
Automotive User Interfaces
460-2048

Spring 2025

Last update 7. 4. 2025

Automotive User Interfaces

 Staff List

 Lecturer: Tomas Fabian (tomas.fabian@vsb.cz)

 Room EA408, building of FEECS

 Office hours: Tuesday 13:30 – 15:30

All other office hours are by appointment

Course web site
mrl.cs.vsb.cz/people/fabian/ura_course.html

Course Prerequisites

 Basics of programming (Python and C++)

 Previous courses (not mandatory)

 Fundamentals of Programming

 Fundamentals of Computer Graphics

Main Topics

• Theory and Principles of the design of the interface between man and machine (HMI)

• The types of computer systems inside a car

• Digital cockpit - user interface (HCI), information and control systems

• Text input and output during driving, usage scenarios

• Interface for navigation (3D navigation, visualization of the vehicle's surroundings) and

cooperative driving

• Biometric sensors as components of the user interface of the automobile

• 3D graphics and augmented reality (head-up display)

• Infotainment interfaces in the vehicle

• Software tools for the design and implementation of graphical user interfaces for embedded

devices

• General user interfaces used outside cars

• Embedded platforms with graphical output (e.g. Nvidia Drive CX/PX, Tegra X1, Jetson TX1) and

runtime environments

Automotive User Interfaces

 Grading Policy

 Complete three assignments from labs

P1: Design and implementation of a desktop application in Python +

Tk/Qt [10 p, min 5 p]; application for controlling and visualization of

various processes and measurements

P2: Web UI - Building responsive web page with Bootstrap [10 p, min

5 p]; simple responsive web form with various widgets

P3: Detailed design of a car dashboard with following implementation

in C++ [25 p, min 15 p]; you can be inspired by an existing look of a

modern virtual cockpit

Projects are quite open ended. There are several correct solutions.

Deadlines are given on the course website.

 Final exam

 Test during the last week [55 p, min 6 p]

Study Materials and References

 Meixner, G., & Müller, C. (2017). Automotive user
interfaces. Springer: Cham, Switzerland.

 Rümelin, S. (2014). The cockpit for the 21st century
(Doctoral dissertation, lmu).

 Wu, H., & Shou, S. (2011). Automotive Cockpit Design 2020.

 https://docs.python.org/3/tutorial

 https://docs.python.org/3/library/tkinter.html

 https://wiki.qt.io/Qt_for_Beginners

 https://doc.qt.io/qt3dstudio/index.html

Python Crash Course

 Python is dynamically typed, interpreted, object-oriented, high-level
language with automatic memory management which works on many
platforms

 Visit www.python.org

 Downloads Python 3.13.x x64

 Tutorials
docs.python.org/3/tutorial/index.html

 Language reference
docs.python.org/3/reference/index.html

 Library reference
docs.python.org/3/library/index.html

Python Crash Course

#!/usr/bin/env python3
-*- coding: utf-8 -*-

__author__ = "Tomas Fabian"
__copyright__ = "(c)2025 VSB-TUO, FEECS, Dept. of Computer Science"
__email__ = "tomas.fabian@vsb.cz"
__version__ = "0.1.0"

"""
A very simple script done in Python
"""
def main():
print("Hello, World!")

if __name__ == "__main__":
main()

Python uses indentation to define a block of code
The amount of indentation (e.g. 4 whitespaces)
must be consistent throughout that block

set PATH=%PATH%;"c:\Program Files\Python310"

Python Crash Course

elementary commands
a = 5 # ints
a = 3.14 # floats
strings
a = "This is 'positive'"
a = 5//3 # a equals to 1
a = 5/3 # a equals to 1.667
a = True and False
a = True or False
a = True is True
a = True == True
a = not True
bitwise and
a = 1 & 3 # a equals to 1
bitwise or
a = 1 | 3 # a equals to 3

definition of a function
def my_function(a, b=0):
c = a + b
return c

function call
print(my_function(1, 3))

program flow control
a = 5
if a > 0:
print("positive")

elif a == 0:
print("zero")

else:
print("negative")

there is no switch statement
until Python 3.10

Python Crash Course

match-case statement
introduced in Python 3.10
http_code = "418"

match http_code:
case "200":

print("OK")
do_something_good()

case "404":
print("Not Found")
do_something_bad()

case "418":
print("I'm a teapot")
make_coffee()

case _:
print("Code not found")

same logic using chunk of if-elif-else

if http_code == "200":
print("OK")
do_something_good()

elif http_code == "404":
print("Not Found")
do_something_bad()

elif http_code == "418"
print("I'm a teapot")
make_coffee()

else:
print("Code not found")

Python Crash Course

abstract data types in Python
list
lst = [1, 2, 3, "hi there"]
len(lst)
output: 4
print(type(lst[3]))
output: <class 'str'>
lst[1] = 22 # list is mutable
print(lst)
output: [1, 22, 3, "hi there"]

tuple
vec = (1.2, 3.4, -8.9)
print(len(vec))
output: 3
vec[0] = -1.2 # tuple is immutable

dict - dictionary (mutable)
dct = {1: "one", 2: "two"}
print(dct[2])
output: two

set (immutable)
s = set((1, 2, 3, 4, 4, 4))
print(s)
output: {1, 2, 3, 4}

Try help(list) command to see what all

you can do with ADTs

Python Crash Course

list comprehension
lst = [1, 2, 3, 4, '3.14']
lst = [x + 1 for x in lst if type(x) in [int, float]]
output: [2, 3, 4, 5]

ternary operator
result = "even" if n % 2 == 0 else "odd"

exception handling
for x in lst:
try:
x += 1

except TypeError:
print('x is not a number')

finally:
print(x)

Python Crash Course

parent class
class BaseWindow():
max_width = 3840 # class variable shared by all instances

def __init__(self, width=640): # constructor
self.width = min(width, BaseWindow.max_width) # instance variable

def resize(self, width): # method
self.width = width

Python Crash Course

derived class
class MyWindow(BaseWindow): # Python supports multiple inheritance
def __init__(self, title, width, height):
super().__init__(width) # calls constructor of the parent class
self.title = title
self.height = height

def __str__(self): # to string method
return "Window '{}' has {}x{} pixels".format(self.title,

self.width, self.height)

instantiate an object of type MyWindow
window = MyWindow("Example", 800, 600)
print(window)
output: Window 'Example' has 800x600 pixels

Python Crash Course

anonymous function
fce = lambda a, b: a + b
print(fce(1, 3))
output: 4

Note that lambda functions are callable objects and they can be

invoked using the call operator

GUI in Python (Tk)

 We will use Tkinter for constructing GUIs in the

Python

 Tkinter is standard GUI toolkit for Python

 Object-oriented layer on top of Tcl/Tk

 Pertinent references:

 http://effbot.org/tkinterbook/

 https://docs.python.org/3/library/tk.html

GUI in Python (Tk)

 Label

 Button

 Entry

 Spinbox

 Checkbutton

 Radiobutton

 Listbox

 Text

 Message

 Scale

 Scrollbar

 Canvas

 Frame

 LabelFrame

 Toplevel

 PanedWindow

 Menu

 Menubutton

 Modules:

 tkMessageBox

 tkFont

 List of common widgets:

 # -*- coding: utf-8 -*-

 import tkinter as tk #imports the entire Tk package

 #from tkinter import Tk, Label

 #from tkinter import *

 root = tk.Tk()

 label = tk.Label(root, text="Some text")

 label.pack()

 root.mainloop() # Starts the app's main loop events

GUI in Python (Tk)

 import tkinter as tk #imports the entire Tk package

 class Application(tk.Frame): # App class inherits from Frame class

 def __init__(self, master=None):

 tk.Frame.__init__(self, master) # Calls constructor for the parent class

 self.pack() # Make the app appear on the screen

 self.createWidgets()

 def createWidgets(self): # Function responsible for creating all the widgets

 self.hi_there = tk.Button(self) # Creates the button

 self.hi_there["text"] = "Hello World\n(click me)" # Set button's parameters

 self.hi_there["command"] = self.say_hi

 self.hi_there.pack(side="top") # Places the button

 self.QUIT = tk.Button(self, text="QUIT", fg="red",

command=self.master.destroy)

 self.QUIT.pack(side="bottom")

 def say_hi(self):

 print("hi there, everyone!")

 root = tk.Tk()

 app = Application(master=root) # Instantiating the App class

 app.master.title("Sample application") # Sets the title of the window

 app.mainloop() # Starts the app's main loop; waiting for mouse and keyboard

events

GUI in Python (Tk)

GUI in Python (Tk)

 Window – rectangular area somewhere on the

screen

 Top-level window – a window that exists

independently on the screen

 Widget – generic therm for any building block

that make up a GUI

 e.g. Button, Label, Entry, Frame

 Frame – basic widget that can contain other

widgets. You can create complex layouts with

them.

Layout management

 Widgets are arranged in a

window by three different

geometry managers

 PACK .pack()

Layout management

 Widgets are arranged in a window by three

different geometry managers

 PACK .pack()

 expand – 1 widget will be expanded to fill any

empty space, 0 otherwise

 anchor – specifies how the widget is placed inside

its parcel, see the compass

‘n’, ‘ne’, ‘e’, ‘se’, ‘s’, ‘sw’, ‘w’, ‘nw’, and ‘center’

 pad{x,y} – designating external padding on each

side of the slave widget

Layout management

 Widgets are arranged in a window by three

different geometry managers

 PACK .pack()

 fill – fill any empty space in ‘x ’, ’ y ’, ’ both ’, ’ none ’

 ipad{x,y} – designating internal padding on each

side of the slave widget

 side – ‘left’, ‘right’, ‘top’, ‘buttom’

 self.widget = Constructor(parent, ...)

 self.widget.pack(...)

Layout management

 Widgets are arranged in a window by three

different geometry managers

 PACK .pack()

 More on expand:

 Expand specifies whether the widgets should be expanded

to fill any extra space in the geometry master. If false

(default), the widget is not expanded.

 The expand option tells the manager to assign additional

space to the widget box. If the parent widget is made larger

than necessary to hold all packed widgets, any exceeding

space will be distributed among all widgets that have the

expand option set to a non-zero value.

Example 1

 Arrange the widgets (Frame, Label, Button,

Entry) according the following mockup and

realize some calculation with typed numbers:

Example 1

 Arrange the widgets (Frame, Label, Button,

Entry) according the following mockup and

realize some calculation with typed numbers:

Accessing Entries

 self.x = tkinter.StringVar()

 self.ent_value_x = tkinter.Entry(self, textvariable = self.x, justify =

tkinter.RIGHT)

 self.ent_value_x.insert(0, "0.0") # set new string value directly to entry field

 #self.ent_value_x.delete(0, tkinter.END) # delete all characters

 #self.x.set("10.546") #set value to entry field via text variable x

 value = float(self.x.get()) # type check needed, see the next slide

Type Validation

 try:

 x = float(self.x.get())

 print("y=" + str(x))

 except ValueError:

 tk.messagebox.showwarning("Value Error", "Real number required.")

 self.x.set("")

Layout management

 Widgets are arranged in a window by three

different geometry managers

 GRID .grid()

 Threats every windows or frame as a table

 If widget do not fill entire cell, you can specify what

happens to the extra space (leave the extra space

outside the widget or stretch the widget to fit it)

 Spanning – combine cells into one larger area

 All widgets have a .grid() method

 self.widget = Constructor(parent, ...)

 self.widget.grid(...)

Layout management - GRID

 widget.grid(option=value, …)

 column, row – cell position, counting from 0

 columnspan, rowspan – merge multiple cells

into one larger cell

 ipad{x,y} – internal padding, dimension is added

inside the widget inside its {left and right, top

and bottom} borders

 Sticky – default is to center the widget in the cell

Layout management - GRID

 Sticky

 N (top center) ,S, E, W

 NE (top right), SE, SW, NW

 N+S (stretched vertically and centered horizontally)

 E+W (stretched horizontally and centered vert.)

 N+S+W (stretch the widget vertically and place it

left)

 N+E+S+W (stretch the widget to fill the cell)

 w.grid_size() - return 2-tuple containing number

of columns and rows

 w.columnconfigure(N, option=value, …)

 w.rowconfigure(N, option=value, …)

Options = {minsize, pad, weight}

w.columnconfigure(0, weight=3)

w.columnconfigure(1, weight=1)

It will distribute three-fourths of the extra space to the first column and one-

fourth to the second column

Layout management - GRID

Layout management - GRID

 Let the user resize your entire application

window, and distribute the extra space among

its internal widgets.

 top = self.winfo_toplevel() # get the top-level window

 top.rowconfigure(0, weight=1) # makes row 0 stretchable

 top.columnconfigure(0, weight=1) # makes column 0 st.

 self.rowconfigure(0, weight=1) # same for App widget

 self.columnconfigure(0, weight=1)

 self.grid(row=0, column=0, sticky=N+S+E+W) # the app

widget will expand to fill its cell of the top-level

window's grid

Layouting Widgets in Loop

 self.reds = []

 for i in range(30):

 red = tk.IntVar(root)

 red.set(255)

 tk.Spinbox(frame, from_=0, to=255, justify="right",

textvariable=red, width=3).pack(side="left")

 self.reds.append(red)

 red.trace("w", lambda name, index, mode, id = i :

self.setColor(id))

 tk.Button(frame, image=self.icoPen, text=str(i),

command=lambda id = i : self.setColor(id)).pack(side="left")

 def setColor(self, id):

 print(str(id) + " => " + str(self.reds[id].get()))

Dimensions

 If you set a dimension to an integer, it is

assumed to be in pixels.

 You can specify units by setting a dimension to

a string containing a number followed by:

 c Centimeters, i Inches, m Milimeters, p (1/72”)

 For example, "350" means 350 pixels, "350c"

means 350 centimeters, "350i" means 350

inches, and "350p" means 350 printer's points

(1/72 inch).

 w.grid(..., ipadx="5c")

The coordinate system

 The origin of each coordinate system is at its

upper left corner, with the x coordinate

increasing toward the right, and the y

coordinate increasing toward the bottom.

Example 2

 Arrange the widgets to represent the layout of

common calculator (Frame, Label, Button,

Entry, use the Grid layout manager) according

the following screen-shot and realize some

calculation:

Example 2

columnspan = 4

rowspan = 7

Customized Look and Behavior

btn = tk.Button(root, text=label, font=fontNumPads if label.isdigit()

else fontPads, relief=tk.FLAT, bg="white" if label.isdigit() else

"gray90", command=lambda number = label :

addNumber(number))

change the background color whent the mouse enter the widget

btn.bind("<Enter>", lambda event:

event.widget.configure(bg="gray80"))

and whent the mouse leave the widget

btn.bind("<Leave>", lambda event:

event.widget.configure(bg="white" if event.widget["text"].isdigit()

else "gray90"))

Fonts

 There two ways to specify type style.

 As a tuple whose first element is the font family,

followed by a size in points, optionally followed by a

string containing one or more of the style modifiers

bold, italic, underline, and overstrike.

 ("Times", "24", "bold italic")

 You can create a “font object” by importing the font

module and using its Font class constructor.

 import tkinter.font as tkf

 font = tkf.Font(family="Helvetica", size=36,

weight="bold/normal", slant=”italic/roman”, underline=0/1,

overstrike=0/1)

https://docs.microsoft.com/en-us/windows/uwp/design/style/segoe-ui-symbol-font

Font Settings

setup the right font for Windows 10 like apps

fontText = tkf.Font(family='Segoe UI Semibold', size=12,

weight='normal')

icons are done with the aim of fonts as well

icons = tkf.Font(family='Segoe MDL2 Assets', size=13,

weight='normal')

lblHouse = tk.Label(frmLeft, text="\ue80f", font=icons,

bg=gray, fg=white)

See the Icons list for further reference…

https://docs.microsoft.com/en-

us/windows/uwp/design/style/segoe-ui-symbol-font#icon-list

In Windows 11, the Segoe Fluent
Icons font is replaced with Segoe
MDL2 Assets as the recommended
symbol icon font. Segoe MDL2
Assets is still available, but we
recommend updating to the new
Segoe Fluent Icons.

Colors

 There are two ways to specify colors:

 You can use a string specifying the proportion of

red, green, and blue in hexadecimal digits:

#rgb Four bits per color

#rrggbb Eight bits per color

#rrrgggbbb Twelve bits per color

 You can also use any locally defined standard color

name ("white", "black", "red", "green", "blue",

"cyan", "yellow", "magenta", ...).

Relief style

 The relief style of a widget refers to certain

simulated 3-D effects around the outside of the

widget.

 The borderwidth attribute of the widget controls

width of these borders.

 Label(..., relief=RAISED, borderwidth=2)

Standard attributes

 Each widget has a set of attributes such as

fonts, colors, sizes, text labels, ...

 After you have created a widget, you can later

change any option by using the widget's

.config() method.

 self.btnD.config(width=5)

 You can retrieve the current setting of any

option by using the widget's .cget() method.

 print 'width=' + str(self.btnD.cget('width'))

Bindings and Events

 Allows you to watch for certain events

 widget.bind(event, handler)

 Handler (callback) function trigger when event occurs

 def click(event):

print 'You have just clicked on

{0}'.format(event.widget['text'])

 btn = Button(text='Press me')

 btn.pack()

 btn.bind('<Button-1>', click, [add='' or '+'])

 Add is optional, either '' or '+'. Passing an empty string denotes that this binding is to

replace any other bindings that this event is associated with. Passing a '+' means that

this function is to be added to the list of functions bound to this event type.

Bindings and Events

 Events are given as a string that denotes the target

kind of event

 Syntax: <modifier-type-detail>

 <Configure>, <ButtonPress-1>, <Button1-Motion>, <4> (mouse

wheel up), <5> (mouse wheel down), <Double-1> (double click),

<ButtonRelease-1>, <Shift-ButtonRelease-1>, <Motion> (mouse

move), <KeyPress>

 Add is optional, either '' or '+'. Passing an empty string denotes that this binding is to

replace any other bindings that this event is associated with. Passing a '+' means that

this function is to be added to the list of functions bound to this event type.

Example 3

 Arrange the widgets to represent the layout of

Weather app from Windows Store

Menu

self.menubar = Menu(self.master)

self.master.config(menu=self.menubar)

self.filemenu = Menu(self.menubar, tearoff=0)

self.ico_open = PhotoImage(file="open.png")

self.filemenu.add_command(label="Open", command=self.open,

image=self.ico_open, compound="left")

self.filemenu.add_separator()

self.filemenu.add_command(label="Quit",

command=self.master.quit)

self.editmenu = …

self.menubar.add_cascade(label="File", menu=self.filemenu)

self.menubar.add_cascade(label="Edit", menu=self.editmenu)

self.filemenu.entryconfig(0, state=DISABLED)

Checkbutton

self.we = StringVar()

self.c1 = Checkbutton(self.master, text=“Label“,

variable=self.we, onvalue=“bold“, offvalue=“normal“,

command=self.method)

…

self.c1.select()

self.c1.deselect()

Listbox

self.v = StringVar()

self.v.set("Tree Grass Bush Blossom")

self.lsbOptions = Listbox(self.frmOptions,

listvariable=self.v, selectmode=SINGLE, height=1)

self.lsbOptions.pack(side="left", fill=BOTH, expand=1)

self.lsbOptions.insert(END, "Palm tree")

self.scbOptions = Scrollbar(self.frmOptions)

self.scbOptions.pack(side="left", fill="x")

self.lsbOptions.config(yscrollcommand=self.scbOptions.set)

self.scbOptions.config(command=self.lsbOptions.yview)

BROWSE: Normally, you can only select one line out of a listbox. If you click on an item and then drag to a different

line, the selection will follow the mouse. This is the default.

SINGLE: You can only select one line, and you can't drag the mouse. Wherever you click button 1, that line is

selected.

MULTIPLE: You can select any number of lines at once. Clicking on any line toggles whether or not it is selected.

EXTENDED: You can select any adjacent group of lines at once by clicking on the first line and dragging to the last

line.

Combo Box

from tkinter import ttk

…

frame_width = tk.Frame(frameleft, bg="green")

frame_width.pack(side="top", fill="x")

label_width = tk.Label(frame_width, width=7, anchor="w",

bg="pink", text="Width")

label_width.pack(side="left", pady="5")

brush_width = tk.StringVar(root)

brush_width.set("thin") # default value

#Option menu from tk

#option_brush_width = tk.OptionMenu(frame_width,

brush_width, "thin", "normal", "bold")

#or regular Combo box from ttk

option_brush_width = ttk.Combobox(frame_width,

textvariable=self.brush_width, values=["thin", "normal",

"bold"])

option_brush_width.pack(side="left")

New Window

otherwindow = Toplevel(self)

otherwindow.resizable(width=TRUE, height=TRUE)

Otherwindow.title(“Dialog”)

other.transient(self) # this makes otherwindow modal

other.grab_set()

btn1 = Button(otherwindow, text=“Button”)

Btn1.pack()

The Toplevel widget works pretty much like Frame, but it is displayed in a separate, top-level window.

Message Box

import tkinter.messagebox

…

tkinter.messagebox.showinfo("title", "message")

{showinfo, showwarning, showerror, askquestion, askyesno,

askokcancel, askretrycancel}

The messagebox provides an interface to the message dialogs.

if (tkinter.messagebox.askyesno("Question", "Should I do

it?")):

doit()

else:

dontdoit()

File Dialog

from tkinter import filedialog

…

filedialog.askopenfilename(parent=self.master,

title="Selection", filetypes=[("All files", "*.*"), ("GIF

files", "*.gif")])

Progress Bar

self.progress = ttk.Progressbar(self.frameStatus,

orient=tk.HORIZONTAL, length=200, mode="indeterminate")

self.progress.pack(side="left", padx=5, pady=1)

Determinate:
self.work = tk.IntVar()

self.work.set(75)

self.progress = ttk.Progressbar(self.frameStatus,

orient=tk.HORIZONTAL, length=200, mode="determinate",

maximum=100, variable=self.work)

Indeterminate:
self.progress.start(50)

…

self.progress.stop()

Or "determinate"

Tabbed Panes

import tkinter as tk

from tkinter import ttk

from tkinter.scrolledtext import ScrolledText

self.options = ttk.Notebook(self.frameleft)

self.options.pack(side="top", fill="x")

page1 = tk.Frame(self.options, padx=5, pady = 5)

self.options.add(page1, text="One")

page2 = tk.Frame(self.options, padx=5, pady = 5)

self.options.add(page2, text="Two")

self.text1 = ScrolledText(page1, width = 10, height = 5)

self.text1.pack(fill="both", expand=1)

Radio Buttons

self.choice1 = tk.LabelFrame(page2, text="A", relief="sunken", border=1,

pady=5)

self.choice1.pack(side = "left", fill="both", expand=1, padx=5)

self.choice2 = tk.LabelFrame(page2, text="B", relief="sunken", border=1,

pady=5)

self.choice2.pack(side = "left", fill="both", expand=1, padx=5)

MODES = [("Monochrome", "1"), ("Grayscale", "L"), ("True color", "RGB"),

("Color separation", "CMYK")]

self.v1 = tk.StringVar()

self.v1.set("RGB") # initialize

for text, mode in MODES:

tk.Radiobutton(self.choice1, text=text, variable=self.v1,

value=mode).pack(anchor=tk.W)

self.v2 = tk.StringVar()

self.v2.set("L") # initialize

for text, mode in MODES:

tk.Radiobutton(self.choice2, text=text, variable=self.v2, value=mode,

indicatoron=0).pack(fill="x", padx = 5)

Radio Buttons

self.choice2 = tk.LabelFrame(page2, text="B", relief="sunken", border=1,

pady=5)

self.choice2.pack(side = "left", fill="both", expand=1, padx=5)

self.MODES = [

("Monochrome", "1", tk.PhotoImage(file="monochrome.png")),

("Grayscale", "L", tk.PhotoImage(file="grayscale.png")),

("True color", "RGB", tk.PhotoImage(file="truecolor.png")),

("Color separation", "CMYK", tk.PhotoImage(file="colorsep.png"))

]

self.v2 = tk.StringVar()

self.v2.set("L") # initialize

for text, mode, ico in self.MODES:

tk.Radiobutton(self.choice2, text=text, variable=self.v2, value=mode,

indicatoron=0, image=ico, compound="left").pack(fill="x", padx = 5)

Toolbar

 self.toolbar = tk.Frame(self, bd=1, relief=tk.RAISED)

 self.toolbar.pack(side=tk.TOP, fill=tk.X)

 self.icoQuit = tk.PhotoImage(file="quit.png")

 self.quitButton = tk.Button(self.toolbar,

image=self.icoQuit, relief=tk.FLAT, command=self.quit,

text="X")

 self.quitButton.pack(side=tk.LEFT, padx=2, pady=2)

Status bar

 self.frameStatus = tk.Frame(self, relief="sunken",

border=3)

 self.frameStatus.pack(side="bottom", fill="x", expand=0,

padx=1, pady=1)

 self.status = tk.Label(self.frameStatus, text="Up and

running...")

 self.status.pack(side="left")

 self.separator = tk.Frame(self, height=2, bd=1,

relief=tk.SUNKEN)

 self.separator.pack(side="bottom", fill=tk.X, padx=5,

pady=5)

Scrollable Frame 1/2

 self.frameColor = tk.LabelFrame(self.frameleft, text="Colors",

relief="sunken", border=1)

 self.frameColor.pack(side="top", fill="both", expand=1)



 self.canvasColor = tk.Canvas(self.frameColor)

 self.canvasColor.pack(side="left", fill="both", expand=1)



 self.scrollbarColor = tk.Scrollbar(self.frameColor, orient="vertical",

command=self.canvasColor.yview)

 self.scrollbarColor.pack(side="left", fill="y")

 self.canvasColor.configure(yscrollcommand=self.scrollbarColor.set)



 self.frameScrollableColors = tk.Frame(self.canvasColor)

 self.frameScrollableColors.pack(side="top", fill="both", expand=1)

 self.canvasColor.create_window((0,0),window=self.frameScrollableColors

,anchor='nw')



 self.frameScrollableColors.bind("<Configure>",self.myfunction)

Scrollable Frame 2/2

 def myfunction(self, event):

 self.canvasColor.configure(scrollregion =

self.canvasColor.bbox("all"),width=250,height=0)

Layouting Widgets in Loop

 self.reds = []

 for i in range(30):

 red = tk.IntVar(root)

 red.set(255)

 tk.Spinbox(frame, from_=0, to=255, justify="right",

textvariable=red, width=3).pack(side="left")

 self.reds.append(red)

 red.trace("w", lambda name, index, mode, id = i :

self.setColor(id))

 tk.Button(frame, image=self.icoPen, text=str(i),

command=lambda id = i : self.setColor(id)).pack(side="left")

 def setColor(self, id):

 print(str(id) + " => " + str(self.reds[id].get()))

Tables

import tkinter as tk

from multilistbox import MultiListbox

…

mlb = MultiListbox(self, (('Subject', 40), ('Sender', 20), ('Date', 10)))

for i in range(1000):

mlb.insert(tk.END, ('Important Message: %d' % i, 'John Doe',

'10/10/%04d' % (1900+i)))

mlb.pack(expand=tk.YES, fill=tk.BOTH)

Download the multilistbox.py file from my web site and copy it into your project's

folder.

Hints for Python/Tk Assignments

 Source codes with implementations of selected GUI elements in Python/Tk
are on the website of this course in the tk_hints.zip file

combobox.py

search.py

switchbutton.py

storelikemenu.py

Hints for Python/Tk Assignments

 Source codes with implementations of selected GUI elements in Python/Tk
are on the website of this course in the tk_hints.zip file

storelike.py

List of Ttk Widgets

 Ttk comes with 17 widgets, 11 of which already exist in Tkinter: Button,

Checkbutton, Entry, Frame, Label, LabelFrame, Menubutton, PanedWindow,

Radiobutton, Scale, and Scrollbar

 The 6 new widget classes are: Combobox, Notebook, Progressbar,

Separator, Sizegrip, and Treeview

 All of these classes are subclasses of Widget

 Each widget in ttk is assigned a style:

 from tkinter import ttk

 style = ttk.Style()

 style.configure("BW.TLabel", foreground="black",

background="white")

 label = ttk.Label(text="Test", style="BW.TLabel")

Tkinter vs. tkinter

The package Tkinter has been renamed to tkinter in Python 3, as well as other

modules related to it.

Tkinter → tkinter

tkMessageBox → tkinter.messagebox

tkColorChooser → tkinter.colorchooser

tkFileDialog → tkinter.filedialog

tkCommonDialog → tkinter.commondialog

tkSimpleDialog → tkinter.simpledialog

tkFont → tkinter.font

Tkdnd → tkinter.dnd

ScrolledText → tkinter.scrolledtext

Tix → tkinter.tix

ttk → tkinter.ttk

UI Mockups Tools

• Pencil – a free GUI prototyping tool for various desktop platforms
https://pencil.evolus.vn/

• MS Visio – medium-fidelity mockups of software applications (wireframe

template)

• Mockplus Classic – a simple free sketching tool with many pre-build

components and icons
https://www.mockplus.com/download/mockplus-classic

• Balsamiq - a rapid low-fidelity UI wireframing tool

https://balsamiq.com/wireframes/

Automotive User Interfaces

 Course Time Plan

 Exploration of in-car HMI design via literature study

(2 weeks)

 Generate new ideas based on previous research (1

weeks)

 Devise initial concept of automotive cockpit (2

weeks)

 Detailed plan of functional layout (1 week)

 Implementation and evaluation (4+1 week)

Automotive User Interfaces

 This course will give an overview and an introduction

to practices and several libraries that are commonly

used for creating UIs in cars

 Main covered topics:

 Definition of the appearance of the UI of main

dashboard

 Implementation of the self-designed UI in C++ (Qt)

Automotive User Interfaces

 The aim of this course is to describe the in-car user

interface design in a manner that minimizes the

amount of distraction while maintaining easy access to

on-board systems and multimedia services

 You will gain orientation and basic knowledge in the

field of interactive technologies connecting the interior

of the car with the outside world

Automotive User Interfaces

 Enumerate and characterize ways and means for the

interaction of man and the car through the means of a

graphical user interface

 Find a sensible way of presenting information to the

vehicle crew and suggest ways of its realization

 Identify and assess potentially dangerous ways of

notification of the driver while driving the vehicle

 Define the necessary hardware and software

resources for the implementation of the designed

interface

History of Automotive Infotainment

• 1915 – early mechanical HMIs provided the driver with

information such as speed, gas level, or rev counter

(almost mechanical HMIs)

• 1922 – the first in-car radio (Ford Model T)

• 1952 – the first in-car phone (more in 70s and 80s)

• 1956 – the first in-car record player

• 1968 – the first in-car cassette player

• 1983 – the first in-car CD player (late 1990s CD-RW,

MP3)

History of Automotive Infotainment

• 1990 – the first in-car GPS navigation

• End of the 1990s – mechanical devices were replaced

by electronic counterparts. Manufacturers started to

aggregate functions within a single device to reduce

complexity via one GUI with a hierarchically structured

menu

• First in-car infotainment systems combining

informative and entertaining functionalities

History of Automotive Infotainment

• General trends – reduce drivers distraction by

rearrangement of all instruments (e.g. from footwell to

the proximity of the driver) and improvement of

comfort

• Nowadays – Internet-based apps, social networks,

and extendable, hybrid, adaptive or personalized

HMIs are emerging. Motivations for further

development are mainly safety, efficiency, and comfort

History of Automotive Infotainment

• Example of early infotainment system – car dashboard

of Ford Taunus from 1958

Source: Wikimedia Yeti.bigfoot

History of Automotive Infotainment

• Example of contemporary infotainment system – car

dashboard of Mazda 3 from 2019

Source: www.carindigo.comNon-touch screen display and push button assembly

Automotive Infotainment

• Modern HMIs consist of

• Graphical User Interface (GUI)

• Speech dialog systems

• Gesture-based systems (e.g. touch screens,

depth/IR sensors)

• Connectivity to different mobile devices

• The designs from everyday interfaces of the users

could be taken as role model for the HMI in the

automotive field, e.g. GUI of smartphones

Automotive Infotainment

• But automotive HMIs differ in major points from HMIs

in other domains (e.g. attention/distraction - driving

must remain the highest priority)

• Transition from manual testing to automated testing

methods (scripted test procedures; model-based

testing – UML state charts diagram specifying the

behavior of HMI; driving simulator/real-world

evaluation)

Automotive Infotainment

An example of state model from a user perspective according to related work

Automotive Infotainment

• Electrical interfaces are continually replacing their

mechanical counterparts (e.g. mechanical mirror

replacement with cameras)

• A big challenge is to design infotainment systems in a

way that also people with minor technical background

can easily use them

• New tools and methods are necessary to handle the

development of more complex functionalities (e.g. UIs

based on 3D graphics)

Automotive Infotainment

• Significance of certain development process phases

that might have been neglected until now is increasing

(e.g. testing of complex HMIs)

• The concept of extendable HMIs (e.g. upgradability of

functionality decouples the development cycle from

the life cycle of vehicle)

Automotive Infotainment

• Applications of in-vehicle infotainment systems include

• Navigation

• Media

• TV

• Car configuration

• Data interfaces

• Telephone

• Android Auto or Apple CarPlay

Automotive Infotainment

• Reducing distraction

• Drivers cannot spend their cognitive capacity

completely on HCI

• Cell phone use is estimated to be associated with a

minimum of 27% of all accidents

• Interaction have to be obvious, plausible, and

consistent

Automotive Infotainment

• Reducing distraction

Source: Rümelin, S. (2014). The cockpit for the 21st century.

Automotive Infotainment

• Categories of distraction

• Visual distraction – tasks that require the driver to

look away from the roadway

• Manual distraction – tasks that require the driver to

take a hand off the steering

• Cognitive distraction – tasks that required the driver

to avert the mental attention

Source: Rümelin, S. (2014). The cockpit for the 21st century.

Automotive Infotainment

• Guidelines and requirements for the development of

in-vehicle information system (IVIS)

• ISO 15005 – principles for dialogue management

• interruptibility of secondary tasks to focus on the driving

task

• one hand always on the steering wheel

• single information portions should be small and easy to

perceive to keep single glances below 1.5 seconds

• feedback should be given within 250 ms

• consistent interface design where related functions have

a similar presentation (location, orientation, size and

coding)

Automotive Infotainment

• Guidelines and requirements for the development of

in-vehicle information system (IVIS)

• ISO 15008 – requirements for visual presentations

• measurement methods for brightness and contrast

• minimum dimensions of characters (e.g. a size of 20

arcminutes is acceptable if color is a coding dimension)

• behavior of dynamically displayed content (e.g. blinking

should be avoided except for situations in which

immediate attention is required)

Automotive Infotainment

• Guidelines and requirements for the development of

in-vehicle information system (IVIS)

• ISO 3958 – hand-reach envelopes

• specify the boundaries of locations in which the driver can

perform a basic reach task

• basic reach task is defined as controlling a 25 mm control

knob with a three-finger grasp without lifting the

interacting arm’s shoulder off the seat while the non-

reaching hand on the steering wheel and the right foot on

the accelerator pedal

• extended-finger-operated and full-hand-grasped forward

control, extend or reduce the basic envelope by 50 mm

Automotive Infotainment

• Guidelines and requirements for the development of

in-vehicle information system (IVIS)

• European statement of principles on the design of

human-machine interface (ESOP)

• aims at different parties that are involved in the design of

in-car systems: vehicle manufacturers; after-market

system and service producers; manufacturers of parts

enabling the use of nomadic devices by the driver while

driving; service providers including software providers or

broadcasters of information meant to be used by the

driver

Automotive Infotainment

• Other demands

• The system should be easy to understand and not

distract, but enable the driver to choose whether, when

and how an interaction takes place

• The driver should always be able to keep at least one

hand on the steering wheel while interacting with the

system

• Visual displays should be positioned as close as

practicable to the driver’s normal line of sight

• Displays that contain relevant information and where long

glance sequences are expected, should not be placed

below approximately 30° downward the viewing angle of

the driver’s normal forward view

Automotive Infotainment

• Other recommendations (by NHTSA in USA)

• Not to include video and automatically scrolling text

• Not to allow manual text entry to perform text-based

communication or internet browsing

• Displaying any text and graphical or photographic images

should be avoided

• Interaction should not require glances longer than 2

seconds

• Cumulated glance durations for should not exceed 12

seconds

Note that implementing these guidelines would mean to exclude most of

the functionality available in current in-car systems, at least for the control

during driving.

Input/Output Devices

• Physical components (in limited space of a car)

• Push button assembly – enables direct access for

major infotainment functions or functions that are

frequently used (ESC, door lock, voice control)

• Some buttons are duplicated on the steering wheel

• Such button may use indicator lights or miniaturized

displays

• „Buttons“ may be also realized as capacitive

surfaces or proximity sensors

Input/Output Devices

• Physical components (in limited space of a car)

• Center control elements (CCEs) – multi-purpose rotary

controllers with force feedback surrounded by buttons for

switching between the contexts or providing quick access to

common functions, and sometimes even with touchpads

(MMI in Audi, iDrive in BMW, Command in Mercedes-Benz)

Input/Output Devices

• Physical components (in limited space of a car)

• Voice control – enables the user to input command

in natural language without using hands using the

technique of Hidden Markov Models for estimating

the most probable word sequence

• (Non-)touchscreen central displays – enabling

direct manipulation of interactive objects by means

of touch and gestures when equipped with resistive

or capacitive surfaces

Input/Output Devices

• Physical components (in limited space of a car)

• Head-down displays (HDDs) – central information display

(CID) or instrumental cluster (IC) – the road scene vanishes

from the line of sight

• Automotive head-up display (HUD) or head-mounted display

(HMD) present the content as an overlay to the road e line of

sight

Source: Rümelin, S. (2014). The cockpit for the 21st century.

Evolution of Infotainment Systems

Source: Rümelin, S. (2014). The cockpit for the 21st century.

Input/Output Devices

VW Touareg Innovision Cockpit with high-res displays placed in the head unit
and the instrument cluster replacing the classic elements in front of the driver

Current Infotainment Systems

Volkswagen Digital Cockpit

Designing User Interfaces

• UI is one of the most important component of a

computer-based system

• Poorly designed UI makes it difficult to use the

potential of the implemented functionality

• Three basic principles of effective UI design

• put the user in control

• reduce the user's memory load

• make the UI consistent

Mandel‘s Rules

• Define interaction modes in a way that does not force a user

into unnecessary or undesired actions.

• Provide for flexible interaction - software might allow a user to

interact via keyboard commands, mouse movement, a digitizer

pen, or voice recognition commands

• Allow user interaction to be interruptible and undoable.

• Streamline interaction as skill levels advance and allow the

interaction to be customized - repeated execution of the same

sequence of interactions can be replaced by a macro

mechanism.

• Hide technical internals from the casual user.

Source: Mandel, T., The Elements of User Interface Design, Wiley, 1997.

Mandel‘s Rules

• Design for direct interaction with objects that appear on the

screen - perform the task in a similar manner as if it were a

physical thing.

• Reduce the user’s memory load using the following hints…

• Reduce demand on short-term memory - reduce the

requirement to remember past actions and results by providing

visual cues that enable a user to recognize past actions

• Establish meaningful defaults - the initial set of defaults

should make sense for the average user and allow reset

functionality

Source: Mandel, T., The Elements of User Interface Design, Wiley, 1997.

Mandel‘s Rules

• Define shortcuts that are intuitive - the mnemonic should be

tied to the action in a way that is easy to remember

• The visual layout of the interface should be based on a real

world metaphor.

• Disclose information in a progressive fashion - the interface

should be organized hierarchically, e.g., more detail should be

presented after the user indicates interest with a mouse pick.

Source: Mandel, T., The Elements of User Interface Design, Wiley, 1997.

Designing User Interfaces

 General Functional Requirements

 Follow UI design guidelines (exceptions are allowed)

 Ensure that the UI is accessible

 Support internationalization

Source: https://msdn.microsoft.com/en-us/library/windows/desktop/ff728820%28v=vs.85%29.aspx

Designing User Interfaces

 User Analysis (relation between the user and the

product)

 Who are our users? What skills and knowledge do they

have?

 What different sources of data can we use to understand

their experience?

 What goals and tasks will they use our product to

complete?

 What assumptions are we making and how can we verify

them?

 What sources of data do we have? (Usability studies and

heuristic evaluations are good places to start.)
Source: https://msdn.microsoft.com/en-us/library/windows/desktop/ff728820%28v=vs.85%29.aspx

Designing User Interfaces

 Conceptual Design

 Typically, the UI is not addressed in this phase

 This phase does require a thorough business model with

complete user profiles and usage scenarios which are

imperative for a successful user experience.

Source: https://msdn.microsoft.com/en-us/library/windows/desktop/ff728820%28v=vs.85%29.aspx

Designing User Interfaces

 Logical Design

 The logical design phase is when the initial prototypes that

support the conceptual design are developed.

 The specific hardware and software technologies to be

used during development are also identified in this phase,

which can determine the capabilities of the UI in the final

product.

 In addition to the development tools, the various hardware

requirements and form factors that are to be targeted by

the application should be identified.

Source: https://msdn.microsoft.com/en-us/library/windows/desktop/ff728820%28v=vs.85%29.aspx

Designing User Interfaces

 Physical Design

 The physical design phase determines how a UI design is

to be implemented for the specific hardware and form

factors that were identified in the logical design.

 It is during this phase that hardware or form factor

limitations might introduce unexpected constraints on the

UI that require significant refinements to the design.

Source: https://msdn.microsoft.com/en-us/library/windows/desktop/ff728820%28v=vs.85%29.aspx

Application Design

 What should influence the application design:

 User skills, workflow, habits, and expectations

 User should be involved in the design process

 Application execution flavor (or posture)

 Sovereign, Transient, Parasitic, Daemonic, and Kiosk

 Implementation should not dictate the UI design

 Based on RUP

 Executed in a sequence, iterative

Application Design

 RUP Process Architecture
UI design

process

Application Design

 Different user types may use your application

 Target them by different types of widgets:

 Novice level - Rich menus

 Expert level - Toolbars

 Guru level - Command line

 Target those that will pay the most for the SW

 Frequency of use:

 continual, frequent, occasional, once

 Tolerance of a learning curve

 none, a little, expected

Mental model

 Mental model is the user understanding how the

application parts work together

 Mental model is divided into two parts:

 Static elements – previous knowledge,

experience, education

 Dynamic elements – based on static elements,

users training and experience with GUIs

 Scottish psychologist Kenneth Craik (1943) - The

Nature of Exploration: The mind constructs "small-

scale models" of reality that it uses to reason, to

anticipate events and to underlie explanation.

Mental model

 Philip Johnson-Laird (1989): The reader creates a

mental model of the text being read, which simulates

the 'world' being described, as the reader

understands/interprets it.

 The passages of text that unambiguously produce a

single mental model are easier to comprehend;

ambiguous passages of text can lead to more than

one competing mental model, which can also be

deliberately used...

 Worst-case scenario: Developers often have a flawed mental

model of their own software and a real user's mental model is

quite different

 Expression of mental models: Flow diagrams – a way to

express a dynamic systems

Mental model

Designer’s
mental
model

User’s
mental
model

System

 When the user discovers the mental model of an application:

 Sense of confidence

 Forecasting the behavior in new situations

 In the opposite case they will experience frustration,

dubiousness, etc.

 We need to choose interaction patterns that fit the mental model

of the user

 The technical realization is responsible for the adequate

implementation of the underlying concept

Mental model

Mental model

Which user interface is easier to grasp?

 German: Gestalt – essence or shape of an entity’s complete

form

 Gestalt is the German word for shape.

 Brain is holistic, parallel, and analog with self-organizing

tendencies

 Appeared in the 1920s

 http://sixrevisions.com/web_design/gestalt-principles-applied-in-design/

Gestalt theory

“The fundamental formula of Gestalt theory might be expressed

in this way. There are wholes, the behavior of which is not

determined by that of their individual elements, but where the

part-processes are themselves determined by the intrinsic

nature of the whole. It is the hope of Gestalt theory to determine

the nature of such wholes. With a formula such as this one

might close, for Gestalt theory is neither more nor less than

this.“

Max Wertheimer, 1925: Über Gestalttheorie, Erlangen, 1925

Gestalt theory

 Provides common organization principles used regularly in

visual design

Gestalt theory

 6 principles related to Gestalt theory:

 Proximity – the underlying concept is grouping

 Similarity – we group things perceptually if they

appear similar to one another

 Figure-Ground – stop using busy tiled graphics

for our backgrounds – because they took away

from the foreground objects

 Symmetry – the principle of symmetry tells us

that when we look at certain objects, we see

them as symmetrical shapes that form around

their center

 Common Fate – related items are sharing a

“common fate”

 Closure – we close objects that are themselves

not complete

Gestalt theory

 Sensory memory (acts as a buffer of perceptions)

 Short-term memory

 temporary, short access time < 0.1 s

 erased after a few seconds

 small capacity – 7 chunks, do not overload short-term

memory)

 Long-term memory (learning, practicing)

 Longer access time > 0.1 s, slower erasing, large capacity

Types of Memory

 Schneiderman’s eight Golden Rules of Interface

Design [http://www.devirtuoso.com/2009/05/8-golden-rules-of-interface-design]

1. Strive for consistency

2. Enable frequent users to use shortcuts

3. Offer informative feedback

4. Walk user through more complicated tasks

5. Offer simple error handling

6. Permit easy reversal of actions

7. Make the user feel in control

8. Keep it simple

UI Design

 Good user interface design is about getting a

user to have a consistent set of expectations,

and then meeting those expectations

 Use consistent terminology

 Consistent colors, fonts, icons, etc.

Consistency

 This is especially valid for users that use the

interface on a regular basis

 Something to consider might be, abbreviations,

function keys, hidden commands and

automated actions

Shortcuts

 For every action that the user does, there

should be some sort of feedback, either good or

bad

 For more frequent and minor actions the

response can be minimal

Feedback

 When you have an action that requires several

steps, be sure to separate it into a logical

beginning, middle and end

 After each step be sure to give feedback that

will clarify that the step was done correctly and

they can move on to the next step

 At the end of all the steps be sure to let the user

know that they are completed and that they

have finished all the requirements

Walk User Through - Navigation

 Try to design the system so the user cannot

make a serious error

 If an error is made, the system should be able

to detect the error and offer simple,

comprehensible solution for handling the

error

Error Handling

 Give a way for the user to undo an error

 This will help keep the user at ease if they know

that not everything has to be perfect

 This will encourage further exploration of

your interface

Undo

 Experienced users always want to feel like

they are in control of the system

 Make sure the design makes the user feel in

control and not just responding to a situation

Full Control

 People have a limited short-term memory

 Having to keep track of several things at once

can leave a user frustrated or incapable of

using your interface

 Try and consolidate multiple pages, reduce

unneeded motion, and generally just keep

things simple

Simple Design

Typefaces

Source: http://squidspot.com/Periodic_Table_of_Typefaces.html

Typefaces

Source: http://www.julianhansen.com/#/zimmer/

Typefaces vs. Fonts

 Typography – the art and technique that consists of

arranging type (form) with the purpose of writing

 The purpose is to make sure the text is easy to read

 Typeface – set of typographical symbols and

characters (letters, numbers, and other chars)

 Verdana

 Type family – group of typefaces with related design

 serif, sans-serif, script, display, and so on

 Font – defined as a complete character set within

typeface of a particular weight, width, and style

 Verdana 12pt italic

Serif vs. Sans-Serif

Basic Principles of Typography

1. Don‘t use too many typefaces (type families)

2. Contrast is good, but the wrong colors can be painful

3. Limited use of display typefaces

 Complex display typefaces look interesting, but not designed to be used

for bodies of text

4. Scannable text is a must

 Reader should be able to easily scan the text for focus points that peak

his interest

5. Don‘t distort typefaces

Basic Principles of Typography

5. Don‘t distort typefaces (cont.)

• Each typeface contains styles and weights that are already properly

expanded and condensed

• Do not use the bold and italic buttons in character palettes of the software as

they are called “false bold/italic”

Typefaces

Serif Sans-serif

ABCabc ABCabc
(Georgia) (Verdana)

 Use serif for printed work because serif fonts

are usually easier to read than sans-serif fonts

 The convention is to use a serif font for the

body of the text. A sans-serif font is often used

for headings and captions

Typefaces

Serif Sans-serif

ABCabc ABCabc
(Georgia) (Verdana)

 Use serif for printed work because serif fonts

are usually easier to read than sans-serif fonts

 The convention is to use a serif font for the

body of the text. A sans-serif font is often used

for headings and captions

Typefaces

Serif Sans-serif

ABCabc ABCabc
(Georgia) (Verdana)

 Lower resolution can make very small serif

characters harder to read

 Use sans serif for online work and

presentations

Typefaces

Display Script

ABCabc ABCabc
(Vineta BT) (Segoe Script)

 Display typeface is unsuitable for body copy

and are best reserved for headlines or other

short copy that needs attention drawn to it

 Scripts are based upon handwritten characters

and symbols

Typefaces

Dingbat


(Symbol)

Dingbat (ornament) is a special typeface used

for scientific and mathematical formulas or

graphic icons

Typefaces

 Proportional – the space a character takes up is

dependent on the natural width of that character

 Monospaced – each character takes up the

same amount of space

Source: http://www.noupe.com/essentials/icons-fonts/a-crash-course-in-typography-the-basics-of-type.html

Typefaces

 Weight – refers to the thickness of the strokes

that make up the characters

Source: http://www.noupe.com/essentials/icons-fonts/a-crash-course-in-typography-the-basics-of-type.html

Typefaces

 Style – regular, italic, oblique, and small caps

Source: http://www.noupe.com/essentials/icons-fonts/a-crash-course-in-typography-the-basics-of-type.html

Mood of Typefaces

Source: http://www.noupe.com/essentials/icons-fonts/a-crash-course-in-typography-the-basics-of-type.html

Which Font?

Font Size Prefered Typeface

10 Verdana

12 Arial

14 Comic Sans

 Times New Roman and Arial are read the fastest

Font Size Most Legible Typeface

10 Tahoma

12 Courier

14 Arial

Device Prefered Type Family

Display Sans Serif

Paper Serif

Color Wheel Source: http://graf1x.com/color-wheel-history-and-explanation/

Color Wheel Source: http://paper-leaf.com/blog/2010/01/color-theory-quick-reference-poster/

Colour Harmonies

 Complementary – opposite colors on the color

wheel; high contrast creates a vibrant look

especially at full saturation

 Split-complementary – base color + two colors

adjacent to its complement

Colour Harmonies

 Analogous – colors that are next to each other;

pleasing, harmonious, create serene and

comfortable design

 Triadic – colors evenly spaced around the color

wheel; quite vibrant even if unsaturated

Colors Recap.

 Color - spectral power distribution of wavelengths of light

waves reflected from objects

 Color wheel - color spectrum bent into a circle

 Primary colors - the most basic colors on the color wheel, red,

yellow and blue. These colors cannot be made by mixing

 Secondary colors - colors that are made by mixing two

primary colors together. Orange, green and violet (purple)

 Tertiary colors - colors that are made by mixing a primary color

with a secondary color

Colors Recap.

 Hue - the name of the color

 Intensity - the brightness or dullness of a color

 Color value - the darkness or lightness of a color (e.g. pink is a

tint of red)

 Tints - are created by adding white to a color

 Shades - are created by adding black to a color

 Optical color - color that people actually perceive - also called

local color

 Arbitrary color - colors chosen by the artist to express feelings

or mood

Color Principles

 UI design should be recognizable and understable under

various environments

 Perception of colors is highly subjective, but certain principles

could be followed (see next slide)

 70 % contrast between an object and its background makes the

message most legible

 The typography in HMIs should ensure that the information is

recognizable and understable even it becomes blurred or in

dark environment

 Sans-serif styles work better than serif styles due to thin stroke

Color Principles

 UI design should be recognizable and understable under

various environments

 Perception of colors is highly subjective, but certain principles

could be followed

Model-View-Controller Architecture

 MVC is the domain model of relationships from

real word (e.g. reflect business rules)

Controller

View Model

Flow of events, application logic

Represents data and business (domain) logicCreates UI

Only by notification

Bootstrap

 Bootstrap is a CSS framework for development of Web

application and Web pages

 Standardized way for consistent typography, form layouts, and

common widget appearance

 Support for responsive design across a wide range of web

browsers and devices (from handhelds with small screens to

large desktop displays)

Bootstrap

 Important links

 Main page with installation instructions

https://getbootstrap.com

 Extensive documentation and examples

https://getbootstrap.com/docs/5.3/getting-started/introduction

https://getbootstrap.com/docs/5.3/examples/

Bootstrap Minimum HTML Page

<!doctype html>
<html lang="en">

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-

scale=1, shrink-to-fit=no">
<link rel="stylesheet" href="css/bootstrap.min.css">
<title>Hello, world!</title>

</head>
<body>
<div class="container">

<h1>Hello, world!</h1>
</div>

</body>
</html>

We assume the following organization of
html page file and the Bootstrap library

https://github.com/twbs/bootstrap/release
s/download/v5.3.3/bootstrap-5.3.3-dist.zip

Bootstrap Containers

 Containers are the most basic layout element in Bootstrap and

are required when using default grid system

 Containers are used to contain, pad, and (sometimes) center

the content within them.

 Containers can be nested (but not necessary most of time)

<div class="container">
<h1>Hello, world!</h1>

</div>

Default container class is a responsive,
fixed-width container, meaning its
max-width changes at each breakpoint
(see the next slide)

Bootstrap Containers

• Bootstrap comes with three different containers
• container sets a max width at each responsive breakpoint

• container-fluid spanning the entire width of the viewport

• container-{breakpoint} 100% width until the specified breakpoint

Bootstrap Grids

• Bootstrap’s grid system uses a series of containers, rows, and

columns to layout and align content

• Rows are wrappers for columns

• Each column has horizontal padding (called a gutter) for

controlling the space between them. This padding is then

counteracted on the rows with negative margins. This way, all

the content in your columns is visually aligned down the left

side

• In a grid layout, content must be placed within columns and

only columns may be immediate children of rows

• Grid columns without a specified width will automatically layout

as equal width columns (e.g. four instances of col-sm will each

automatically be 25% wide from the small breakpoint and up)

Bootstrap Grids

• Maximum number of columns in a single row is 12

• Column classes indicate the number of columns you’d like to

use out of the possible 12 per row. If you want three equal-

width columns across, you can use col-4 (i.e. number 4

represents the columnspan parameter)

<div class="container-fluid" style="background-color: lightblue;">
<div class="row">
<div class="col-1 bg-primary">One of three columns</div>
<div class="col-3 bg-secondary">One of three columns</div>
<div class="col-2 bg-success">One of three columns</div>

</div>
</div>

12 columns

col-1 col-3 col-2

Bootstrap Grids

• Create equal-width columns that span multiple lines by inserting

a w-100 where you want the columns to break to a new line

<div class="container bg-primary">
<div class="row">
<div class="col">col A</div>
<div class="col">col B</div>
<div class="w-100"></div> <!-- break line -->
<div class="col">col C</div>
<div class="col">col D</div>

</div>
</div>

Bootstrap Grids

• Use justify-content-{breakpoint}-{start, center, end, around,

between} to align columns horizontally

<div class="container bg-secondary">
<div class="row justify-content-lg-start ">
<div class="col-lg-2 bg-primary">col A</div>
<div class="col-md-auto bg-warning">col B</div>
<div class="col-lg-1 bg-primary">col C</div>

</div>
</div>

<div class="container bg-secondary">
<div class="row justify-content-lg-center">
…
</div>

</div>

Bootstrap Grids

• The gutters between columns in our predefined grid classes

can be removed with no-gutters (g-0)

<div class="container bg-secondary">
<div class="row justify-content-lg-start g-0">
<div class="col-lg-2 bg-primary">col A</div>
<div class="col-md-auto bg-warning">col B</div>
<div class="col-lg-1 bg-primary">col C</div>

</div>
</div>

• This removes the negative margins from row and the horizontal

padding from all immediate children columns

• Horizontal alignment

<div class="container bg-primary">
<div class="row justify-content-start">
<div class="col-4 bg-secondary">One of two columns</div>
<div class="col-4 bg-success">One of two columns</div>

</div>
<div class="row justify-content-center">
<div class="col-4 bg-secondary">One of two columns</div>
<div class="col-4 bg-success">One of two columns</div>

</div>
<div class="row justify-content-end">
<div class="col-4 bg-secondary">One of two columns</div>
<div class="col-4 bg-success">One of two columns</div>

</div>
<div class="row justify-content-around">
<div class="col-4 bg-secondary">One of two columns</div>
<div class="col-4 bg-success">One of two columns</div>

</div>
<div class="row justify-content-between">
<div class="col-4 bg-secondary">One of two columns</div>
<div class="col-4 bg-success">One of two columns</div>

</div>
</div>

Bootstrap Grids

• Horizontal and vertical padding

<div class="container px-lg-5">
<div class="row mx-lg-n5">
<div class="col py-5 px-lg-5 bg-secondary">Custom column padding</div>
<div class="col py-3 px-lg-5 bg-success">Custom column padding</div>

</div>
</div>

Bootstrap Grids

Bootstrap Examples

• Bootstrap is responsive by default

Large displaySmall display

Bootstrap Links

• Exhaustive description with examples how the grid system in

Bootstrap works may be found here (the most important

sections are Layout, Content, Components, and Utilities)

https://getbootstrap.com/docs/4.4/layout/grid/

• Also see the example below for a better idea of how it all works

http://mrl.cs.vsb.cz/people/fabian/uro/p3_hints.zip

• Try to experiment with various configurations and explore the

consequences

Bootstrap Debug

• You can debug the HTML/CSS code in a web browser by

pressing Ctrl+Shift+I (Firefox) or Ctrl+Shift+C (Chrome)

Dashboard Collection

Aston Martin DB9 BMW i8

BMW 7 Comfort Mode KIA K900VW Cross Blue Coupe Concept

Source: https://medium.com/@dnevozhai/car-dashboard-ui-collection-123ce3ab5303

Dashboard Collection

Ford Mustang

Dashboard in Qt 3D

Dashboard in Qt 3D

Qt 5 (and 6) Installation

• Download qt-unified-windows-x86-4.7.0-online.exe

• Run it and log in to your Qt account or create a new one

• Check the obligations and check the individual development

• Disable sending pseudonymous usage stats

• Select custom installation as follows

• Qt 5.15.1 for MSVC 2019 64-bit

• Qt 6.0.2 for MSVC 2019 64-bit (optional)

• Qt 3D Studio 2.8.0

• Qt 3D Studio OpenGL Runtime 2.8.0 for Qt 5.15.1

and MSVC 2019 64-bit

• API documentation

http://doc.qt.io/

Visual Studio 2022 (Cummunity Edition) with package "Developing desktop applications using
C++" is expected to be already installed

Qt 5 Installation

1. Qt Installer (Maintenance Tool 4.8.1)

https://download.qt.io/official_releases/online_installers/qt-

unified-windows-x64-online.exe

2. Qt 5.15.1 MSVC 2019 64bit (refer to the next slide)

3. Qt VS Tools Extension

4a. Qt 3D Studio 2.8 for Qt 5.15.1 MSVC 2019 (only if not selected

during the Qt installation)

https://download.qt.io/official_releases/qt3dstudio/2.8/qt-

3dstudio-opensource-windows-x86-2.8.0.exe

4b. Copy *.* from c:\Qt\Qt3DStudio-2.8.0\Tools\Qt3DStudio\ to

c:\Qt\5.15.1\msvc2019_64\ and keep the existing files

Qt 5 Installation

Qt Version Setup

Firstly, setup the Qt environment in VS (note that versions and paths may vary).

• We also need to install Qt Visual Studio Tools extension

• And set the correct path

where the Qt library is installed

Installation of Qt VS Tools Extension

1

2
3

4

Towards the Dashboard in Qt

• Our dashboard will consist of two components

• the presentation (created in Qt 3D Studio and stored in the .uip file)

• the code in C++ (this will be done in VS C++ wit Qt library)

• In principle, the presentation will contain all items which can

be done easily in Qt Studio (text labels, indicators, materials,

complex geometry stored in fbx files, lighting etc.)

• In the code, we will create all stuff which is (or should be)

• parametrical (e.g. geometry of speedometer ticks)

• variable over time (e.g. position of speedometer needles, state of

indicators) and controlled by signals from sensors all over the car

Before jumping right into the implementation of a dashboard, the reader is expected to
become familiar with the Qt 3D Studio OpenGL Runtime 2.8.0 Manual
https://doc.qt.io/qt3dstudio/openglruntime/qt3dstudio-opengl-runtime-index.html

Dashboard Template

• The template on my web site should make it easier to start…

Setting-up of Presentation

Setting-up of Presentation

• We need to layout all mentioned stuff in the field of view of our

camera to see everything correctly in the preview window of

the scene camera view

• Now we need to create a new project in the Visual Studio

(correctly installed Qt library and Qt plugin is assumed)

• We can start with Qt GUI Application template

Setting-up of Code

• Add studio3d module into the list of Qt Modules (dont forget

to do it for both Release and Debug profiles)

Setting-up of Code

See https://doc.qt.io/qt3dstudio/openglruntime/openglruntime-module.html

Control App Entry Point

• The main function looks very similar for all Qt applications. We

can start with something like this in the main.cpp file

#include "dashboard.h"
#include <QtWidgets/QApplication>

int main(int argc, char * argv[])
{
QCoreApplication::setAttribute(Qt::AA_EnableHighDpiScaling);

QApplication application(argc, argv);

Dashboard main_window; // our main window will contain everything
main_window.setWindowTitle("Dashboard Control");
main_window.show();

return application.exec();
}

Dashboard Class

• Control panel for the dashboard will be realized in Dashboard

class

#pragma once

#include <QtWidgets/QMainWindow>
#include <QWindow>
#include <QtStudio3D>
#include "ui_dashboard.h"

class Dashboard : public QMainWindow
{
Q_OBJECT

public:
Dashboard(QWidget * parent = Q_NULLPTR);
int InitViewer(const QString & source_file_name);
int InitControls();

public slots:
void meshesCreated(const QStringList & meshNames, const QString & error);
void elementsCreated(const QStringList & elementPaths, const QString & error);

private:
Ui::DashboardClass ui;
QOpenGLContext context_;
QWindow window_;
Q3DSSurfaceViewer viewer_;

};

Parameters Control From C++

• Now we need to return briefly into the Qt 3D Studio to add

some data inputs (on the following three slides) that allow us

to control selected properties of Qt 3D Studio objects from the

C++ code

• At least, we need to be able to

• rotate the speedometer needles

• switch the indicators on and off

Parameters Control From C++

• We can use DataInput to control selected attributes (e.g.

position and rotation) of elements in the presentation

• You might by tempted to use 3DSPresentation::setAttribute

method instead, but this surprisingly doesn't work

• To do so, first click on the „Set Data Input controller“ icon next

to the property of the object you want to control from the code

• A new window will popup, click on „Add New Data Input“ and

• fill the „Add Data Input“ form as needed

Parameters Control From C++

The name and the
datatype of DataInput
we will be dealing with
in the C++ code later.
The name is arbitrary
but the Type has to
match the type of the
property we are dealing
with

• You should end up with something like this. Controlled

property will be highlighted in orange

• Save the project and move back to the code

Parameters Control From C++

Parameters Control From C++

• In the code, we need to get all the data inputs from the

presentation

dashboard.cpp
// get the list of all data inputs created in the presentation
const auto dataInputs = viewer_.presentation()->dataInputs();

for (const auto & it : dataInputs)
{
Q3DSDataInput * dataInput = it;

if (dataInput->name() == QLatin1String("label_90_position") &&
dataInput->isValid())

{
label90Position_ = dataInput;

}
}

dashboard.h
private: Q3DSDataInput * label90Position_{ nullptr };

Parameters Control From C++

• Now, we can control various attributes of elements in the

presentation directly from the code

dashboard.cpp
// move the object to a new position
label90Position_->setValue(QVector3D(-3.0f, 0.0f, 13.0f));

How to Create Dashboard Icon

• Prepare icon image (~128×128 px, grayscale, png)

• Move the icon file into the maps folder

• Create a new (basic) material

• Final icon color will be set by the diffuse color

How to Create Dashboard Icon

• Create a new rectangle from basic objects menu

• Adjust position and size of the rectangle and assign the

material

• Icon visibility can be controlled by the opacity attribute

• It would be really tedious to create complex geometry

such as speedometer ticks from basic objects.

On the other side, geometry created in an external

3D authoring tool (in form of asset) would be hardly adjustable

• One solution is to create such geometry directly in the code

• First, we need to define a structure of our geometry vertices

struct Vertex
{
QVector3D position; // vertex position
QVector3D normal; // vertex normal (necessary for correct lighting)
QVector2D uv; // vertex texture coordinate (necessary for texturing)

};

Create Geometry From C++

• Second, we need to set the position (and other attributes) of

vertices in our geometry (triangular mesh) in vertex buffer

• The following example will populate the vertex buffer with

vertices of a single triangle

QVector<Vertex> vertices = { Vertex(5,5,0), Vertex(0,0,0), Vertex(5,0,0) };
QByteArray vertexBuffer(reinterpret_cast<const char *>(vertices.constData()),
vertices.size() * sizeof(Vertex));

Create Geometry From C++

You need to replace this by computed
positions of all vertices of speedometer ticks.
To do so, you need to calculate positions of all
rectangular ticks to get something like this

Create Geometry From C++

• Note on the order of vertices in a triangle: The front face of the

triangle will be determined by the order of the vertices.

Triangles are then discarded based on their apparent facing in

a process known as face culling.

• This triangle will be visible from the camera's point of view

QVector<Vertex> vertices = { Vertex(5,5,0), Vertex(0,0,0), Vertex(5,0,0) };

• This triangle will be invisible from the camera's point of view

QVector<Vertex> vertices = { Vertex(5,5,0), Vertex(5,0,0), Vertex(0,0,0) };

Create Geometry From C++

• Note on the normal of vertices in a triangle: Normal plays a

crucial role in shading. Our test triangle should have the

normal pointing in the z-direction to be properly illuminated.

struct Vertex
{
QVector3D position; // vertex position
QVector3D normal; // vertex normal (necessary for correct lighting)
QVector2D uv; // vertex texture coordinate (necessary for texturing)

Vertex(const float x, const float y, const float z) {
position.setX(x);
position.setY(y);
position.setZ(z);

normal.setX(0.0f);
normal.setY(0.0f);
normal.setZ(1.0f);

}
};

Create Geometry From C++

𝑥

𝑦

𝛼𝑖

𝒄𝑖 … 𝑖-th tick center

𝟎

𝛼𝑚 = 270°

𝛼0

𝑛 … a number of ticks (e.g. 260)
𝛼𝑖 … angle of 𝑖-th tick
𝛼0… angle of the first tick (i.e. speed 0 km/h)
𝛼𝑚 … angular range of ticks

𝛼0 =
𝛼𝑚
2

+ 90

∆𝛼 =
𝛼𝑚

𝑛
… angular distance between two ticks

∆𝛼

𝒄𝑖 =
𝑟 cos 𝛼𝑖
𝑟 sin 𝛼𝑖

+ 𝟎

𝛼𝑖 = 𝛼0 − 𝑖∆𝛼

Note that all our calculations are done in XY plane. That fact must correspond
with the layout of other components in Qt 3D Studio presentation

𝛼𝑖
𝑥

𝑦

𝑤

𝑙

𝒑0

𝒑1

𝒑2

𝒑3

Create Geometry From C++

Following the idea presented
on ​​the previous slide, you should
be able to compute positions of all
four vertices 𝒑0…3 of a rotated
rectangular tick

𝑤 … tick width
𝑙 … tick length

𝑅𝑧(𝛼) =
cos(𝛼) −sin(𝛼) 0
sin(𝛼) cos(𝑎) 0
0 0 1

Rotate point 𝒑𝑖 around the origin (𝟎) by an angle 𝛼: 𝒑𝑖
′ = 𝑅𝑧(𝛼)𝒑𝑖

• Third, from the reason we will see later, we have to connect

two signals from the presentation to our custom class slots

QObject::connect(viewer_.presentation(), SIGNAL(meshesCreated(QStringList,
QString)), this, SLOT(meshesCreated(QStringList, QString)));

QObject::connect(viewer_.presentation(), SIGNAL(elementsCreated(QStringList,
QString)), this, SLOT(elementsCreated(QStringList, QString)));

• These signals will inform us about successful creation of

meshes and elements in the presentation and we have to react

on these situations somehow (on next slides)

A nice explanation of the signals and slots mechanism can be found here

https://doc.qt.io/qt-5/signalsandslots.html

Create Geometry From C++

• Third, we create a new geometry consisting of individual

triangles (in this example we deal with one triangle) as follows

Q3DSGeometry * geometry = new Q3DSGeometry();
geometry->setPrimitiveType(Q3DSGeometry::PrimitiveType::Triangles);
geometry->setVertexData(vertexBuffer);
geometry->addAttribute(Q3DSGeometry::Attribute::PositionSemantic);
geometry->addAttribute(Q3DSGeometry::Attribute::NormalSemantic);
geometry->addAttribute(Q3DSGeometry::Attribute::TexCoordSemantic);

• Now we have to ask the viewer to create a new mesh

viewer_.presentation()->createMesh("SingleTriangle", *geometry);

Create Geometry From C++

• Our two slots from the previous slides take place here; the first

one is the slot invoked when meshes are created

void Dashboard::meshesCreated(const QStringList & meshNames, const QString & error)
{

qDebug() << meshNames;
qDebug() << error;

// we need to create an element for each mesh
for (const QString & name : meshNames)
{

QHash<QString, QVariant> properties = { { "name", name + "Element" } ,
{ "sourcepath", name },
{ "position", QVector3D(0.0f, 0.0f, 0.0f) }, // initial position
{ "scale", QVector3D(1.0f, 1.0f, 1.0f) }, // initial scale
{ "rotation", QVector3D(0.0f, 0.0f, 0.0f) }, // initial rotation
{ "pivot", QVector3D(0.0f, 0.0f, 0.0f) }, // initial center of rotation
{ "material", "Orange"} // material must be already referenced in the scene

};

viewer_.presentation()->createElement("Scene.Layer", "Slide1", properties);
}

}

Create Geometry From C++

Default scene paths are used here. This need to
be verified in the actual context of the scene

The list of all attribute names can be found here
https://doc.qt.io/qt3dstudio/openglruntime/qt
3dstudio-opengl-runtime-attribute-names.html

• Our two slots referenced on the previous slides take place

here; the second one is invoked when an element is created

void Dashboard::elementsCreated(const QStringList & elementPaths, const QString & error)
{

qDebug() << elementPaths;
qDebug() << error;

// nothing to do here
}

• After the successful invocation of this slot, we should be able to

see the newly created geometry

Create Geometry From C++

Dashboard in Qt 3DS/C++

step 1 step 2

step 3 step 4

Dashboard in Qt 3DS/C++
reference dashboard

dashboard implemented in Qt 3D Studio/C++
The control
panel allows to
adjust individual
dashboard
elements

Other UI (HMI) Design Tools

• Kanzi by Rightware

• Altia 3D

• Crank Storyboard Suite

• Candera CGI Studio

• Kuesa module for Qt 3D

• Qt Safe Renderer (ISO 26262:2018-6, ASIL D)

