

General Quad Cell uos = 20— i) P

* One solution is to numerically solve for 7, s as functions of x, y(, z) by Newton's
method (note that T 4y,q4= T: R* = R here)

(riii) = (gi) _ IRt sH(T(r, s) — p)

S

where J71 is the generalized inverse of the non-square Jacobian matrix

Also note that matrix

Jr evolves over time
as well asr and s get
updated during
iterations

: : Matrix describes direction and
] ( ) oT T speed of position changes of T
T\r,S)=| — (1,8 — (7, s when 7, s are varied.
or (rs) ds (r5)

2 0r 3X2



General Quad Cell

* It is easy to see that

oT
5 (r,s) = (s —1D(@P1—p2) +s(P3s —ps)

and -
P, (r,s) = (r—1)(py —ps) +7(p3 — P2)

* The pseudo inverse of J can be computed by function
cv::invert( J, J _inv, cv::DECOMP_SVD ); // C++ (but it is terribly slow)
J _inv = numpy.linalg.pinv( J ) # Python



Example on General Quad Cell

* Test example for the afore described procedure:

1 3 4 0
For the cell with vertices p; = <0>, P, = (0.25>, p3 = (3) Py = (3.5) and the query
1 1 1 1

1.8
point p = (2.7) we getr = 0.445 and s = 0.818 just after 3 iterations while the

1
initial estimates of r° and s° are set to 0.5.

* |f you get the same r and s for given vertices, your implementation is probably
correct



Exercise

e Typically, finite-element meshes are generated from constructive-solid-geometry
(CSG) models during finite element analysis (FEA) used in engineering

* Triangular and quadrilateral subdivisions of simulation domains are the most

common EINSElI . L ANSL - E
= = ==
4K JL = =
(1 \ T 7]
2L 9 \\ -j'}“ N e E’-; 20
B 7, =t -~
\:. — . N = \L;! ':; . ~1—
2 = =
i Ve P i i
= - il @M i
-6 -4 Z9 0 2 4 6
(a) (b) (c)

CSG model Triangular mesh Quadrilateral mesh
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