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BRDF (sr-1)

• (Physically plausible) Bidirectional Reflectance Distribution Function

𝑓𝑟 𝜔𝑖 , 𝜔𝑜 = 𝑓𝑟 𝜔𝑖 → 𝜔𝑜 = 𝑓𝑟 𝜔𝑜 → 𝜔𝑖 =
d𝐿𝑟 𝒙, 𝜔𝑜

𝐿𝑖 𝒙,𝜔𝑖 cos 𝜃𝑖 d𝜔𝑖
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ෝ𝒏
d𝜔𝑖

𝐿𝑖 𝒙,𝜔𝑖

𝒙

𝐿𝑟 𝒙, 𝜔0

𝜃0
𝜃𝑖

I. Helmholz reciprocity

II. Energy conservation

𝜌 𝜔𝑖 = 𝐻׬ 𝑓𝑟 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑜 d𝜔𝑜 ≤ 1 for ∀𝜔𝑖

The fraction of light coming in from any
direction that is reflected in the entire
hemisphere should be smaller than 1 to ensure
conservation of energy.
Here, the 𝜌 is the total hemispherical 
reflectivity.

III. Positivity
Range 𝑓𝑟 ∈ ۦ ሻ0,∞

d𝐸 𝒙,𝜔𝑖

Also note that we can rewritte the equation of BRDF
d𝐿𝑟 𝒙,𝜔𝑜 = 𝑓𝑟 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝒙,𝜔𝑖 cos 𝜃𝑖 d𝜔𝑖

which can be integrated to obtain reflected radiance

𝐿𝑟 𝒙, 𝜔𝑜 = න
𝐻

𝑓𝑟 𝜔𝑖 , 𝜔𝑜 𝐿𝑖 𝒙, 𝜔𝑖 cos 𝜃𝑖 d𝜔𝑖

Weakening of irradiance 
due to incident angle (the 
Lambert's cosine law)



Basic BRDFs

• Perfect mirror

𝑓𝑟
𝑀𝑖𝑟𝑟𝑜𝑟 𝜔𝑖 , 𝜔𝑜 = ቊ

∞ if 𝜃𝑖 = 𝜃0
0 otherwise

• Perfect diffusor (Lambertian surface)

𝑓𝑟
𝐿𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖 , 𝜔𝑜 =

𝐴𝑙𝑏𝑒𝑑𝑜

𝜋

• Modified Phong (physically correct but still empirical model)

𝑓𝑟
𝑃ℎ𝑜𝑛𝑔

𝜔𝑖 , 𝜔𝑜 =
𝜌𝑑

𝜋
+

𝜌𝑠(𝛾+2ሻ

2𝜋
𝑐𝑜𝑠 𝜃𝑟

𝛾, 𝜌𝑑 + 𝜌𝑠 ≤ 1

𝜑 is angle between 𝜔𝑜 and perfect specular reflection of 𝜔𝑖
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Albedo is the ration of 
outgoing and incoming flux



BRDFs
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Source: MONTES, Rosana; UREÑA, Carlos. 
An overview of BRDF models. 2012.



BRDFs Time Line
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Source: MONTES, Rosana; UREÑA, Carlos. 
An overview of BRDF models. 2012.



General classification of BRDFs

• Empirical

Their main aim is to provide a simple formulation specifically designed to mimic a 
kind of reflection. Consequently, we get a fast computational model adjustable by 
parameters, but without considering the physics behind it.

• Theoretical

These models try to accurately simulate light scattering by using physics laws. They 
usually lead to complex expression and high computational effort, thus they are not 
normally employed in rendering systems.

• Experimental

The BRDF can be acquired using a gonioreflectometer which mechanically varies 
light source and sensor positions. This proces could take hours and usually data is 
limited by some angular resolution. Other techniques use digital cameras to 
acquire many BRDF samples with a single photograph. No much densely acquired 
data is readily available.
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Experimental BRDFs - Gonioreflectometer
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Source: Biliouris, D. et al. A 
Compact Laboratory 
Spectro-Goniometer to 
Assess the BRDF of 
Materials. Sensors, 7(9), pp. 
1846-1870, 2007.
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Source: MONTES, Rosana; 
UREÑA, Carlos. An overview 
of BRDF models. 2012.



Car Paint
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Source: SMETANA, Róbert. Overview of reflectance 
models focused on car paint simulation. 2008.

Scheme illustrating the layers inside a  
metallic paint with multiple types of flakes



Modified Phong BRDF

• Original formulation of Phong reflection model (only specular part) is

𝐿𝑜 𝒙,𝜔𝑜 = ⋯+ 𝜌𝑠(cos 𝜃𝑟ሻ
𝛾𝐿𝑖 𝒙,𝜔𝑖 ,

where 𝜔𝑟 = reflect 𝜔𝑜, ෝ𝒏 , cos 𝜃𝑟 = 𝜔𝑖 ∙ 𝜔𝑟 and 𝛾 is Phong exponent, thus the original Phong BRDF 
must read as 𝑓𝑟

𝑃 𝜔𝑖 , 𝜔𝑜 = Τ(cos 𝜃𝑟ሻ
𝛾 cos 𝜃𝑖

• When we plug this into the rendering equation, we get the following

𝐿𝑜 𝒙,𝜔𝑜 = ⋯+ ׬
𝜌𝑠(cos 𝜃𝑟ሻ

𝛾

cos 𝜃𝑖
𝐿𝑖 𝒙,𝜔𝑖 cos 𝜃𝑖 d𝜔𝑖 .

• The problem is that such a BRDF does not take into account the amount of light arriving at the 
infinitesimal patch around point 𝒙 due to the missing term cos 𝜃𝑖.

• Thus the modified Phong illumination formula must read as

𝐿𝑜 𝒙,𝜔𝑜 = ⋯+ 𝜌𝑠(cos 𝜃𝑟ሻ
𝛾𝐿𝑖 𝒙,𝜔𝑖 cos 𝜃𝑖 .

• Subsequently, we get the modified Phong BRDF as 𝑓𝑟
𝑀 𝜔𝑖 , 𝜔𝑜 = 𝝆𝒔(𝒄𝒐𝒔𝜽𝒓ሻ

𝜸, not 
𝜌𝑠(cos 𝜃𝑟ሻ

𝛾

cos 𝜃𝑖
.
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Note that the normalization
factors are omitted here for
brevity. See later slides.



Modified Phong BRDF

• Lafortune and Willems (1994)

• 𝑓𝑟
𝑀 𝜔𝑖 , 𝜔𝑜 = 𝑘𝑑 + 𝑘𝑠

𝑀 =
𝜌𝑑

𝜋
+

𝜌𝑠 𝛾+2

2𝜋
(cos 𝜃𝑟ሻ

𝛾

where 𝜔𝑟 = reflect 𝜔𝑜, ෝ𝒏 , cos 𝜃𝑟 = 𝜔𝑖 ∙ 𝜔𝑟 and 𝛾 is Phong exponent

• Also remember that 𝜌𝑑 + 𝜌𝑠 ≤ 1 should hold for all channels/frequencies. We 
may also use the Fresnel reflectance instead of 𝜌𝑠 (see later slides)

• BRDF-proportional importance sampling:

• 1. 𝜉0 ∈ ۦ ሻ0,max 𝜌𝑑 +max(𝜌𝑠ሻ

• 2. if 𝜉0 < max 𝜌𝑑 sample from diffuse (use cos-weighted hemisphere sampling) 
otherwise sample from specular component…
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Specular/Cosine-lobe Sampling

• Random point on a unit sphere (i.e. direction) 𝜔𝑖 = 𝑥, 𝑦, 𝑧 where

𝑥 = cos 2𝜋𝜉1 1 − 𝜉2
2

𝛾+1

𝑦 = sin 2𝜋𝜉1 1 − 𝜉2
2

𝛾+1

𝑧 = 𝜉2
1

𝛾+1

pdf 𝜔𝑖 =
𝛾+1

2𝜋
(cos 𝜃𝑟ሻ

𝛾=
𝛾+1

2𝜋
𝑧𝛾
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ෝ𝒏

𝒙

𝜃𝑟

𝝎𝑖

𝝎𝑜 𝝎𝑟

PDF of specular (cosine)-lobe 
around 𝝎𝑟

Sampled hemisphere of specular lobe

Some samples may be directed 
toward the surface, in which case 

𝑓𝑟
𝑃ℎ𝑜𝑛𝑔

= 0 but do not remove
these samples



Specular/Cosine-lobe Sampling
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𝝎𝑖

𝝎𝑟

𝒙

𝛾 = 0

𝛾 = 9

𝛾 = 1



Original Phong BRDF Energy-conserving

• The derivation of energy conservation term for the original Phong BRDFs is widely 
known

• 𝐼𝑃 = ? when 𝑓𝑟
𝑃 =

𝜌𝑠

𝐼𝑃

max 0, cos 𝜃𝑟
𝛾

cos 𝜃𝑖
(original formulation)

1 = න
𝐻

𝜌𝑠
𝐼𝑃

max 0, cos 𝜃𝑟
𝛾

cos 𝜃𝑖
cos 𝜃𝑖 d𝜔𝑖 ቤ

set 𝜌𝑠 = 1

for 𝜔𝑜 = ෝ𝒏: 𝜃𝑟 = 𝜃𝑖

=
1

𝐼𝑃
න
𝐻

cos 𝜃𝑖
𝛾d𝜔𝑖 =

1

𝐼𝑃
න
0

2𝜋

න
0

𝜋
2
cos 𝜃𝑖

𝛾 sin 𝜃𝑖 d𝜃𝑖d𝜑𝑖 =
1

𝐼𝑃

2𝜋

𝛾 + 1
⇒

1

𝐼𝑃
=
𝛾 + 1

2𝜋
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simplified conditions 
maximizing the integral 

Note that 𝐻׬ 𝑓𝑟 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑜 d𝜔𝑜 ≤ 1 for ∀𝜔𝑖



Modified Phong BRDF Energy-conserving

• The derivation of energy conservation term for the modified Phong BRDFs is also
widely known

• 𝐼𝑀 = ? when 𝑓𝑟
𝑀 =

𝜌𝑠

𝐼𝑀
max 0, cos 𝜃𝑟

𝛾 (modified formulation)

1 = න
𝐻

𝜌𝑠
𝐼𝑀

max 0, cos 𝜃𝑟
𝛾 cos 𝜃𝑖 d𝜔𝑖 ቤ

set 𝜌𝑠 = 1

for 𝜔𝑜 = ෝ𝒏: 𝜃𝑟 = 𝜃𝑖

=
1

𝐼𝑀
න
𝐻

cos 𝜃𝑖
𝛾+1d𝜔𝑖 =

1

𝐼𝑀
න
0

2𝜋

න
0

𝜋
2
cos 𝜃𝑖

𝛾+1 sin 𝜃𝑖 d𝜃𝑖d𝜑𝑖 =
1

𝐼𝑀

2𝜋

𝛾 + 2
⇒

1

𝐼𝑀
=
𝛾 + 2

2𝜋
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simplified conditions 
maximizing the integral 

Note that 𝐻׬ 𝑓𝑟 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑜 d𝜔𝑜 ≤ 1 for ∀𝜔𝑖



Modified Phong BRDF Energy-normalization

• It is well-known how to make modified Phong BRDF conserve energy (never gain 
energy) but making it energy-normalized (never lose nor gain energy) is far more 
difficult. Note that energy normalization is a stronger criterion than energy 
conservation, and is arguably part of the definition of the BRDF itself

• Some methods for energy-normalization are available

• Method described in [1] requires the specular exponent 𝑛 (or γ) to be integer-
valued, and have 𝑂(𝑛ሻ runtime cost

• Method devised in [2] generalizes to the real-valued specular exponent case 
and attain 𝑂(1ሻ runtime cost
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[1] ARVO, James. Applications of irradiance tensors to the simulation of non-lambertian phenomena. In: Proceedings of the 22nd

annual conference on Computer graphics and interactive techniques. 1995. p. 335-342.
[2] MALLETT, Ian; YUKSEL, Cem. Constant-time energy-normalization for the Phong specular BRDFs. The Visual Computer, 2020, 
p. 2029-2038.



Arvo’s Method for (Modified) Phong BRDF
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𝜌𝑠 𝛾 + 2

2𝜋
(cos 𝜃𝑟ሻ

𝛾

Use Τ1 𝐼𝑀 value instead of the
standard normalizer (red part)  
which is energy-conserving only

𝑐 is cos 𝜃𝑜

𝑂(𝑛ሻ

𝑛 = round( γ ሻ

1/𝐼𝑀

∙ ≤ 𝜋



Mallett’s and Yuksel’s Method for (Modified) 
Phong BRDF 
• To use this method, you need to provide the 

full (non-normalised) incomplete beta 
function implementation

• For instance, it is available in the Boost
library

#include <boost/math/special_functions/beta.hpp >

float ibeta( float x, float a, float b ) {

return boost::math::beta( a, b, x );

}

• Quick but dirty solution is to provide a 
numerical integration of

𝐵 𝑥, 𝑎, 𝑏 = න
0

𝑥

𝑢𝑎−1(1 − 𝑢ሻ𝑏−1d𝑢
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Mallett’s and Yuksel’s Method for (Modified) 
Phong BRDF 
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Arvo’s algorithm

can normalize only at integer 

specular exponents. Second 

method works for

any specular exponent

Both methods ensure that the 

(modified) Phong BRDF 

passes the white furnace test



Fresnel Reflectance

• Predict the reflectance of smooth surfaces, which depends solely on the 
refractive index and the angle of incidence. For conductive materials (i.e. metals), 
the effect of Fresnel reflectance is subtle and for dielectrics is very strong but for 
both types of materials, at grazing angles, the reflectance reaches 100 %
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5 %

100 %

specular reflectance

diffuse reflectance

total reflectance

specular reflectance

incident angle

𝐹 𝐹0, 𝜃 = 𝐹0 + (1 − 𝐹0ሻ(1 − cos(𝜃ሻሻ5

𝑅𝑑 𝐹0, 𝜃 =
1 − max(𝐹 𝐹0, 𝜃 ሻ

1 − max(𝜌𝑠ሻ
𝜌𝑑

𝜌𝑑 = 0.55 diffuse albedo
𝜌𝑠 = 0.05 specular albedo
energy conserving iff
𝜌𝑑 + 𝜌𝑠 = 0.6 ≤ 1

𝜌𝑑
𝜌𝑑 + 𝜌𝑠

re
fl

ec
ta

n
ce



Modified Phong with Fresnel Term

• The final energy-normalized formula of the modified Phong BRDF with Fresnel 
reflectance

𝑓𝑟
𝑀 𝜔𝑖 , 𝜔𝑜 = 𝑘𝑑 + 𝑘𝑠

𝑀 =
𝑅𝑑 𝜌𝑠, 𝜃𝑜

𝜋
+
𝐹 𝜌𝑠, 𝜃𝑜

𝐼𝑀
(cos 𝜃𝑟ሻ

𝛾
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Phong BRDF (PT + RR + NEE + BRDF IS)
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200 spp

Note the white dots 
scattered all around the 
rendered image.

So called fireflies are 
caused by paths hitting 
the diffusive surfaces 
near light sources or 
caustics.



Phong BRDF (PT + RR + NEE + BRDF IS)
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1.000 spp

Fireflies will disappear 
with the (much) higher 
amount of samples.

Faster solution:

if len(pixel) > T then
pixel = normalize(pixel) * T



Artefacts and Errors
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Here, the bright spots 
aligned with the triangle 
edges are caused by 
non-unit normals.



Artefacts and Errors
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When not using a proper normalizer, we may add the cosine denominator to the specular part of the Phong
BRDF (as in the original unmodified formula) to remove the unwanted darkening around the sphere borders

𝑘𝑠
𝑃ℎ𝑜𝑛𝑔

𝜔𝑖 , 𝜔𝑜 =
𝜌𝑠 𝛾 + 1

2𝜋

(cos 𝜃𝑟ሻ
𝛾

cos 𝜃𝑖

𝛾 = 100
Kd 0.0 0.0 0.0
Ks 1.0 1.0 1.0

𝛾 = 1000
Kd 0.8 0.8 0.8
Ks 0.2 0.2 0.2

Perfect mirror



Examples of 4 BRDFs and 1 BSDF

newmtl Mat001
Ni 1.491
Tf 0.01 0.01 0.01
Ke 0 0 0
shader 4

newmtl Mat002
Ni 1.491
Tf 0.75 0.75 0.75
Ke 0 0 0
shader 4

newmtl Mat003
Ni 1.491
Tf 1.5 1.5 1.5
Ke 0 0 0
shader 4

newmtl Mat004
Ni 1.491
Tf 3.0 3.0 3.0
Ke 0 0 0
shader 4

newmtl Mat005
Ni 1.491
Tf 0.15 0.01 0.96
Ke 0 0 0
shader 4

newmtl Mat006
Kd 0.1 0.1 0.1
Ke 0 0 0
shader 2

newmtl Mat007
Kd 0.5 0.5 0.5
Ke 0 0 0
shader 2

newmtl Mat008
Kd 0.99 0.99 0.99
Ke 0 0 0
shader 2

newmtl Mat009
Ns 0
Ks 0.25 0.25 0.25
Kd 0.25 0.25 0.25
Ke 0 0 0
shader 5

newmtl Mat010
Pr 0.99
Ks 0.5 0.5 0.5
Kd 0.5 0.5 0.5
Ke 0 0 0
shader 8

newmtl Mat011
Ns 1
Kd 0.9 0.05 0.05
Ks 0.05 0.05 0.05
Ke 0 0 0
shader 5

newmtl Mat012
Ns 10
Kd 0.9 0.05 0.05
Ks 0.05 0.05 0.05
Ke 0 0 0
shader 5

newmtl Mat013
Ns 100
Kd 0.9 0.05 0.05
Ks 0.05 0.05 0.05
Ke 0 0 0
shader 5

newmtl Mat014
Ns 1000
Kd 0.9 0.05 0.05
Ks 0.05 0.05 0.05
Ke 0 0 0
shader 5

newmtl Mat015
Ns 10000
Kd 0.9 0.05 0.05
Ks 0.05 0.05 0.05
Ke 0 0 0
shader 5

newmtl Mat016
Pr 1.0
Kd 0.9 0.05 0.05
Ks 0.05 0.05 0.05
Ke 0 0 0
shader 8

newmtl Mat017
Pr 0.7
Kd 0.9 0.05 0.05
Ks 0.05 0.05 0.05
Ke 0 0 0
shader 8

newmtl Mat018
Pr 0.4
Kd 0.9 0.05 0.05
Ks 0.05 0.05 0.05
Ke 0 0 0
shader 8

newmtl Mat019
Pr 0.1
Kd 0.9 0.05 0.05
Ks 0.05 0.05 0.05
Ke 0 0 0
shader 8

newmtl Mat020
Pr 0.01
Kd 0.9 0.05 0.05
Ks 0.05 0.05 0.05
Ke 0 0 0
shader 8

newmtl Mat021
Ks 0.99 0.99 0.99
Ke 0 0 0
shader 6

newmtl Mat022
Ks 0.5 0.5 0.5
Ke 0 0 0
shader 6

newmtl Mat023
Pr 0.7
Kd 0.0 0.0 0.0
Ks 1.0 0.766 0.336
Ke 0 0 0
shader 8

newmtl Mat024
Pr 0.3
Kd 0.0 0.0 0.0
Ks 1.0 0.766 0.336
Ke 0 0 0
shader 8

newmtl Mat025
Pr 0.1
Kd 0.0 0.0 0.0
Ks 1.0 0.766 0.336
Ke 0 0 0
shader 8
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shader 2 = Lambert BRDF
shader 4 = Glass BSDF (BRDF+BTDF)
shader 5 = Lambert+Phong BRDF (energy-normalized)
shader 6 = Mirror BRDF
shader 8 = Lambert+GGX BRDF (VNDF)



Examples of Metallic Materials
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newmtl Mat001
Ns 1
Ks 1.0 0.766 0.336
shader 5

newmtl Mat002
Ns 10
Ks 1.0 0.766 0.336
shader 5

newmtl Mat003
Ns 100
Ks 1.0 0.766 0.336
shader 5

newmtl Mat004
Ns 1000
Ks 1.0 0.766 0.336
shader 5

newmtl Mat005
Ns 10000
Ks 1.0 0.766 0.336
shader 5

newmtl Mat006
Ns 1
Ks 0.972 0.960 0.915
shader 5

newmtl Mat007
Ns 10
Ks 0.972 0.960 0.915
shader 5

newmtl Mat008
Ns 100
Ks 0.972 0.960 0.915
shader 5

newmtl Mat009
Ns 1000
Ks 0.972 0.960 0.915
shader 5

newmtl Mat010
Ns 10000
Ks 0.972 0.960 0.915
shader 5

newmtl Mat011
Ns 1
Ks 0.955 0.637 0.538
shader 5

newmtl Mat012
Ns 10
Ks 0.955 0.637 0.538
shader 5

newmtl Mat013
Ns 100
Ks 0.955 0.637 0.538
shader 5

newmtl Mat014
Ns 1000
Ks 0.955 0.637 0.538
shader 5

newmtl Mat015
Ns 10000
Ks 0.955 0.637 0.538
shader 5

newmtl Mat016
Ns 1
Ks 0.660 0.609 0.526
shader 5

newmtl Mat017
Ns 10
Ks 0.660 0.609 0.526
shader 5

newmtl Mat018
Ns 100
Ks 0.660 0.609 0.526
shader 5

newmtl Mat019
Ns 1000
Ks 0.660 0.609 0.526
shader 5

newmtl Mat020
Ns 10000
Ks 0.660 0.609 0.526
shader 5

newmtl Mat021
Ns 1
Ks 0.560 0.570 0.580
shader 5

newmtl Mat022
Ns 10
Ks 0.560 0.570 0.580
shader 5

newmtl Mat023
Ns 100
Ks 0.560 0.570 0.580
shader 5

newmtl Mat024
Ns 1000
Ks 0.560 0.570 0.580
shader 5

newmtl Mat025
Ns 10000
Ks 0.560 0.570 0.580
shader 5

shader 5 = Lambert+Phong BRDF (energy-normalized)

Gold

Silver

Cooper

Nickel

Iron



Phong BRDF with Depth of Field
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No Fresnel reflections With Fresnel reflections



Phong BRDF with DoF and Fresnel Term
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Split Direct and Indirect Illumination

• All paths that do not hit any light source will end up with zero contribution

• The solution is to connect each path vertex to a point on a light source – this technique is
called next event estimation (NEE)

• We split the integral 𝐿𝑟 of the reflected radiance as follows

• Indirect illumination – sample hemisphere as before (RE in angular form)

• Direct illumination – explicit sampling of light sources to ensure a non-zero
contribution (RE in area form)

𝐿𝑟 𝒙,𝜔0 = 𝐿𝑟
𝑖𝑛𝑑 𝒙,𝜔0 + 𝐿𝑟

𝑑𝑖𝑟 𝒙,𝜔0 =

= න

𝐻2 𝒙

𝐿𝑖 𝒙,𝜔𝑖 𝑓𝑟 𝒙,𝜔𝑖 , 𝜔0 cos 𝜃𝑖 d𝜔𝑖 + න

𝐻1(𝒙ሻ

𝐿𝑒 𝒙,𝜔𝑖 𝑓𝑟(𝒙, 𝜔𝑖 , 𝜔0ሻ cos 𝜃𝑖 d𝜔𝑖
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𝐻1 ∪ 𝐻2 = 𝐻



Next Event Estimation

• The whole process can be imagined as follows - sampled hemisphere is divided 
into two distinct areas

• 1. An area that includes a projection of an area source

• 2. A remaining area of ​​the hemisphere

Fall 2024 Computer Graphics I 37

𝑥

2

1𝐻1
𝐻2



Next Event Estimation
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Area light source

E
Indirect light

Direct light

𝑦

𝑥

A

D

C

B

• Ray A returns via point 𝑥 the energy reflected by 𝑦 ( i.e. estimates indirect light at 𝑥)

• Ray B returns the radiance of the light source toward point 𝑥 (i.e. estimates direct light at 𝑥)

• Ray C returns the radiance of the light source toward point 𝑦 which will reach eye (pixel) via ray A

• Ray D hits the background (IBL)



Next Event Estimation

• When the ray D for indirect light sampling hits the light source, the path is 
terminated and no energy is returned through it. This will prevent accounting for
direct illumination on point 𝑦 twice
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Area light source

E
Indirect light

Direct light

𝑦

𝑥

A

D (𝐿𝑟
𝑖𝑛𝑑 = 0)

C (𝐿𝑟
𝑑𝑖𝑟 > 0)

B



Next Event Estimation

• Some vertices on light path require special attention

• If the first vertex after the camera is emissive, its energy can’t be reflected to 
the camera (its energy must be returned directly)

• For pure specular surfaces (mirrors), the BRDF always returns zero in the 
direction of a light source (i.e. no light ray)

• Since a light ray doesn’t make sense for specular vertices, we will include 
(possible) emission from a vertex directly following a specular vertex

• The same goes for the first vertex after the camera: if this is emissive, we will also 
include this

• This means we need to keep track of the type of the previous vertex during the 
path tracing
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• Once again, when the ray D for indirect light sampling hits the light source, the path is terminated 
and no energy is returned. It also holds that the mirror (specular) BRDF (almost) always returns 
zero in the direction of a light source. As a result, we will not see any specular reflection of a light 
source through the vertex 𝑦. Solution: iff the previous vertex is specular we pass the emission of 
the light source through the indirect ray D 

Next Event Estimation
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Area light source

E
Indirect light

Direct light

𝑦 (specular refl.)

𝑥

A

D (𝐿𝑟
𝑖𝑛𝑑 = 𝐿𝑒)

C (𝐿𝑟
𝑑𝑖𝑟 > 0)

B



Next Event Estimation
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Note the missing source reflections 
in the case of mirror surfaces 

Caustics are also missing



Remark About RE in Area Form

• Rendering equation in angular form (int. over hemisphere)

𝐿 𝒙,𝜔0 = 𝐿𝑒 𝒙,𝜔0 + න

𝐻(𝒙ሻ

𝐿 𝒓 𝒙,𝜔𝑖 , −𝜔𝑖 𝑓𝑟(𝒙, 𝜔𝑖 , 𝜔0ሻ cos 𝜃𝑖 d𝜔𝑖

• Substituting d𝜔𝑖 =
d𝐴𝑦 cos 𝜃𝑦

𝑟2
yields area form (int. over surface)

𝐿 𝒙,𝜔0 = 𝐿𝑒 𝒙,𝜔0 + න

𝐴

𝐿 𝒚 → 𝒙 𝑓𝑟 𝒚 → 𝒙 → 𝜔0 𝐺 𝒙, 𝒚 𝑉(𝒙, 𝒚ሻd𝐴𝑦
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Scene surface (e.g. a single triangle)

Geometry term 𝐺 𝒙, 𝒚 =
cos 𝜃𝑖 cos 𝜃𝑦

𝒙−𝒚 2 Visibility term {0, 1}



(Explicit) Sampling of Light Sources
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ෝ𝒏

d𝜔𝑖 =
d𝐴𝑦 cos 𝜃𝑦

𝑟2

𝐿𝑖 𝒙,𝜔𝑖 = 𝐿𝑒 𝒚,−𝜔𝑖

𝒙

𝐿𝑜 𝒙, 𝜔0 = 𝐿𝑟
𝑖𝑛𝑑𝑖𝑟 𝒙, 𝜔0 + 𝐿𝑟

𝑑𝑖𝑟 𝒙,𝜔0

𝜃0
𝜃𝑖

𝐻(𝒙ሻ

d𝐴𝑦

𝒚

ෝ𝒏𝑦

𝑟

𝜃𝑦

Area light source

𝐿𝑒 𝒚,−𝜔𝑖

• Light sources are surfaces with non zero emitted radiance

• We assume that light sources consist of triangles



Triangle Sampling

• Uniform sampling of a triangle (given by 𝒑0, 𝒑1, 𝒑2) with pdf equal to 1/𝐴𝑟𝑒𝑎

𝒚 = 𝒑0 1 − 𝜉1 + 𝒑1 𝜉1 1 − 𝜉2 + 𝒑2 𝜉1𝜉2

𝑝𝑑𝑓 𝒚 = Τ1 𝐴𝑟𝑒𝑎

where 𝐴𝑟𝑒𝑎 =
1

2
𝒖 × 𝒗 and 𝒖 = 𝒑1 − 𝒑0, 𝒗 = 𝒑2 − 𝒑0

or 𝐴𝑟𝑒𝑎 =
1

2
det(𝐴𝑇𝐴ሻ and 𝐴 =

⋮ ⋮
𝒖 𝒗
⋮ ⋮
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𝒑0 𝒑1

𝒑2

𝒖

𝒗



Sampling Many Light Triangles

• Problem: If the light source consists of many triangles, NEE will become slow (as 
we need to sum contributions from all light emitting triangles)

• Solution: 

• Trivial case – triangles are equally sized – pick randomly any triangle and 
weight the sample by inverse probability of choosing the particular triangle

• Real case – triangles have different areas – almost the same technique like 
before but we need inverse sampling as we need random samples generated 
from custom probability distribution
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Sampling From Arbitrary PDF/PMF
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• Inverse transform sampling is a basic 
method for generating sample numbers at 
random from any probability distribution 
given its cumulative distribution function

std::vector<float> cdf = { 0.143f, 0.429f, 
0.857f, 1.0f };
std::vector<int> samples = { 0, 0, 0, 0 };
int N = 100;

for ( int i = 0; i < N; ++i ) {
float ksi = random->next_float( 0.0f, 1.0f );
auto lower = std::lower_bound( cdf.begin(), 

cdf.end(), ksi );
int index = lower - cdf.begin();

samples[index]++;
}

for ( auto s : samples ) {
printf( "%0.3f\n", s / float( N ) );

}

𝜉



Note About Density and Distribution

• Probability density function (PDF) contains information about probability of a continuous 
random variable but it is not a probability since can have any non-negative value, even 
larger than one. It has only to satisfty 𝑓(𝑥ሻ ≥ 0 and ׬

−∞

∞
𝑓 𝑥 d𝑥 = 1. Probability of a 

random variable 𝑋 is then

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓 𝑥 d𝑥 = 𝐹𝑋 𝑏 − 𝐹𝑋 𝑎

• Probability mass function (PMF) gives the probability that a discrete random variable is 
equal to some value

• Cumulative distribution function (CDF) gives the probability that a discrete or continuous 
random variable will take a value less than or equal to some value and its value is a 
number between zero and one

𝐹𝑋 𝑥 = 𝑃 𝑋 ≤ 𝑥 = න
−∞

𝑥

𝑓𝑋 𝑡 d𝑡
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Example (RR+NEE)
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Dielectrics vs Metals

Workflow MTL Param. Name Dielectrics Metals

Specular-Glossines

Ks1 Specular reflectivity cca 0.05 grayscale <0.4, 1> tint

Kd Diffuse reflectivity <0, 1> 0

Ns2 Specular exponent <0, cca 10000>

Ni Index of refraction <1, cca 4> <0.15, cca 3>

Tf transmission filter <0, inf> -

Ke emission <0, inf>
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Notes:

1. Specular reflectivity computed from IOR: dielectrics 𝑅 =
𝜂2−𝜂1

2

𝜂2+𝜂1 2; metallic 𝑅 =
𝜂2−𝜂1

2+𝑘2

𝜂2+𝜂1 2+𝑘2
where 𝜂1 is ior

of air, 𝜂2 is ior of metal, and 𝑘 is damping (extinction) constant . Also note that 𝑅 is a scalar and Ks is a 
color. Consult https://refractiveindex.info for indices of various materials

2. Conversion between shininess (or specular power exponent) and roughness is not defined exactly



Torrance-Sparrow BRDF

• One of the most complete physical reflection models for isotropic materials (precursor to 
other models)

• Validated by a ray-tracing-like simulation

• Considers polarized light and is used for rough surfaces

• The roughness is modelled using microscopic concavities

• Specularly reflecting V-cavities of equal length are called microfacets

• Their orientation is random and their distribution is controlled by parameters, so it is 
possible to simulate different degrees of roughness.
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Microfacet Theory

• Main idea: rough surfaces can be modeled as a collection of small microfacets (tiny 
planar areas of the surface used in reflection approximation)

• Surface is described by a distribution of microfacet normals

• Perfect mirror reflection is most commonly used for the microfacet BRDF

• Local lighting efects at the microfacet level are masking, shadowing, and interreflection
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masking shadowing interreflection



Microfacet Theory

• Micro vs. macro surface

• Shadowing-masking geometry
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Source: WALTER, Bruce, et al. Microfacet
models for refraction through rough 
surfaces. In: Proceedings of the 18th 
Eurographics conference on Rendering 
Techniques. 2007. p. 195-206.



Microsurface Models

• Two common microsurface models

• V-cavity model intruduced by Torrance et al.

• Assumes a continuous distribution of separate microsurfaces rather than just one
microsurface

• Each microsurface is composed of two normals 𝜔𝑚 = (𝑥𝑚, 𝑦𝑚, 𝑧𝑚ሻ and 𝜔𝑚
′ =

(−𝑥𝑚, −𝑦𝑚, 𝑧𝑚ሻ
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𝜔ℎ𝜔ℎ
′

Masking function

Masking-shadowing  function



Microsurface Models

• Smith model is the most accurate model for compactly describing geometrical-optics 
reflectance and transmission from explicit random height fields (such as an ocean 
surface), and is better than the V-cavity model for approximating reflectance of 
measured materials. However, specific masking functions 𝐺1 must be derived for each 
new distribution of normals. Analytic solutions are available for Beckmann and GGX. 
Heitz showed that the same formulas can be used with the anisotropic extensions of 𝐷. 
Different forms of the Smith masking-shadowing function are available, the most simple 
is the non-correlated form 𝐺2 𝜔𝑜, 𝜔𝑖 = 𝐺1 𝜔𝑜 𝐺1 𝜔𝑖
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Torrance-Sparrow BRDF

• BRDF takes form

𝑓𝑟
𝑇𝑆 𝜔𝑖 , 𝜔𝑜 = 𝑘𝑑 + 𝑘𝑠

𝑇𝑆 =
𝜌𝑑
𝜋
+
𝐷(𝜔𝑚, 𝛼ሻ 𝐹(𝜃ℎሻ 𝐺(𝜔𝑖 , 𝜔𝑜ሻ

𝟒 cos 𝜃𝑜 cos 𝜃𝑖

• where 𝐷 is the microfacet distribution function, 𝐹 is the Fresnel function, 𝐺 is the 
geometric attenuation function responsible for masking and self-shadowing, and the 
direction ෡𝒉 = ෝ𝒎 = 𝜔𝑚 = Τ𝜔𝑖 +𝜔𝑜 𝜔𝑖 +𝜔𝑜 = Τ𝜔𝑖 +𝜔𝑜 2, a.k.a half-(way) vector, 
represents the microfacet normal

• Can be used for both conductors and dielectrics
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Fresnel reflectance (RGB), 
depends on wavelength

Geometrical attenuation factor 0,1
reduces the output based on the
amount of shadowing or masking

Normal distribution function 0,∞
determines what percentage* of 
microfacets are oriented to reflect the 
incoming light in the viewer direction

How much of the macroscopic
surface is visible to the viewer

cos𝜃𝑜 = 𝜔0 ∙ ෝ𝒏

How much of the macroscopic
surface is visible to the light

cos 𝜃𝑖 = 𝜔𝑖 ∙ ෝ𝒏

ෝ𝒏

𝒙

𝜃𝑖𝜔𝑜

𝜔𝑖

𝜔𝑚

𝜃ℎ

𝜃𝑜

𝜃ℎ

macroscopic surface
microfacet

𝜃𝑚

* this is not exact, see slides below



Normal Distribution Function

• Based on microfacet surface models

• Distribution of facets normals ෡𝒉 is described in a statistical manner (otherwise it would
be very expensive to evaluate all microfacets on object surface)

• Distribution is often derived from some heightfield

• NDF for perfectly smooth surface: 𝐷 𝜔𝑚 = 𝛿(𝜃𝑚ሻ

• NDF must be normalized to be physically plausible: ׬𝐻 𝐷 𝜔𝑚 cos(𝜃𝑚ሻd𝜔𝑚 = 1
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ෝ𝒏
෡𝒉 = 𝜔𝑚

𝜃𝑚

ෝ𝒏
d𝐴ℎ

d𝐴 = cos(𝜃𝑛ሻd𝐴ℎ



• According to Walter at al., NDF obeys the equation
d𝐴𝑚 = 𝐷(𝜔𝑚ሻd𝜔𝑚𝐴

where 𝐴 is a patch of macrosurface small enough to be considered flat, but much larger
than an individual microfacet, and d𝐴𝑚 is the total area of all the microfacets within 𝐴 that
have normals within d𝜔𝑚

From this point of view NDF is not a PDF at all but it is the density of micro-area over the
joint domain of macro-area and solid angle

𝐷 𝜔𝑚 =
d𝐴𝑚

d𝜔𝑚𝐴

𝑚2

𝑠𝑟∙𝑚2

• The normalization condition can be derived from the above equation

1 =
1

𝐴
නcos(𝜃𝑚ሻd𝐴𝑚 = න

𝐻

𝐷 𝜔𝑚 cos(𝜃𝑚ሻd𝜔𝑚 =
1

𝐴
න
cos(𝜃𝑚ሻ

d𝜔𝑚
d𝜔𝑚d𝐴𝑚

Normal Distribution Function
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Source: 
http://www.reedbeta.com/blo
g/hows-the-ndf-really-defined/

𝐴

𝜃𝑚
ෝ𝒏

𝜔𝑚

d𝐴𝑚

d𝐴 = cos(𝜃𝑚ሻd𝐴𝑚d𝐴

1

d𝜔𝑚

ෝ𝒏



Normal Distribution Function
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• Beckmann NDF

𝐷𝐵𝑒𝑐𝑘𝑚𝑎𝑛𝑛 𝜃𝑚, 𝑚 =
1

𝜋 𝛼2 cos 𝜃𝑚
4
exp

cos 𝜃𝑚
2 − 1

𝛼2 cos 𝜃𝑚
2

=

=
1

𝜋 𝛼2 cos 𝜃𝑚
4 exp −

tan 𝜃𝑚
𝛼

2

• 𝛼 … roughness (or RMS slope of the surface microfacets)

• cos 𝜃𝑚 = ෝ𝒏 ∙ ෡𝒉 and ෡𝒉 =
𝜔𝑖+𝜔𝑜

𝜔𝑖+𝜔𝑜
and 𝜔𝑖 = reflect(𝜔𝑜, ෡𝒉ሻ



Normal Distribution Function

• (Isotropic) Trowbridge-Reitz (a.k.a GGX) NDF

𝐷𝑇𝑅−𝐺𝐺𝑋 𝜃𝑚, 𝛼 =
𝛼2

𝜋 𝛼2 − 1 cos 𝜃𝑚
2 + 1

2 =𝛼=1

1

𝜋

where 𝛼 = roughness2 (aka Disney's reparametrization)

• Here presented NDF is a simplified version for the upper hemisphere, i.e. 𝜃 ∈ 0, 𝜋/2

• Also holds that ׬𝐻 𝐷𝑇𝑅−𝐺𝐺𝑋 𝜃𝑚, 𝛼 cos 𝜃𝑚 d𝜔𝑚 = 1
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Accounts for the projected area of microfacets onto the macro-surface

Note that for rough 
surfaces the GGX 
NDF equals to the 
Lambertian surface



Normal Distribution Function

• Equivalent formulation of (isotropic) Trowbridge-Reitz (a.k.a GGX) NDF

𝐷𝑇𝑅−𝐺𝐺𝑋 𝜃𝑚, 𝛼 =
𝛼2

𝜋 cos 𝜃𝑚
4 𝛼2 + tan 𝜃𝑚

2 2

• Equations for (anisotropic) Trowbridge-Reitz (a.k.a GGX) NDF
𝐷𝑇𝑅−𝐺𝐺𝑋 𝜑𝑚, 𝜃𝑚, 𝛼𝑥 , 𝛼𝑦

=
1

𝜋𝛼𝑥𝛼𝑦 cos 𝜃𝑚
4 1 + tan 𝜃𝑚

2 cos 𝜑𝑚
2

𝛼𝑥
2 +

sin𝜑𝑚
2

𝛼𝑦
2

2 =

=
1

𝜋𝛼𝑥𝛼𝑦
𝑚𝑥
2

𝛼𝑥
2 +

𝑚𝑦
2

𝛼𝑦
2 +𝑚𝑧

2

2
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Equivalent formulation 
from Walter et al. 2007



Normal Distribution Function

• Trowbridge-Reitz (isotropic GGX)
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ෝ𝒏

𝒙

𝜔𝑚

microfacet

𝜃𝑚

In case of 𝛼 = 1 we get uniform
„distribution of normals“

𝑚

1

𝜋



Normal Distribution Function

• Lets check that 𝐻׬ 𝐷𝑇𝑅−𝐺𝐺𝑋 𝜃𝑚, 𝛼 cos 𝜃𝑚 d𝜔𝑚 = 1

from sympy import *

from scipy.integrate import nquad

def D_GGX(𝜃𝑚, 𝜑𝑚, 𝛼=0.45):

d_ggx = 𝛼**2 / (𝜋 *((𝛼**2-1)*cos(𝜃𝑚)**2+1)**2)

return d_ggx * cos(𝜃𝑚) * sin(𝜃𝑚) # see the next slide

I = nquad(D_GGX, [[0, 𝜋/2], [0, 2*𝜋]]) # integral over the hemisphere

print(I)

Out: 1.0
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Normal Distribution Function

• Lets check that 𝐻׬ 𝐷𝑇𝑅−𝐺𝐺𝑋 𝜃𝑚, 𝛼 = 1 cos 𝜃𝑚 d𝜔𝑚 = 1

න
𝐻

𝐷𝑇𝑅−𝐺𝐺𝑋 𝜃𝑚, 1 cos 𝜃𝑚 d𝜔𝑚 = න
0

2𝜋

න
0

𝜋
2 1

𝜋
cos 𝜃𝑚 sin 𝜃𝑚 d𝜃𝑚d𝜑𝑚 =

= −
1

2𝜋
න
0

2𝜋

cos2 𝜃𝑚 0

𝜋
2d𝜑𝑚 = −

1

2𝜋
න
0

2𝜋

0 − 1 d𝜑𝑚 =

=
1

2𝜋
2𝜋 − 0 = 1
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• The pdf of 𝐷𝑇𝑅−𝐺𝐺𝑋
𝑝 𝜔𝑚 = 𝐷𝑇𝑅−𝐺𝐺𝑋 𝜃𝑚, 𝛼 cos 𝜃𝑚

from which we get the joint probability respecting the spherical coordinates (recall again
that d𝜔𝑚 = sin 𝜃md𝜃𝑚d𝜑𝑚)

𝑝 𝜃𝑚, 𝜑𝑚 = 𝐷𝑇𝑅−𝐺𝐺𝑋 𝜃𝑚, 𝛼 cos 𝜃𝑚 sin 𝜃𝑚

Also recall that 𝜃𝑚 represens the polar angle and 𝜑𝑚 is the azimuthal angle of sampled 
microfacet normal 𝜔𝑚. Also note that 𝜑𝑚 is not included in the above pdf making this 
BRDF isotropic and the marginal probability of 𝜃𝑚 equals to

𝑝 𝜃𝑚 = න
0

2𝜋

𝑝 𝜃𝑚, 𝜑𝑚 d𝜑𝑚 =
2𝛼2 cos 𝜃𝑚 sin 𝜃𝑚

𝛼2 − 1 cos 𝜃𝑚
2 + 1

2
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Sampling Isotropic 𝐷𝑇𝑅−𝐺𝐺𝑋 Chain rule of probability:
𝑝(𝑎, 𝑏ሻ = 𝑝(𝑎|𝑏ሻ𝑝(𝑏ሻ = 𝑝(𝑏|𝑎ሻ𝑝(𝑎ሻ

Marginal probability is the probability of one event in the presence of all (or a subset of) outcomes of the other random variable



Sampling Isotropic 𝐷𝑇𝑅−𝐺𝐺𝑋

• For inverse transform sampling, we need to calculate the cdf as follows

𝑐𝑑𝑓 𝜃𝑚 = න
0

𝜃𝑚

𝑝 𝜃 d𝜃 =

= න
0

𝜃𝑚 2𝛼2 cos 𝜃 sin 𝜃

𝛼2 − 1 cos 𝜃 2 + 1
2 d𝜃 ቤ

𝑥 = cos 𝜃
d𝑥 = −sin 𝜃 d𝜃 → d𝜃 = −d𝑥/ sin 𝜃

=

= න
cos(0ሻ

cos(𝜃𝑚ሻ −2𝛼2𝑥 sin 𝜃 𝑥

𝛼2 − 1 𝑥2 + 1
2
sin 𝜃

d𝑥 =
𝛼2

(𝛼2 − 1ሻ2𝑥2 + 𝛼2 − 1
1

cos(𝜃𝑚ሻ

=

=
𝛼2

(𝛼2 − 1ሻ2 cos 𝜃 2 + 𝛼2 − 1
−

1

𝛼2 − 1
=

1

𝛼2 sin 𝜃 −2 − 1 + 1
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Sampling Isotropic 𝐷𝑇𝑅−𝐺𝐺𝑋

• Now we need to solve the following equation for 𝜃𝑚 having an uniform random number
𝜉1

𝑐𝑑𝑓 𝜃𝑚 = 𝜉1

1

𝛼2 sin 𝜃𝑚
−2 − 1 + 1

= 𝜉1

sin 𝜃𝑚
−2 =

1−𝜉1

𝛼2𝜉1
+ 1; note that sin 𝜃 −2 =

1

1− cos 𝜃 2

cos 𝜃𝑚
2 =

1 − 𝜉1
𝜉1 𝛼2 − 1 + 1

⇒ 𝜃𝑚 = cos−1
1 − 𝜉1

𝜉1 𝛼2 − 1 + 1
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Sampling Isotropic 𝐷𝑇𝑅−𝐺𝐺𝑋

• Now we need to solve the following equation for 𝜃𝑚 having an uniform random number
𝜉1

𝑐𝑑𝑓 𝜃𝑚 = 𝜉1

what gives us

𝜃𝑚 = cos−1
1 − 𝜉1

𝜉1 𝛼2 − 1 + 1
= tan−1 𝛼

𝜉1
1 − 𝜉1
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𝜑𝑚 = 2𝜋𝜉2

Alt., more effective form for later conversion
to Cartesian coordinates of 𝜔𝑚

cos 𝜃𝑚 =
1

1 + 𝜉1 𝛼2 − 1

sin 𝜃𝑚 = 1 − cos 𝜃𝑚
2



Remark on Probability of Sampling 𝐷𝑇𝑅−𝐺𝐺𝑋

• Now we know how to sample 𝜔𝑚 proportional to 𝐷𝑇𝑅−𝐺𝐺𝑋 NDF

• However, the way we calculate the PDF given an incident direction is different from the 
above ones respecting the half-vector, whether it’s solid angle or spherical coordinate. 
What we have so far is the PDF for half-vector, a following transformation is necessary to 
get the correct PDF for 𝜃𝑖

𝑝 𝜃𝑖 = 𝑝 𝜔𝑚

d𝜔𝑚

d𝜔𝑖
= 𝑝 𝜔𝑚

1

4 𝜔{𝑜, 𝑖} ∙ 𝜔𝑚

=
𝐷𝑇𝑅−𝐺𝐺𝑋 𝜃𝑚, 𝛼 cos 𝜃𝑚

4 cos 𝜃ℎ
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The solid angle transformation of the reflection operation is the Jacobian
For more details, see Section 1.3 in Linear Efficient Antialiased Displacement and Reflectance Mapping: Supplemental Material



Fresnel Factor

• The Fresnel factor 𝐹 ∈ 0, 1 gives the fraction of light that is reflected 
from the entire surface. Its computation is a linear combination of the 
coefficient for perpendicular light polarization and the coefficient for 
parallel light polarization

• It is quite usual to use the Schlick's approximation as we did before
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Fresnel Factor
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Dielectric Fresnel: From left to right the index of refraction is 1.2, 1.5, 1.8, 2.4

Conductor Fresnel with Absorption k = 2: From left to right the index of refraction is 1.2, 1.5, 1.8, 2.4

Conductor Fresnel with Absorption k = 4: From left to right the index of refraction is 1.2, 1.5, 1.8, 2.4



Fresnel Reflectance
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For conductive materials (i.e. metals), the 
effect of Fresnel reflectance is subtle

For dielectric, or non-conducting, materials, 
the effect is very strong: reflectance of only 
~4% at normal incidence, but 100% at grazing
angle



Reflectance 𝐹(0°ሻ or 𝐹0
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𝜂2

𝜂1 − 𝜂2
𝜂1 + 𝜂2

2

= 𝐹(0°ሻ

𝜂1 = 1.000293



Schlick‘s Approximation

• Formula for approximating the contribution of the Fresnel factor in
the specular reflection of light from a non-conducting surface

𝐹 𝐹0, 𝜃ℎ = 𝐹0 + 𝟏 − 𝐹0 (1 − cos 𝜃ℎሻ
5

where 𝐹0 =
𝜂1−𝜂2

𝜂1+𝜂2

2
, cos 𝜃ℎ = 𝜔𝑖 ∙ ෝ𝒎 = 𝜔𝑜 ∙ ෝ𝒎

• 𝜂1 (mostly air in our case) and 𝜂2 (e.g. 1.46 in case of plastic) are the
indices of refraction of the two media at the interface and 𝐹0 is the
reflection coefficient for light incoming parallel to the half-way vector
ෝ𝒎 (i.e., the value of the Fresnel term when 𝜃ℎ = 0 or minimal
reflection)
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For the case of normal incidence 
there is no distinction between s 
and p polarization

Sometimes parameterized as 𝐹90



Smith Masking-shadowing Function 𝐺 for TR-
GGX
• If masking and shadowing are statistically independent (not correlated) events even in 

close proximity (severe approximation)

𝐺 𝜔0, 𝜔𝑖 = 𝐺1 𝜔0 𝐺1 𝜔𝑖 where 𝐺1 𝜔 =
1

1+Λ 𝜔
is the masking function

• A more physically plausible formulation assuming that masking and shadowing are 
(height) correlated events

𝐺 𝜔0, 𝜔𝑖 =
1

1 + Λ 𝜔0 + Λ 𝜔𝑖

• In both cases, the auxiliary function Λ for the TR-GGX NDF reads

Λ 𝜔 =
1 + 𝛼2(tan(𝜃ሻሻ2− 1

2
=

1 + 𝛼2
1

(cos(𝜃ሻሻ2
− 1 − 1

2
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GGX VNDF Sampling Routine

// Input Ve: view direction
// Input alpha_x, alpha_y: roughness parameters
// Input U1, U2: uniform random numbers
// Output Ne: normal sampled with PDF D_Ve(Ne) = G1(Ve) * max(0, dot(Ve, Ne)) * D(Ne) / Ve.z

vec3 sampleGGXVNDF(vec3 Ve, float alpha_x, float alpha_y, float U1, float U2) {

// Section 3.2: transforming the view direction to the hemisphere configuration
vec3 Vh = normalize(vec3(alpha_x * Ve.x, alpha_y * Ve.y, Ve.z));

// Section 4.1: orthonormal basis (with special case if cross product is zero)
float lensq = Vh.x * Vh.x + Vh.y * Vh.y;
vec3 T1 = lensq > 0 ? vec3(-Vh.y, Vh.x, 0) * inversesqrt(lensq) : vec3(1,0,0);
vec3 T2 = cross(Vh, T1);

// Section 4.2: parameterization of the projected area
float r = sqrt(U1);
float phi = 2.0 * M_PI * U2;
float t1 = r * cos(phi);
float t2 = r * sin(phi);
float s = 0.5 * (1.0 + Vh.z);
t2 = (1.0 - s)*sqrt(1.0 - t1*t1) + s*t2;

// Section 4.3: reprojection onto hemisphere
vec3 Nh = t1*T1 + t2*T2 + sqrt(max(0.0, 1.0 - t1*t1 - t2*t2))*Vh;

// Section 3.4: transforming the normal back to the ellipsoid configuration
vec3 Ne = normalize(vec3(alpha_x * Nh.x, alpha_y * Nh.y, std::max<float>(0.0, Nh.z)));

return Ne;
}
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Source: HEITZ, Eric. Sampling the GGX distribution of visible normals. Journal of Computer Graphics Techniques Vol, 2018, 7.4.

Sampling the GGX distribution of 
visible normals (VNDF) is equivalent 
to sampling the projected area of an 
ellipsoid, which can be mapped to 
sampling the projected area of a 
hemisphere

Note that this method of sampling a 
microfacet normal assumes all 
directions in the local coordinate system



GGX VNDF Sampling Routine

• Note that the GGX VNDF sampling scheme 
completely fills the sample space with 
weights very near 1.0 and firefly artifacts do 
not appear. Because this method never 
generate backfacing normals, it does not 
waste the sampling space like previous 
methods

• HEITZ, Eric; D'EON, Eugene. Importance sampling 
microfacet‐based BSDFs using the distribution of visible 
normals. In: Computer Graphics Forum. 2014. p. 103-112.
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GGX Microfacet BRDF

• Typical (e.g. GGX) specular component of microfacet BRDF has the following form

𝑓𝑟
𝐺𝐺𝑋 𝜔𝑖 , 𝜔𝑜 =

𝐷(𝜃𝑛ሻ 𝐹(𝜃ℎሻ 𝐺(𝜔𝑖 , 𝜔𝑜ሻ

4 cos 𝜃𝑜 cos 𝜃𝑖
• GGX VNDF sampling routine generates microfacet normals with probability

𝑝 𝜔𝑖 =
𝐷(𝜃𝑛ሻ𝐺1 𝜔𝑜 cos 𝜃ℎ

cos 𝜃𝑜

1

4 cos 𝜃ℎ
• Then the MC sample of surface reflectance multiplied by cos 𝜃𝑖 from RE equals to

𝑓𝑟
𝐺𝐺𝑋 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑖

𝑝 𝜔𝑖
=

𝐷(𝜃𝑛ሻ 𝐹(𝜃ℎሻ 𝐺(𝜔𝑖 , 𝜔𝑜ሻ
4 cos 𝜃𝑜 cos 𝜃𝑖

cos 𝜃𝑖

𝐷(𝜃𝑛ሻ𝐺1 𝜔𝑜 cos 𝜃ℎ
cos 𝜃𝑜

1
4 cos 𝜃ℎ

=
𝐹(𝜃ℎሻ 𝐺(𝜔𝑖 , 𝜔𝑜ሻ

𝐺1 𝜔𝑜
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ෝ𝒏

𝒙

𝜃𝑖𝜔0

𝜔𝑖

𝜔𝑚

𝜃ℎ

𝜃𝑜

𝜃ℎ

macroscopic surface
microfacet

𝜃𝑚

Distribution of visible normals (VNDF) Jacobian of the reflection operator



GGX Microfacet BRDF

• The final and simplified formulation of GGX VNDF-sampling BRDF after canceling 
most of the microfacet BRDF terms with the PDF terms is as follows

𝑓𝑟
𝐺𝐺𝑋 𝜔𝑖 , 𝜔𝑜 =

𝐹(𝜃ℎሻ 𝐺(𝜔𝑖 , 𝜔𝑜ሻ

𝐺1(𝜔𝑜ሻ

provided that cos 𝜃𝑖 = 1 and 𝑝𝑑𝑓 𝜔𝑖 = 1 in our MC estimator of reflected 
radiance in rendering equation

𝐿𝑟
𝐺𝐺𝑋 𝒙,𝜔0 =

1

𝑁
෍

𝑖=1

𝑁 𝐿𝑖 𝒙,𝜔𝑖 𝑓𝑟
𝐺𝐺𝑋 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑖
𝑝𝑑𝑓 𝜔𝑖

=
1

𝑁
෍

𝑖=1

𝑁

𝐿𝑖 𝒙,𝜔𝑖 𝑓𝑟
𝐺𝐺𝑋 𝜔𝑖 , 𝜔𝑜
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Roughness vs. Shininess

• To convert between the roughness 𝑚 in Beckmann distribution 
and shininess 𝛾 in (Blinn-)Phong distribution, the following formula is 
used

𝑚 =
2

𝛾 + 2

which gives a very similar result when both refractive index and 
roughness 𝑚 are small. When ior > 10 and 𝑚 > 0.5 then the two
distributions start to show difference and the difference will get larger 
when both 𝑚 and ior are getting larger.
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PBR Workflow

• Physically-based material workflows:
• Metallic-Roughness workflow

• Base color (albedo) ≠ diffuse is represented as a color map without any lighting in the 
range 30-240 sRGB (for dielectrics) or pure black color (for conductors)

• Metalicity is typically a binary (or linearly interpolated grayscale) texture containing 0‘s 
(dielectrics) and 1‘s (metals)

• Roughness – a grayscale linear texture in the range 0 (smooth) and 1 (rough)

• Specular-Glossines workflow
• Diffuse (Albedo) – RGB map

• Specular – RGB map

• Glossines – a grayscale linear texture that describes the surface irregularities that cause 
light diffusion. It is the inverse of the roughness map
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Filament PBR Materials
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Unity PBR Materials
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PBR Textures and Materials

• On-line sources of free seamless PBR textures with Diffuse, Normal, 
Displacement, Occlusion, Specularity and Roughness maps:
• https://cc0textures.com

• https://texturehaven.com

• https://www.poliigon.com

• https://freepbr.com

• https://3dtextures.me
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