
Computer Graphics I
460-4078

Fall 2024

Last update 31. 10. 2024



Global Illumination = Direct I. + Indirect I.
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indirect illumination

area light sources

caustics

glossy reflections

soft shadows



Global Illumination

• The light transport equation (LTE) is the governing equation that describes the 
equilibrium distribution of radiance in a scene.

• What makes evaluating the LTE difficult is the fact that incident radiance at a 
point is affected by the geometry and scattering properties of all of the objects in 
the scene. Rendering algorithms that account for this complexity are often called 
global illumination algorithms.

• The key principle behind the LTE is energy balance
Φ𝑜 −Φ𝑖 = Φ𝑒 −Φ𝑎

• The difference between the power leaving an object, Φ𝑜, and the power entering 
it, Φ𝑖, is equal to the difference between the power it emits, Φ𝑒, and the power it 
absorbs, Φ𝑎.
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Rendering Equation

• Reflection equation in angular form

𝐿𝑜 𝒙,𝜔0 = 𝐿𝑒 𝒙,𝜔0 + න

𝐻(𝒙)

𝐿𝑖 𝒙,𝜔𝑖 𝑓𝑟(𝒙, 𝜔𝑖 , 𝜔0) cos 𝜃𝑖 d𝜔𝑖
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Reflected radiance as the sum of 
contributions over the hemisphere

Emitted radianceOutgoing radiance

𝐿𝑟 𝒙, 𝜔0

ෝ𝒏 d𝜔𝑖

Incoming radiance 𝐿𝑖 𝒙, 𝜔𝑖 = 𝐿𝑜 𝒓 𝒙,𝜔𝑖 , −𝜔𝑖

𝒙

𝐿𝑜 𝒙, 𝜔0 =
𝐿𝑒 𝒙, 𝜔0 + 𝐿𝑟 𝒙, 𝜔0

𝜃0
𝜃𝑖

𝐻(𝒙)

𝝎𝑖

𝝎𝑜

Ray casting 
function

Angle between incoming 
direction and normal

Angle between incoming direction and normal

Scattering (BRDF) function

This equality holds due to the constancy of the radiance along 
the ray (𝐿𝑖(𝒙, 𝒚 → 𝒙) and 𝐿𝑜 𝒚, 𝒚 → 𝒙 must be the same 
provided that 𝒚 = 𝒓 𝒙,𝜔𝑖 )

• 𝒚

ෝ𝒏
𝐿𝑜 𝒚, 𝒚 → 𝒙 𝐿𝑗 𝒚,𝜔𝑗



Rendering Equation

• Note that the integral without the BRDF function represents irradiance

𝐸 𝒙 = න

𝐻(𝒙)

𝐿𝑖 𝒙,𝜔𝑖 cos 𝜃𝑖 d𝜔𝑖

• The irradiance of surface patch 𝒙 is given by integrating over all incoming 
radiance weighted by the projected area of the receiving surface in the 
direction of the incoming light directions
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Rendering Equation

• Rendering equation in angular form (𝐿 = 𝐿𝑜)

𝐿 𝒙,𝜔0 = 𝐿𝑒 𝒙,𝜔0 + න

𝐻(𝒙)

𝐿 𝒓 𝒙,𝜔𝑖 , −𝜔𝑖 𝑓𝑟(𝒙, 𝜔𝑖 , 𝜔0) cos 𝜃𝑖 d𝜔𝑖

• Fredholm integral equation of the second kind (unknown radiance 𝐿 appears 
both inside and outside of the integral)

• Describes the steady state
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constant limits of integration

𝜑 𝑡 = 𝑓 𝑡 + 𝜆න
𝑎

𝑏

𝐾 𝑡, 𝑠 𝜑 𝑠 d𝑠

Given the kernel 𝐾(𝑡, 𝑠), and the function 𝑓(𝑡), the 
problem is typically to find the function 𝜑(𝑡)



Examples of Rendering Equation Solution
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Source: KAJIYA, James T. The rendering equation. In: ACM 

Siggraph Computer Graphics. ACM, 1986. p. 143-150.

„Figure 6 is a 512 by 512 pixel image with 40 
paths per pixel. It was computed on an IBM 
3081 and consumed 1221 minutes of CPU time.“



Examples of Rendering Equation Solution
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Created with Cycles, an 
physically based production 
renderer natively 
integrated in Blender, 
Poser, and Rhino in less 
than a few tens of seconds 
on common GPU



Examples of Rendering Equation Solution
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Created with PG1 Renderer
(path tracing)



Examples of Rendering Equation Solution
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Created with PG1 Renderer
(path tracing)



Examples of Rendering Equation Solution
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Created with PG1 Renderer
(path tracing)



Light Transport Approximation Assumptions

• Geometrical optics

• No diffraction, no polarization, no interference

• Discrete-wavelength approximation of color

• Quantized approx. of dispersion (rainbows) and fluorescence (emission of light by a 
substance that has absorbed light or other electromagnetic radiation)

• No propagation media

• No atmospheric scattering (fog, clouds) or refraction (mirages)

• Light travels in a straight line

• No gravity lenses

• Superposition (adding lights)

• No non-linear reflecting materials

• Non-linearity of observer or display will be handled separately
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Source: Marc Levoy, Computer Graphics: 
Image Synthesis Techniques Notes



Rendering Equation

• Rendering equation in angular form (int. over hemisphere)

𝐿 𝒙,𝜔0 = 𝐿𝑒 𝒙,𝜔0 + න

𝐻(𝒙)

𝐿 𝒓 𝒙,𝜔𝑖 , −𝜔𝑖 𝑓𝑟(𝒙, 𝜔𝑖 , 𝜔0) cos 𝜃𝑖 d𝜔𝑖

• Substituting d𝜔𝑖 =
d𝐴𝑦 cos 𝜃𝑦

𝑟2
yields area form (int. over surface)

𝐿 𝒙,𝜔0 = 𝐿𝑒 𝒙,𝜔0 + න

𝐴

𝐿 𝒚 → 𝒙 𝑓𝑟 𝒚 → 𝒙 → 𝜔0 𝐺 𝒙, 𝒚 𝑉(𝒙, 𝒚)d𝐴𝑦
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Scene surface

Geometry term 𝐺 𝒙, 𝒚 =
cos 𝜃𝑖 cos 𝜃𝑦

𝒙−𝒚 2 Visibility term {0, 1}



Angular and Area Form of Rendering Equation

Angular Form

• Find the closes intersection 𝑝

• For each direction from 𝑝, find the 
nearest surface or background

• Return the outgoing radiance at that 
point as the sum of radiance 
contributions multiplied with the 
cosine-weighted BRDF and average 
the result over the hemisphere

• General use case

Area Form

• Find the closes intersection 𝑝

• Find all other points on the scene 
surface (mutually) visible from 𝑝

• Return the outgoing radiance at that 
point as the sum of radiance 
contributions multiplied with the 
geometry term-weighted BRDF and 
average the result over the visible 
surface points

• Calculating DI for area light sources
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Operator form of Rendering Equation

• Rendering equation in angular form (int. over hemisphere)

𝑇 ∘ 𝐿 𝒙,𝜔0 = 𝐻(𝒙) 𝐿 𝒓 𝒙,𝜔𝑖 , −𝜔𝑖 𝑓𝑟(𝜔𝑖 , 𝜔0) cos 𝜃𝑖 d𝜔𝑖

• Rendering equation rewritten with linear transport operator 𝑇

𝐿 = 𝐿𝑒 + 𝑇 ∘ 𝐿, formal solution 𝐿 = 𝐼 − 𝑇 −1 ∘ 𝐿𝑒 (practically unusable)

• Recursive substitution of 𝐿 yields the Neumann series

𝐿 = 𝐿𝑒 + 𝑇 ∘ 𝐿 = 𝐿𝑒 + 𝑇 ∘ 𝐿𝑒 + 𝑇 ∘ 𝐿 = ⋯

= 𝐿𝑒 + 𝑇 ∘ 𝐿𝑒 + 𝑇2 ∘ 𝐿𝑒 + 𝑇3 ∘ 𝐿𝑒 +⋯+ 𝑇∞ ∘ 𝐿𝑒
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Emission only Direct illumination Indirect illumination

1st bounce 2nd bounceOpenGL Negligible contribution



Representations Used in Realistic Rendering

• At the smallest scale reflectance 
function accurately captures the 
appearance of a surface

• As individual surface features become 
larger than one pixel, texture maps, 
bump maps, and texels can be used to 
show surface features 

• At the largest scale, the geometry must 
be modeled explicitly
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Source: WESTIN, Stephen H.; ARVO, James R.; TORRANCE, Kenneth E. 
Predicting reflectance functions from complex surfaces. ACM, 1992.



Light Interaction with Surfaces
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• Absorption

• Reflection

• Transmission or refraction

• Reflection is the relation of reflected radiance 𝐿𝑟 to 
incoming radiance 𝐿𝑖

• Determines the appearance of objects on 
microscopic level

Geometry → Bump maps → Texels → BRDF

Macrostructures Microstructures Source: MATUSIK, Wojciech. A data-driven 
reflectance model. 2003. PhD Thesis. 
Massachusetts Institute of Technology.



Weakening Factor

• What does the cosinus term stand for?
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ෝ𝒏 cos 𝜃𝑖 = 45 = 0.71

𝜃𝑖

∙ cos 45 =

∙ cos 45 =

𝐴projected = න
𝐴

cos 𝜃𝑖 d𝐴

ෝ𝒏

𝜃𝑖



Weakening Factor
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• What does the cosinus term stand for?

• Here we have another example: What will happen to the areas 𝐴1 and 𝐴2 of 
triangles projected onto a plane given by its normal vector ෝ𝒏?

𝐴2

𝐴1

𝐴1
⊥

𝐴2
⊥

ෝ𝒏

ෝ𝒏

ෝ𝒏

ෞ𝒏1

ෞ𝒏2

1

1



Types of (Idealized) Reflections
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specular reflection glossy reflection diffuse reflection

specular reflection + refraction diffuse + glossy reflection



Types of Materials

• Metals (conductors)
In the case of metals, free electrons prevent light from penetrating the metal 
surface, so scattering cannot occur and metallic substances show only specular 
reflection and no diffuse reflection

• Dielectrics (insulators)

Insulators exhibit significant amount of diffuse reflectivity while the specular 
reflectance is limited

• Semiconductors

We will not deal with them here
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BRDF (sr-1)

• Bidirectional Reflectance Distribution Function

𝑓𝑟 𝜔𝑖 , 𝜔𝑜 = 𝑓𝑟 𝜔𝑖 → 𝜔𝑜 = 𝑓𝑟 𝜔𝑜 → 𝜔𝑖 =
d𝐿𝑟 𝒙, 𝜔𝑜

𝐿𝑖 𝒙,𝜔𝑖 cos 𝜃𝑖 d𝜔𝑖
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ෝ𝒏
d𝜔𝑖

𝐿𝑖 𝒙,𝜔𝑖

𝒙

𝐿𝑟 𝒙, 𝜔0

𝜃0
𝜃𝑖

I. Helmholz reciprocity

II. Energy conservation

න
𝐻

𝑓𝑟 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑖 d𝜔𝑖 ≤ 1

Surface cannot reflect more energy 
than it receives

III. Positivity
Range 𝑓𝑟 ∈ ۦ )0,∞

d𝐸(𝒙, 𝜔𝑖)

incoming "partial" 
irradiance of point 𝒙 from  
direction 𝜔𝑖

"total" irradiance of point 𝒙 from
all directions given by 𝐻(𝒙)

part of the reflected radiance 
from point 𝒙 in direction 𝜔𝑜

…
 in

d
u

ced
 b

y …
Radiance and irradiance relation

𝐿𝑟 𝒙, 𝜔𝑜 = 𝑓𝐿𝑎𝑚𝑏𝑒𝑟𝑡න
𝐻(𝒙)

𝐿𝑖 𝒙,𝜔𝑖 cos 𝜃𝑖 d𝜔𝑖 =
𝜌𝑑
𝜋
𝐸(𝒙)

e.g.



BRDF

• Validation criteria (actually very weak conditions)

• positivity

• reciprocity

• energy conservation

• Those criteria are not sufficient to validate a new model, because they are not
restrictive enough. Intuitively, one could come up with some random BRDF model
that easily satisfies those three conditions, and yet fails to relate to any
meaningful physical model.

Source: E. Heitz, Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs, 2014.
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(An)isotropic BRDF

• Isotropic BRDF is invariant to a rotation around surface normal

𝑓𝑟 𝜃𝑖 , 𝜑𝑖 , 𝜃𝑜, 𝜑𝑜 = 𝑓𝑟 𝜃𝑖 , 𝜑𝑖 +𝝋, 𝜃𝑜, 𝜑𝑜 +𝝋 = 𝑓𝑟(𝜃𝑖 , 𝜃𝑜, 𝝋𝒊 −𝝋𝒐)

• Only 3 instead of 4 directional degrees of freedom
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Source: https://google.github.io/filament/images/material_anisotropic.png

isotropic BRDF anisotropic BRDF



BRDF Components

Ideal diffuse reflection (Lambert)

+

Ideal specular reflection (mirror)

+

Glossy reflections (directional diffuse)

=

General BRDF
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Taxonomy of Reflectance Functions
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Source: WEYRICH, Tim, et al. Principles of 
appearance acquisition and representation. 
Now Publishers Inc, 2009.

16D with additional 𝜃𝑡 , 𝜙𝑡 (transmittance)

BRDF + texture



Basic BRDFs

• Perfect mirror

𝑓𝑟
𝑀𝑖𝑟𝑟𝑜𝑟 𝜔𝑖 , 𝜔𝑜 = 𝜌𝑠 ∙ ቊ

∞ if 𝜃𝑖 = 𝜃𝑜
0 otherwise

= 𝜌𝑠
𝛿 cos 𝜃𝑖−cos 𝜃𝑜 𝛿 𝜑𝑜−𝜑𝑖+ 𝜋

cos 𝜃𝑖

where 𝜌𝑠 ≤ 1

• Perfect diffusor (Lambertian surface)

𝑓𝑟
𝐿𝑎𝑚𝑏𝑒𝑟𝑡 𝜔𝑖 , 𝜔𝑜 =

𝜌𝑑

𝜋

• Modified Phong (physically correct but still empirical model)

𝑓𝑟
𝑃ℎ𝑜𝑛𝑔

𝜔𝑖 , 𝜔𝑜 =
𝜌𝑑

𝜋
+

𝜌𝑠(𝛾+2)

2𝜋
𝑐𝑜𝑠 𝜃𝑟

𝛾 where 𝜌𝑑 + 𝜌𝑠 ≤ 1 and

𝜃𝑟 is angle between 𝜔𝑜 and perfect specular reflection of 𝜔𝑖 or vice versa
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𝜌𝑑 (albedo) is the ration of outgoing and incoming flux

All incident radiance is reflected in a single 
specular direction and scaled by factor 𝜌𝑠
(specular albedo)



Pure Specular Reflector (Mirror)
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• From energy conservation criterium we know that

0
2𝜋
0

𝜋

2
𝛿 cos 𝜃𝑖−cos 𝜃𝑜 𝛿 𝜑𝑜−𝜑𝑖+𝜋

cos 𝜃𝑖
cos 𝜃𝑖 sin 𝜃𝑖 d𝜃𝑖d𝜑𝑖 = 1

• 𝑝𝑑𝑓 𝜔𝑖 = 𝛿 cos 𝜃𝑖 − cos 𝜃𝑜 𝛿 𝜑𝑜 − 𝜑𝑖 + 𝜋

• Let's check that 𝐻 𝑝𝑑𝑓 𝜔𝑖 d𝜔𝑖 = 1 (pdf must sum up to 1)

0
2𝜋
0

𝜋

2 𝛿 cos 𝜃𝑖 − cos 𝜃𝑜 𝛿 𝜑𝑜 − 𝜑𝑖 + 𝜋 sin 𝜃𝑖 d𝜃𝑖d𝜑𝑖 = 1

• Recall that 𝛿 is the Dirac delta distribution defined such that 𝛿 𝑥 = 0 for all 𝑥 ≠

0 and −∞
∞
𝛿 𝑥 d𝑥 = 1

𝜃𝑖𝜃𝑜

𝐿𝑖 𝒙,𝜔𝑖𝐿𝑟 𝒙, 𝜔𝑜
ෝ𝒏

න න



Diffuse Material

• Incident ray is scattered at many angles

• Ideal diffuse material is said to be Lambertian = equal luminance (radiance) when 
viewed from all directions lying in „upper“ hemisphere

• Good examples of solid diffuse reflectors are plaster, paper, or polycrystalline 
materials (exhibit subsurface scattering mechanism caused by internal 
subdivisions)

• Few materials do not cause diffuse reflection: metals (do not allow light to enter), 
gases, liquids, glass, and transparent plastics
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Diffuse BRDF

• For any combination of input and output directions, we want the surface 
reflectance to be a constant and energy conserving

1 ≥ න
𝐻 𝒙

𝑓𝑟 𝒙,𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑖 d𝜔𝑖 = 𝑓𝑟න
0

2𝜋

න
0

Τ𝜋 2

cos 𝜃𝑖 sin 𝜃𝑖 d𝜃𝑖d𝜑𝑖 =

= −𝑓𝑟න
0

2𝜋

න
1

0

𝑢 d𝑢 d𝜑𝑖 = 𝑓𝑟න
0

2𝜋 𝑢2

2
0

1

d𝜑𝑖 =
𝑓𝑟
2
න
0

2𝜋

d𝜑𝑖 =
2𝜋𝑓𝑟
2

= 𝜋𝑓𝑟

• To conclude, it must hold that 1 ≥ 𝜋𝑓𝑟 ⟹ 𝑓𝑟 =
𝑎𝑙𝑏𝑒𝑑𝑜

𝜋
where 𝑎𝑙𝑏𝑒𝑑𝑜 ∈ 0,1 3
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𝑢 = cos 𝜃𝑖
d𝑢 = −sin 𝜃𝑖 d𝜃𝑖 substitution



Monte Carlo Estimator

• Suppose we want to evaluate 1D integral with MC estimator given uniform
random samples 𝑥𝑖 ∈ 𝑎, 𝑏
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𝐹

𝑎 𝑏

𝑓 𝑥

𝑥

𝑦

𝐹𝑁

𝑎 𝑏 𝑥

𝑦

E[𝑓 𝑥𝑖 ]

𝑓 𝑥0

𝑓 𝑥3

𝑓 𝑥2𝑓 𝑥1

E 𝑓 𝑥𝑖 =
1

𝑁


𝑖=0

𝑁−1

𝑓(𝑥𝑖)

𝐹 ≈ 𝐹𝑁 = 𝑏 − 𝑎 E 𝑓 𝑥𝑖 =
𝑏 − 𝑎

𝑁


𝑖=0

𝑁−1

𝑓(𝑥𝑖)𝐹 = න
𝑎

𝑏

𝑓 𝑥 d𝑥



Monte Carlo Estimator

• Expected value of the etimator is equal to the integral of 𝑓
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Note that 𝑝(𝑥) =
1

𝑏−𝑎

E[𝐹𝑁] = E
𝑏 − 𝑎

𝑁


𝑖=0

𝑁−1

𝑓(𝑥𝑖)

=
𝑏 − 𝑎

𝑁


𝑖=0

𝑁−1

E[𝑓 𝑥𝑖 ]

=
𝑏 − 𝑎

𝑁


𝑖=0

𝑁−1

න
𝑎

𝑏

𝑓 𝑥 𝑝(𝑥)d𝑥

=
1

𝑁


𝑖=0

𝑁−1

න
𝑎

𝑏

𝑓 𝑥 d𝑥

= න
𝑎

𝑏

𝑓 𝑥 d𝑥



Monte Carlo Estimator

• Same holds for estimators with an arbitrary PDF 𝑝(𝑥)
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Note that 𝑝 𝑥 must be nonzero
for all 𝑥 where 𝑓(𝑥) ≠ 0

E[𝐹𝑁] = E
1

𝑁


𝑖=0

𝑁−1
𝑓(𝑥𝑖)

𝑝(𝑥𝑖)

=
1

𝑁


𝑖=0

𝑁−1

න
𝑎

𝑏 𝑓(𝑥)

𝑝(𝑥)
𝑝(𝑥)d𝑥

=
1

𝑁


𝑖=0

𝑁−1

න
𝑎

𝑏

𝑓 𝑥 d𝑥

= න
𝑎

𝑏

𝑓 𝑥 d𝑥



Monte Carlo Estimator For Mirror BRDF

• Recall that for mirror BRDF we have

𝑓𝑟 𝜔𝑖 , 𝜔𝑜 = 𝜌𝑠
𝛿 cos 𝜃𝑖 − cos 𝜃𝑜 𝛿 𝜑𝑜 − 𝜑𝑖 + 𝜋

cos 𝜃𝑖
and

𝑝𝑑𝑓 𝜔𝑖 = 𝛿 cos 𝜃𝑖 − cos 𝜃𝑜 𝛿 𝜑𝑜 − 𝜑𝑖 + 𝜋

That gives us the (specularly) reflected (estimated) radiance as follows

𝐿𝑟 𝒙,𝜔𝑜 =
1

𝑁


𝑖=0

𝑁−1
𝐿𝑖 𝒙,𝜔𝑖 𝑓𝑟 𝜔𝑖 , 𝜔𝑜 cos 𝜃𝑖

𝑝(𝜔𝑖)
=
1

𝑁


𝑖=0

𝑁−1

𝐿𝑖 𝒙,𝜔𝑖 𝜌𝑠
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Exactly the same 
result as in Whitted
model for reflection 
of light



Path Tracing

for each pixel in the image:
pixel := 0
for each sample:

ray := make_primary_ray(pixel)
pixel += trace_ray(ray, 0)

pixel := to_srgb(pixel / number_of_samples) // back to nonlinear space

trace_ray(ray, depth):
if ( depth > max_depth ) return 0
p := find_closest_intersection(ray, scene)
if ( no hit ) return background
L_e := get_emission(p, omega_o)   // note that omega_o = -ray.dir
if L_e ≠ 0: return L_e // we hit a source and stopped our light path here
omega_i, pdf := sample_hemisphere(normal)
L_i := trace_ray(make_secondary_ray(p, omega_i), depth + 1)
f_r := Albedo / 𝜋 // e.g. Lambert BRDF
L_r := L_i * f_r * (omega_i ∙ normal) / pdf
return L_r
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Convergence
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10 spp 100 spp 1k spp

10k spp 100k spp 1M spp



Path Tracing
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Path traced Cornell Box

Naive implementation without using 
variance reduction techniques or direct 
illumination sampling.

20.000 spp, render time ≈ 1 hour

Perfect mirror

Area light source

Lambertian surfaces

Phong BRDF Soft shadows

Color bleed



(Hemi)sphere Sampling
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• Random point on a unit sphere (i.e. direction) 𝜔𝑖 = 𝑥, 𝑦, 𝑧 where

𝑥 = 2 cos 2𝜋𝜉1 𝜉2 1 − 𝜉2

𝑦 = 2 sin 2𝜋𝜉1 𝜉2 1 − 𝜉2

𝑧 = 1 − 2𝜉2

pdf 𝜔𝑖 =
1

4𝜋

• Hemisphere sampling is almost the same: accept sample with 𝜔𝑖 ∙ 𝒏 ≥ 0
otherwise flip the sample (i.e. −𝜔𝑖)

pdf 𝜔𝑖 =
1

2𝜋

𝜉1 and 𝜉2 are pseudo random
uniform variables in the range ۦ )0, 1

ෝ𝒏

𝜔𝑖



Hemisphere Sampling
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• Random point on a unit hemisphere (i.e. direction) 𝜔𝑖 = 𝑥, 𝑦, 𝑧 where

𝑥 = cos(2𝜋𝜉1) 1 − 𝜉2
2

𝑦 = sin 2𝜋𝜉1 1 − 𝜉2
2

𝑧 = 𝜉2

pdf 𝜔𝑖 =
1

2𝜋

• Note that we need to transform the generated sample from the local reference 
frame to the world space of the scene

𝜉1 and 𝜉2 are pseudo random
uniform variables in the range ۦ )0, 1

ෝ𝒏

𝜔𝑖



Hemisphere Cosine-weighted Sampling
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• Random point on a unit sphere (i.e. direction) 𝜔𝑖 = 𝑥, 𝑦, 𝑧 where

𝑥 = cos 2𝜋𝜉1 1 − 𝜉2

𝑦 = sin 2𝜋𝜉1 1 − 𝜉2

𝑧 = 𝜉2

pdf 𝜔𝑖 =
cos 𝜃

𝜋

• Note that we need to transform the generated sample from the local reference 
frame to the world space of the scene

𝜉1 and 𝜉2 are pseudo random
uniform variables in the range ۦ )0, 1



Local Reference Frame

• Hemisphere samples generated in RS must be (at some point in the ray tracing 
pipeline) transformed to WS
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ෝ𝒏

ෝ𝒏

ෝ𝒏

𝜔𝑖

𝜔𝑖

𝜔𝑖

𝒐2 𝒐1

𝒐2 𝒐1

𝒐2

𝒐1

𝒙

𝒙

𝒙

In the case of isotropic BRDFs, the rotation of vectors 
𝒐1 and 𝒐2 around the normal ෝ𝒏 does not matter

𝜔𝑖
𝑊𝑆 = 𝑇𝑅𝑆→𝑊𝑆𝜔𝑖

𝑅𝑆



Local Reference Frame

• Derive transformation matrix (RS → WS) from surface normal ෝ𝒏

• Vector ෝ𝒏 and any non-parallel vector 𝒂 define a plane (we assume that the plane is 
passing through the origin)

• This plane has normal ෝ𝒐2 such that ෝ𝒐2 = ෝ𝒏 × 𝒂 and by definition, the vector ෝ𝒐2 is 
perpendicular to ෝ𝒏. The remaining question is how to construct such a vector 𝒂?

inline Vector3 orthogonal( const Vector3 & n )

{

return ( abs( n.x ) > abs( n.z ) ) ? Vector3( n.y, -n.x, 0.0f ) : Vector3( 0.0f, n.z, -n.y );

}

• The remaining third axis can be computed as ෝ𝒐1 = ෝ𝒐2 × ෝ𝒏 yelding vector 
perpendicular to both ෝ𝒐2 and ෝ𝒏

• Now we can construct a change-of-basis matrix 𝑇𝑅𝑆→𝑊𝑆 that transforms vector in the 
reference (local) space (RS) to the world space (WS)
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ෝ𝒐2 where 𝒂 = (0,0,1) ෝ𝒐2 where 𝒂 = (1,0,0)



Local Reference Frame

𝑇𝑅𝑆→𝑊𝑆 =
⋮ ⋮ ⋮
ෝ𝒐1 ෝ𝒐2 ෝ𝒏
⋮ ⋮ ⋮

• Inverse transformation can be computed as follows
𝑇𝑊𝑆→𝑅𝑆 = 𝑇𝑅𝑆→𝑊𝑆

−1

• Moreover, the matrix 𝑇𝑅𝑆→𝑊𝑆 belongs to a special orthogonal group 𝑆𝑂(3), also 
called the 3D rotation group (matrices of orthonormal basis) for which holds that 
𝑄𝑄𝑇 = 𝐼 for every 𝑄 ∈ 𝑆𝑂(𝑛). Also note that for any nonsingular 𝐴: 𝐴𝐴−1 = 𝐼

• This property allows us to calculate the inversion of the transformation matrix 
using simpler (and faster) transposition

𝑇𝑊𝑆→𝑅𝑆 = 𝑇𝑅𝑆→𝑊𝑆
−1 = 𝑇𝑅𝑆→𝑊𝑆

𝑇
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Tangent-Bitangent-Normal

• 𝑃1 − 𝑃0 = 𝒆1 = ∆𝑢1𝒕 + ∆𝑣1𝒃

• 𝑃2 − 𝑃0 = 𝒆2 = ∆𝑢2𝒕 + ∆𝑣2𝒃 𝒆1,2 and 𝒕, 𝒃 are 3D row vectors

• ∆𝑢1 = 𝑃1
𝑢 − 𝑃0

𝑢, ∆𝑣1 = 𝑃1
𝑣 − 𝑃0

𝑣

• ∆𝑢2 = 𝑃2
𝑢 − 𝑃0

𝑢, ∆𝑣2 = 𝑃2
𝑣 − 𝑃0

𝑣
𝑃𝑖
{𝑢,𝑣}

are 𝑢, resp. 𝑣, texture coordinates of 𝑖-th vertex

… and we want to solve for 𝒕 and 𝒃…

•
𝒆1
𝒆2

=
∆𝑢1 ∆𝑣1
∆𝑢2 ∆𝑣2

𝒕
𝒃

•
𝒕
𝒃

=
∆𝑢1 ∆𝑣1
∆𝑢2 ∆𝑣2

−1 𝒆1
𝒆2

=
1

∆𝑢1∆𝑣2−∆𝑢2∆𝑣1

∆𝑣2 −∆𝑣1
−∆𝑢2 ∆𝑢1

𝒆1
𝒆2
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Side note: Texture coordinates are interpolated linearly 
(barycentric interpolation) across the triangle. Hence, 
the derivatives are all constant and we can calculate 
tangents/bitangents per triangle.

Transformation matrix 𝑇𝐵𝑁𝑇𝑆→𝑊𝑆 =
⋮ ⋮ ⋮
ො𝒕 𝒃 ෝ𝒏
⋮ ⋮ ⋮



Tangent-Bitangent-Normal

• It is not necessarily true that the tangent vectors ො𝒕 and 𝒃 are 
perpendicular to each other or to the normal vector ෝ𝒏

• We may assume that these three vectors will be nearly orthogonal. 
Use Gram-Schmidt orthogonalization proces to fix that

• To find the tangent vectors for a single vertex, we average the 
tangents for all triangles sharing that vertex in a manner similar to the 
way in which vertex normals are commonly calculated. In the case 
that the neighboring triangles have discontinuous texture mapping, 
vertices along the border are generally already duplicated since they 
have different mapping coordinates anyway. 
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The Gram–Schmidt Process

• The Gram–Schmidt process works as follows

where projෝ𝒖 𝒗 = 𝒗 ∙ ෝ𝒖 ෝ𝒖
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Source: https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process



Tangent-Bitangent-Normal

• Using this process, orthogonal (but still unnormalized) tangent 
vectors 𝒕′ and 𝒃′ are given by

𝒕′ = 𝒕 − 𝒕 ∙ ෝ𝒏 ෝ𝒏

𝒃′ = 𝒃 − 𝒃 ∙ ෝ𝒏 ෝ𝒏 − Τ𝒃 ∙ 𝒕′ 𝒕′ 𝒕′
2

and the new 𝑇𝐵𝑁 matrix takes the form

𝑇𝐵𝑁𝑇𝑆→𝑊𝑆 =
⋮ ⋮ ⋮
𝒕′ 𝒃′ ෝ𝒏
⋮ ⋮ ⋮
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Path Tracing - Caustic
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Glass

Multiple rays of light pass through reflective or transmissive
(refractive) mediums and are cast onto smaller surface area



Path Classification

• Whitted-style ray tracer:
E S* D L

• Path tracer:
E (S|D)* L

E: Eye

S: both reflection and refraction

D: Diffuse

L: Light source
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ESL

EDL

EDDDL

* 0…𝑛 hits

ESDL



Sampling Strategies

• Uniform sampling (simple but terribly inefficient for specular highlights)

• Cosine distributed sampling (good for diffuse surface)

• BRDF proportional sampling (for glossy surfaces)

• Proportional to the incident radiance (usually unknown, can be determined 
by other techniques, e.g. photon mapping)

• Combination
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න

𝐻(𝒙)

𝐿𝑖 𝒙,𝜔𝑖 𝑓𝑟(𝒙, 𝜔𝑖 , 𝜔0) cos 𝜃𝑖 d𝜔𝑖



Area Light Direct Sampling
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Russian Roulette

• Technique that can be used to terminate infinite recursive algorithms 
(light bounces around the scene infinitely)

• Reduces the effort spent evaluating unimportant samples that are 
expensive to evaluate and make a small contribution to the final 
result (e.g. long light path reaching the light source after many energy 
dissipating bounces)

• O1: Termination after fixed number of bounces is biased

• O2: With probabilistic termination, we avoid infinite paths without 
bias and the result will be unbiased (i.e. no error is introduced by this 
step)
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Russian Roulette

• Pick any value 𝛼 ∈ 0, 1 , 1 − 𝛼 is absorption probability

• Keep the same PDF and sampling of „squeezed“ function 𝑓

𝐼 = 0
1
𝑓 𝑥 d𝑥 = 0

𝛼 𝑓 𝑥/𝛼

𝛼
d𝑥
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𝐼

0 1

𝑓 𝑥

𝑥

𝑦

𝐼

0 1

𝑓 𝑥/𝛼

𝛼

𝑥

𝑦

𝛼

𝐼 ≈
1

𝑁


𝑖=0

𝑁−1
𝑓 𝑥𝑖
𝑝 𝑥𝑖

≈
1

𝑁


𝑖=0

𝑁−1
𝑓(𝑥𝑖/𝛼)

𝛼 𝑝(𝑥𝑖)



Russian Roulette - Example

• 𝐼𝑓 = 0
2
𝑓 𝑥 d𝑥 = −3cos(𝑥) 0

2 ≈ 4.248

• 𝑔 𝑥 =
𝑓

𝑥

𝛼

𝛼
=

3sin
𝑥

𝛼

𝛼

• 𝐼𝑔 = 0
2𝛼
𝑔 𝑥 d𝑥 = −3cos

𝑥

𝛼 0

2𝛼
≈ 4.248

• 𝐼𝑓 = 𝐼𝑔
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2𝛼

where 𝛼 = 0.8



Russian Roulette - Example

float I = 0.0f;

for ( int i = 0; i < N; ++i ) {

float x_i = random->next_float( tid, 0.0f, 2.0f );

float pdf_x = 1.0f / 2.0f;

float f_i = 3.0f * sinf( x_i );

I += f_i / pdf_x;

}

I /= N;

I → 4.248170

float I = 0.0f;

float a = 0.8f;

for ( int i = 0; i < N; ++i ) {

float x_i = random->next_float( tid, 0.0f, 2.0f );

float pdf_x = 1.0f / 2.0f;

if ( x_i < 2.0f * a ) {

float f_i = 3.0f * sinf( x_i / a );

I += f_i / ( a * pdf_x );

} else {

// I += 0.0f;

}

}

I /= N;

I → 4.248834

float I = 0.0f;

float a = 0.8f;

for ( int i = 0; i < N; ++i ) {

float x_i = random->next_float( tid, 0.0f, 2 * a );

float pdf_x = 1.0f / ( 2.0f * a );

float f_i = 3.0f * sinf( x_i / a );

I += f_i / ( a * pdf_x );

}

I /= N;

I → 4.248680
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MC without RR MC with RR on full range ۦ )0,2 MC on restricted range ۦ )0,2𝛼



Russian Roulette

• Pick any value 𝛼 ∈ 0, 1 and uniform random number 𝜉 ∈ ۦ )0, 1

• In PT, 𝛼 represents the prob. of non-terminated path (1 − 𝛼 is absorption 
probability) and can be deduced from diffuse or specular coefficient (or any other
representant of path throughput)

• Replace the original function/estimator with the following one

• g 𝑥 = ቐ
1

𝛼
𝑓 𝑥 , with prob. 𝛼 (i.e. if 𝛼 > 𝜉)

0, otherwise (i.e. with prob. 1 − 𝛼 or if 𝛼 ≤ 𝜉)

• E g 𝑥 = 𝛼
1

𝛼
𝑓 𝑥 + 1 − 𝛼 0 = 𝑓(𝑥)
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Does Russian Roulette really provide an unbiased result? Yes, it does!

non-terminated path

terminated path



Russian Roulette

trace_ray(ray, depth):

𝛼 = Albedo // or anything else representing the throughput of the entire light path

if ( 𝛼 <= random ) or ( depth > 100 ) return 0 // expl. depth is termination guarantee

p := find_closest_intersection(ray, scene)

if ( no hit ) return background

L_e := get_emmision(p, omega_o)   // note that omega_o = -ray.dir

if L_e ≠ 0: return L_e // we hit a source and stopped our light path here

omega_i, pdf := sample_hemisphere(normal)

L_i := trace_ray(make_secondary_ray(p, omega_i), depth + 1)

f_r := Albedo / 𝜋 // e.g. Lambert BRDF

L_r := L_i * f_r * (omega_i ∙ normal) / ( pdf * 𝛼 ) // sample is weighted by prob. 𝛼

return L_r
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How do we compensate for energy losses caused by terminating low
throughput paths? We boost the energy of the non-terminated paths 
by their probability.



Russian Roulette
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No RR and max depth = 50 With RR (𝜌 = min(Albedo.max(), 0.95)) 
and max depth = 50

Samples weighted by 𝜌
(image has correct brightness)

Weighting by 𝜌 omited
(image is darker)



Cornell Box

• Traditional test scene used for the confirmation of the accuracy of light transport 
simulations

• http://www.graphics.cornell.edu/online/box/data.html
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Source: http://hatchstudios.com/work/cornell-
box-physical-model/

-250,-250,0

250,250,0

0

+

+
+

+
250,250,500

+
-50,-50,490

+
50,50,490

newmtl white_light
Ke 20.0 20.0 20.0



Furnace Test

• Test scene: white sphere (or any other surface) surrounded by white environment

• If the sphere is supposed to reflect 100 % of radiance (no matter how) coming 
from all directions we should see the same amount of radiance (i.e. 100 % of 
background radiance) reflected from each point of the sphere
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wrong result
(surface is too dim)

wrong result
(surface is too bright)

correct result
(surface disappear)

The name comes from the property of the furnace in thermal equilibrium. 
When the furnace reaches equilibrium (when the amount of energy received 
at a given point equals the amount of energy radiated), the interior of the 
furnace has a uniform appearance so that all geometric features disappear.
Source: https://www.scratchapixel.com



Probability

• Joint prob. 𝑃 𝐴, 𝐵 = 𝑃 𝐴 ∧ 𝐵 = 𝑃 𝐴 and 𝐵 = 𝑃 𝐴 𝐵 𝑃 𝐵 = 𝑃 𝐵 𝐴 𝑃 𝐴 =
iff 𝐴 and 𝐵 are independent = 𝑃 𝐵 𝑃 𝐴 = 𝑃 𝐴 𝑃(𝐵)

• 𝑃(𝑥) is prob. density of 𝑥 (a random variable)

• Bayes' theorem 𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
=

𝑃(𝐴,𝐵)

𝑃(𝐵)
=

𝑃(𝐴|𝐵)𝑃(𝐵)

𝑃(𝐵)

• Marginal prob. (no special notation) 𝑃(𝐴) = σ𝑖 𝑃(𝐴, 𝑦 = 𝐵𝑖)
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symmetrical

conditional prob.
(| = given)prob. of event 𝐴

𝑃(𝑥 = 𝐴)

sum rule

The marginal (simple) prob. is 
different from the conditional 
prob. because it considers the 
union of all events for the 
second variable rather than 
the probability of a single 
event.

𝑃 𝐴 𝐵 ≠ 𝑃 𝐵 𝐴 (not symmetrical)

Note that 𝑃(𝐵) must be nonzero



Probability

Histogram 𝐴1 𝐴2 𝐴3

𝐵1 𝟑𝟎 𝟓 𝟐𝟔 61

𝐵2 𝟐𝟎 𝟒𝟎 𝟑𝟔 96

50 45 62 157

Fall 2024 Computer Graphics I 63

𝑃(𝐴𝑖, 𝐵𝑗) 𝐴1 𝐴2 𝐴3 𝑃(𝐵𝑗)

𝐵1 0.191 0.032 0.166 0.389

𝐵2 0.127 0.255 0.229 0.611

𝑃(𝐴𝑖) 0.318 0.287 0.395 1

Joint probs.

Marginal (simple) probs.

Marginal dist. of r. v. 𝑥

2. Marginal dist. of r. v. 𝑦

3. Conditional probs.

𝑃 𝐴1 𝐵1 =
𝑃(𝐴1, 𝐵1)

𝑃(𝐵1)
=
0.191

0.389
= 0.492

𝑃 𝐵1 𝐴1 =
𝑃(𝐵1, 𝐴1)

𝑃(𝐴1)
=
0.191

0.318
= 0.600

𝑃(𝐵𝑖|𝐴𝑗) 𝐴1 𝐴2 𝐴3

𝐵1 0.600 0.111 0.419

𝐵2 0.400 0.889 0.581

1 1 1

𝑃(𝐴𝑖|𝐵𝑗) 𝐴1 𝐴2 𝐴3

𝐵1 0.492 0.082 0.426 1

𝐵2 0.208 0.417 0.375 1

Bayes' theorem 𝑃 𝐴1 𝐵1 =
𝑃(𝐵1|𝐴1)𝑃(𝐴1)

𝑃(𝐵1)
=

0.600 ∙ 0.318

0.389
= 0.492 =

0.191

0.389
=

𝑃(𝐴1,𝐵1)

𝑃(𝐵1)

1. Probability dist./mass function

𝑃 𝐴3, 𝐵2 ≝ 𝑃 𝐵2 𝐴3 𝑃 𝐴3 = 0.581 ∙ 0.395 = 0.229

𝑃 𝐴3, 𝐵2 ≝ 𝑃 𝐴3 𝐵2 𝑃 𝐵2 = 0.375 ∙ 0.611 = 0.229

=

Note that 𝑃 𝐴1, 𝐵1 = 0.191 ≠ 0.124 = 0.318 ∙ 0.389 = 𝑃 𝐴1 𝑃 𝐵1 because r. v. 𝑥 and r. v. 𝑦 are not independent!

Two dependent random variables



Probability

Histogram 𝐴1 𝐴2 𝐴3

𝐵1 𝟏𝟗 𝟏𝟕 𝟐𝟒 61

𝐵2 𝟑𝟏 𝟐𝟖 𝟑𝟖 96

50 45 62 157
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𝑃(𝐴𝑖, 𝐵𝑗) 𝐴1 𝐴2 𝐴3 𝑃(𝐵𝑗)

𝐵1 0.124 0.111 0.153 0.389

𝐵2 0.195 0.175 0.241 0.611

𝑃(𝐴𝑖) 0.318 0.287 0.395 1

Joint probs.

Marginal (simple) probs.

Marginal dist. of r. v. 𝑥

2. Marginal dist. of r. v. 𝑦

3. Conditional probs.

𝑃 𝐴1 𝐵1 =
𝑃(𝐴1, 𝐵1)

𝑃(𝐵1)
=
0.124

0.389
= 0.318

𝑃 𝐵1 𝐴1 =
𝑃(𝐵1, 𝐴1)

𝑃(𝐴1)
=
0.124

0.318
= 0.389

𝑃(𝐵𝑖|𝐴𝑗) 𝐴1 𝐴2 𝐴3

𝐵1 0.389 0.389 0.389

𝐵2 0.611 0.611 0.611

1 1 1

𝑃(𝐴𝑖|𝐵𝑗) 𝐴1 𝐴2 𝐴3

𝐵1 0.318 0.287 0.395 1

𝐵2 0.318 0.287 0.395 1

Bayes' theorem 𝑃 𝐴1 𝐵1 =
𝑃(𝐵1|𝐴1)𝑃(𝐴1)

𝑃(𝐵1)
=

0.389 ∙ 0.318

0.389
= 0.318 =

0.124

0.389
=

𝑃(𝐴1,𝐵1)

𝑃(𝐵1)

1. Probability dist./mass function

𝑃 𝐴3, 𝐵2 ≝ 𝑃 𝐵2 𝐴3 𝑃 𝐴3 = 0.611 ∙ 0.395 = 0.241

𝑃 𝐴3, 𝐵2 ≝ 𝑃 𝐴3 𝐵2 𝑃 𝐵2 = 0.395 ∙ 0.611 = 0.241

=

Note that 𝑃 𝐴1, 𝐵1 = 0.124 = 0.124 = 0.318 ∙ 0.389 = 𝑃 𝐴1 𝑃 𝐵1 because r. v. 𝑥 and r. v. 𝑦 are independent!

Two independent random variables

Intuitively, two r. v. are independent if 
knowing the value of one of them does not 
change the probabilities for the other one



Probability

• A natural question that arises here is what makes two variables dependent or 
independent. The answer is quite straightforward – its all about the contingency 
between those two variables

• If the proportions of random variables in the different columns vary significantly 
between rows (or vice versa), we say that there is a contingency between the two 
variables and the variables are dependent. If there is no contingency, we say that 
the variables are independent.
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Histogram 𝐴1 𝐴2 𝐴3

𝐵1 𝟑𝟎 𝟓 𝟐𝟔 61

𝐵2 𝟐𝟎 𝟒𝟎 𝟑𝟔 96

50 45 62 157

Histogram 𝐴1 𝐴2 𝐴3

𝐵1 𝟏𝟗 𝟏𝟕 𝟐𝟒 61

𝐵2 𝟑𝟏 𝟐𝟖 𝟑𝟖 96

50 45 62 157
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Histogram 𝐴1 𝐴2 𝐴3

𝐵1 𝟑𝟎 𝟓 𝟐𝟔 61

𝐵2 𝟐𝟎 𝟒𝟎 𝟑𝟔 96

50 45 62 157

Two dependent random variables

Histogram 𝐴1 𝐴2 𝐴3

𝐵1 𝟏𝟗 𝟏𝟕 𝟐𝟒 61

𝐵2 𝟑𝟏 𝟐𝟖 𝟑𝟖 96

50 45 62 157

Two independent random variables

19/50 ≈ 17/45 ≈ 24/62
31/50 ≈ 28/45 ≈ 38/62

19/61 ≈ 31/96
17/61 ≈ 28/96
24/61 ≈ 38/96

30/50 ≠ 5/45 ≠ 26/62
20/50 ≠ 40/45 ≠ 36/62

30/61 ≠ 20/96
5/61 ≠ 40/96
26/61 ≠ 36/96



Probability
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Histogram 𝐴1 𝐴2 𝐴3

𝐵1 𝟑𝟎 𝟓 𝟐𝟔 61

𝐵2 𝟐𝟎 𝟒𝟎 𝟑𝟔 96

50 45 62 157

Two dependent random variables

Histogram 𝐴1 𝐴2 𝐴3

𝐵1 𝟏𝟗 𝟏𝟕 𝟐𝟒 61

𝐵2 𝟑𝟏 𝟐𝟖 𝟑𝟖 96

50 45 62 157

Two independent random variables

≠ ≠ ≠ = ==

• The distribution of the random variable 𝑥 is (or is not) affected by the values of
the random variable 𝑦 (and vice versa)



Environment Map Importance Sampling

• In general, sampling an environment map is equivalent to sampling piecewise-constant 2D 
functions which has foundation in sampling piecewise-constant 1D functions

• Transformation from image to spherical coordinates

𝑇 𝑖, 𝑗 =
𝜑 =

2𝜋𝑖

𝑤

𝜃 =
𝜋𝑗

ℎ

where 𝐽 =

𝜕𝜑

𝜕𝑖

𝜕𝜑

𝜕𝑗

𝜕𝜃

𝜕𝑖

𝜕𝜃

𝜕𝑗

=

2𝜋

𝑤
0

0
𝜋

ℎ

⇒ det 𝐽 =
2𝜋2

𝑤 ℎ

• Transformation from spherical to cartesian coordinates

𝑇 𝜑, 𝜃 =

𝑥 = 𝑟 cos(𝜑) sin(𝜃)
𝑦 = 𝑟 sin(𝜑) sin(𝜃)

𝑧 = 𝑟 cos(𝜃)
where 𝐽 =

𝜕𝑥

𝜕𝜑

𝜕𝑥

𝜕𝜃

𝜕𝑥

𝜕𝑟

𝜕𝑦

𝜕𝜑

𝜕𝑦

𝜕𝜃

𝜕𝑦

𝜕𝑟

𝜕𝑧

𝜕𝜑

𝜕𝑧

𝜕𝜃

𝜕𝑧

𝜕𝑟

=

−𝑟 sin(𝜑) sin(𝜃) 𝑟 cos(𝜑) cos(𝜃) cos(𝜑) sin(𝜃)
𝑟 cos(𝜑) sin(𝜃) 𝑟 sin(𝜑) cos(𝜃) sin(𝜑) sin(𝜃)

0 −𝑟 sin(𝜃) cos(𝜃)
⇒ det 𝐽 = 𝑟2sin(𝜃)
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Environment Map Importance Sampling

• Ω 𝑝𝑑𝑓 𝜔 d𝜔 = 𝜑 𝜃 𝑝𝑑𝑓 𝜑, 𝜃 sin(θ)d𝜃d𝜑 = 1

• 𝑆2 d𝜔 = 4𝜋 = 𝜑 𝜃 sin θ d𝜃d𝜑 = cos 𝜃0 − cos(𝜃1) 𝜑1 − 𝜑0 = d𝐴
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