
Computer Graphics I
460-4078

Fall 2024

Last update 24. 10. 2024

Acceleration Data Structures

• Ray-primitive intersection phase is the most demanding part of every ray tracer

• Naive implementation of a ray tracing algorithm for a single ray has 𝑂(𝑛) time
complexity, where 𝑛 is number of primitives (e.g. triangles) in the scene

• Spatial-hierarchy data structures reduce the search space exponentially (with the
time complexity 𝑂(log 𝑛))

• Time complexity required to build the structure is in average case in 𝑂(𝑛 log 𝑛)
and 𝑂(𝑛2) in worst case (sorted triangles)

• There are basicaly two approaches

• Object subdivision – grouping of nearby triangles (e.g. BVH, BIH)

• Space subdivision – divides space into sub-spaces with assigned triangles
contained in these spaces (e.g. kD-tree, BSP, Octree, Grid)

Fall 2024 Computer Graphics I 2

Acceleration Data Structures

• The most commonly used structures

• Octrees

• Boundary-Volume Hierarchies (e.g. BVH)

• kD-trees

• These algorithms follow divide and conquer scheme and are relatively
straightforward in implementation

• The biggest issue is to determine the best split position of a node on each level of
three hierarchy. In other words, we don't know which objects should be grouped
together or where to cut space into two subsequent nodes to achieve best
performance during three traversal

• We may assume that creating an optimal accelerator is an NP-hard problem

Fall 2024 Computer Graphics I 3

Bounding Volume Hierarchy (BVH)

• Used to reduce the number of ray-primitive intersection tests

• A tree structure on a set of geometric objects (triangles in our case)

• In the top-down approach, we start with the entire scene enclosed in a one large
bounding volume – a root node

• Bounding volumes are typically represented as an axis aligned bounding box
(AABB)

• We recursively divide nodes until each node consists of only a single primitive (or
a small number of primitives) thus obtaining a tree structure

• Ideal BVH minimizes number of ray-primitive and ray-AABB intersection tests

Fall 2024 Computer Graphics I 4

Bounding Volume Hierarchy (BVH)

Fall 2024 Computer Graphics I 5

Tree

• Each node contains a list of included triangles and geometry parameters of the
(axis aligned) bounding box (compact node has 32 bytes in size)

Fall 2024 Computer Graphics I 6

Root node

Inner node

Leaf node

Left child Right child

Bounding Volume Hierarchy (BVH)

struct Node
{
AABB bounds;
int span[2];
Node * children[2]; // idx 0 is left, 1 is right

Node(int from, int to)
{

span[0] = from;
span[1] = to;
children[0] = children[1] = nullptr;

}

~Node()
{

delete children[1];
delete children[0];

}
};

class BVH

{

public:

BVH(std::vector<Triangle *> * items);

~BVH();

void BuildTree();

void Traverse(Ray & ray);

private:

Node * BuildTree(int from, int to, int depth);

void Traverse(Ray & ray, Node * node, int depth);

AABB GetNodeAABB(from, to);

Node * root_;

std::vector<Triangle *> * items_;

};

Fall 2024 Computer Graphics I 7

Build Tree

• Sequence of steps in BuildTree method:

• Create a new node containing items in range 𝑓𝑟𝑜𝑚, 𝑡𝑜 (in case of the root
node, it is 0, 𝑛 − 1)

• Set the AABB of all items in the current node

• If the number of items in the current node is greater then e.g. 4 proceed with
node splitting:
• Choose a split axis (the simplest scheme is to repeatedly alternate axis with each level of

the tree as follows 0:x, 1:y, 2:z, 3:x, 4:y, 5:z, 6:x,…)

• Choose a 𝑝𝑖𝑣𝑜𝑡 (e.g. index of the middle item from the current range)

• Sort items from the current range along the chosen split axis

• Split the current node into a left child 𝑓𝑟𝑜𝑚, 𝑝𝑖𝑣𝑜𝑡 − 1 and a right child 𝑝𝑖𝑣𝑜𝑡, 𝑡𝑜

• Return the current node

Fall 2024 Computer Graphics I 8

Build Tree

Node * BVH::BuildTree(int from, int to, int depth)
{
Node * node = new Node(from, to);
node->bounds = GetNodeAABB(from, to); // get the bounds of all vertices of all

triangles in the current range

if (to - from + 1 > max_leaf_items) // e.g. max_leaf_items = 4
{
int split_axis = depth % 3; // alt. the longest axis of the current AABB
int pivot = (to - from + 1) / 2 + from; // e.g. the mid index

// sort triangles here – see “How to sort triangles“ slide

node->children[0] = BuildTree(from, pivot - 1, depth + 1);
node->children[1] = BuildTree(pivot, to, depth + 1);

}

return node;
}

Fall 2024 Computer Graphics I 9

Traverse Tree

• Sequence of steps in Traverse method:

• If ray vs current node bounds intersection exists:

• If the current node is a leaf

• Update the ray.tfar parameter based on possible intersections with
triangles in the current node

• Otherwise traverse left (first) and right (second) child subsequently

Fall 2024 Computer Graphics I 10

Traverse Tree

void BVH::Traverse(Ray & ray, Node * node, float t0, float t1, int depth)
{
if (RayBoxIntersection(ray, node->bounds, t0, t1)) {
if (node is leaf) {

for (int i = node->span[0]; i <= node->span[1]; ++i) {
if (RayTriangleIntersection(ray, items_[i])) {
// we assume that the ray.tfar is updated in the intersection method
t1 = ray.tfar;

}
}

} else { // node is inner node
Traverse(ray, node->children[0], t0, ray.tfar, depth + 1);
Traverse(ray, node->children[1], t0, ray.tfar, depth + 1);

}
} else {
// ray misses this node (and also its children) – nothing to do here

}
}

Fall 2024 Computer Graphics I 11

Slab Test (Ray vs AABB Intersection)

Fall 2024 Computer Graphics I 12

𝑟 𝑡 = 𝑂 + ෡𝒅𝑡

𝑡𝑥0 =
𝑥0−𝑂𝑥

𝑑𝑥
, 𝑡𝑦0 = …

Note that the semantics of near and far
intersections must be persevered
regardless the ray direction, i.e.
if 𝑡𝑥0 > 𝑡𝑥1 then swap(𝑡𝑥0, 𝑡𝑥1)

The same holds for 𝑦 and 𝑧 axis

𝑡0 = max(𝑡𝑥0 , 𝑡𝑦0 , 𝑡𝑧0)

𝑡1 = min(𝑡𝑥1 , 𝑡𝑦1 , 𝑡𝑧1)

if 𝑡0 < 𝑡1 and 0 < 𝑡1then 𝑃{0,1} = 𝑟 𝑡{0,1}
else miss

𝑥

𝑦

𝑡𝑥1

𝑡𝑦1 = 𝑡1

𝑡𝑥0 = 𝑡0

𝑡𝑦0෡𝒅

𝑃0

𝑃1

𝑂

𝑂𝑥

𝑂𝑥 + 𝑑𝑥 𝑥0 𝑥1

𝑦0

𝑦1

AABB

slab y

slab x

Axis Aligned Bounding Box (AABB)

struct AABB

{

Vector3f bounds[2];

AABB(Vector3f v0, Vector3f v1)

{

bounds[0] = v0;

bounds[1] = v1;

}

float SurfaceArea() // for SAH

};

Fall 2024 Computer Graphics I 13

𝒗0

𝒗1

𝑥

𝑧
𝑦

𝑥1

How to Sort Triangles

• We can use barycenters to sort triangles along a given axis

• Then it's the same problem as sorting real numbers

Fall 2024 Computer Graphics I 14

{𝑥, 𝑦, 𝑧}

struct TriangleComparator {
TriangleComparator(const char axis) { axis_ = axis; }
bool operator() (Triangle * a, Triangle * b) {
return a->center().data[axis_] < b->center().data[axis_];

}
char axis_;

};
…

std::vector<Triangle *>::iterator begin = items_->begin();
std::nth_element(begin + from, begin + pivot, begin + to + 1, TriangleComparator(split_axis)); // O(n) in avg

Making BVH Faster

• Store the inverse ray direction with the ray

• This will accelerate ray-bounding box test

• Do an early out in ray traversal

• Do not traverse any further when you already know that the ray can not hit
anything else

• Build the tree using the Surface Area Heuristic (SAH) (2× speedup)

• Greedy algorithm that minimizes the sum of the areas of the bounding boxes
of children nodes in the given level of the tree. Binning yields nearly identical
trees at a fraction of time. Also applicable in kD-trees

• Ray packet traversal

• Traversing packets of coherent rays through a structure (SIMD vectorization)

Fall 2024 Computer Graphics I 15

Front-to-back (Ordered) Traversal

• Option 1: Calculate the minimum distance of both child nodes from ray origin and
traverse the nearest child node first

• Option 2: Use ray direction sign for split axis to determine first and second node

first = children_[0];
second = children_[1];
if (sgn(ray.dir[split_axis_]) < 0) swap(first, second);

• Option 3: Same as option 2 but the split axis is determined by the axis for which
the child node centroids are furthest apart

Fall 2024 Computer Graphics I 16

Front-to-back (Ordered) Traversal

• Note the following: nodes may overlap and a closer intersection may exist in
further node

• But one thing is certain: nodes beyond an already found intersection may be
skipped safely

Fall 2024 Computer Graphics I 17

Surface Area Heuristic (SAH)

• We assume uniform distribution of rays in our scene

• SAH improves ray tracer performance by preferring small pricey nodes with many
triangles and large cheap nodes with a lot of empty space

Fall 2024 Computer Graphics I 19

parent node

best split bad splits

left child

right child We have a bigger chance to hit
the left child than the right one
consequently filtering out a
larger portion of triangles when
we choose the green split over
the red ones

very bad split

Surface Area Heuristic (SAH)

• The (minimized) cost of splitting a node into volumes 𝐴 and 𝐵 is defined as

𝐶 𝐴, 𝐵 = 𝑡𝑡𝑟 + 𝑝 𝐴 ෍

𝑖=1

𝑁𝐴

𝑡𝑖𝑛𝑡 𝑎𝑖 + 𝑝 𝐵 ෍

𝑖=1

𝑁𝐵

𝑡𝑖𝑛𝑡 𝑏𝑖

𝑡𝑡𝑟 … the time to traverse an interior node (constant, e.g. 1)

𝑡𝑖𝑛𝑡 … the time of one ray-triangle intersection (constant, e.g. 2)

𝑝 𝐴 , 𝑝 𝐵 … probabilities that the ray passes through 𝐴, resp. 𝐵

𝑁𝐴, 𝑁𝐵 … the number of triangles in volume 𝐴, resp. 𝐵

𝑎𝑖, 𝑏𝑖 … triangle in volume 𝐴, resp. 𝐵

Fall 2024 Computer Graphics I 20

Surface Area Heuristic (SAH)

• We can compute the probabilities 𝑝 𝐴 as

𝑝 𝐴 𝑃 =
𝑆𝐴(𝐴)

𝑆𝐴(𝑃)

provided that 𝐴 (left or right child) is a convex volume in another convex volume 𝑃
(parent node) and 𝑆𝐴 is a surface area of given volume (e.g. area of a bounding
box)

• We can simplify the previous equation as follows

𝐶 𝐴, 𝐵 =
𝑆𝐴(𝐴)

𝑆𝐴(𝑃)
𝑁𝐴 +

𝑆𝐴(𝐵)

𝑆𝐴(𝑃)
𝑁𝐵

Fall 2024 Computer Graphics I 21

Cauchy-Crofton formula yields the conditional
probability: given two nested, convex, closed
surfaces A and P, with A nested inside P, the
probability of a random line intersecting the
inner surface A, conditional on it intersecting
the outer surface P, is as follows…

Super Sampling

• True pixel value 𝑥 is estimated by the mean value ҧ𝑥 of 𝑁 samples 𝑥𝑖 from a small
square area in an image

𝑥 ≈ ҧ𝑥 =
1

𝑁
෍

𝑖=1

𝑁

𝑥𝑖

• The variance of 𝑀 independent trials ഥ𝑥𝑗 is a measure of the accuracy of this
estimate

𝜎𝑥
2 =

1

𝑀
෍

𝑗=1

𝑀

ഥ𝑥𝑗 − 𝑥
2

• If the pixel area is sampled at uniformly distributed random locations, the central
limit theorem implies that the variance of the mean is 𝑂 1/𝑁

Fall 2024 Computer Graphics I 22

Source: Mitchell, Don P. Consequences of
stratified sampling in graphics. ACM, 1996.

Super Sampling

• Better strategy: stratified sampling (aka jittered sampling)

• If we divide the pixel area into a grid of 𝑁 × 𝑁 cells with one sample placed
randomly within each cell that stratification gives us a variance of the mean of
𝑂 1/𝑁3

Fall 2024 Computer Graphics I 23

Source: Pharr M., Jakob W., Humphreys G. Physically Based Rendering: From Theory To Implementation. 2020.

Source: Mitchell, Don P. Consequences of
stratified sampling in graphics. ACM, 1996.

(a) Random pattern (b) Uniform stratified pattern (c) Stratified jittered pattern

Stratified Jittered Sampling

• Converges to the mean asymptotically faster than uniform random sampling

• The improvement depends on the nature of the image within pixel area

• In worst case, no better (but no worse) than uniform sampling

Fall 2024 Computer Graphics I 25

Multiburst Lena CSF

Three various contents of sampled pixel

Super Sampling

• Even better strategy: low discrepancy quasirandom sequences (Halton,
Niederreiter, Sobol, Hammersley) of points generated in a deterministic manner
that reduces the likelihood of clustering (discrepancy) whilst still ensuring that
the entire space is uniformly covered

• Methods require careful selection of basis
parameters otherwise it can lead to
degeneracy (e.g. top right)

Fall 2024 Computer Graphics I 26

Source: Roberts M. The
Unreasonable Effectiveness of
Quasirandom Sequences. 2020.

Pseudo/Quasi Random Numbers Generator

• Simple generator of a pseudo-random number uniformly distributed in the range
𝑎, 𝑏

srand(123); // random generator seed, call this only once!
float ksi = (rand() / float(RAND_MAX)) * (b – a) + a;

• Don't use rand, use Mersenne Twister from <random> header instead

#include <random>
std::mt19937 generator(123);
std::uniform_real_distribution<float> unif_dist(a, b);
float ksi = unif_dist(generator);

• or try to use GPU (e.g. cuRAND, the CUDA random number generation library)

Fall 2024 Computer Graphics I 27

Defocus Blur and Depth of Field

• Defocus blur is a blurring caused by the circle of confusion for any object
not intersecting the focal plane.

• Depth of field is the distance between the two planes, one near and one
far, wherein all objects appear sharp or in focus. All objects and features
that do not perfectly intersect the plane of focus will experience defocus
blur. A crude simplification is to say that a feature will only appear sharp if
the circle of confusion is smaller than the pixel pitch of the sensor. Depth of
field can sometimes colloquially be used to refer to defocus blur. This is
wrong.

• Circle of confusion is an optical blur caused by the convolution of photon
cones emanating from adjacent scene features. The radii of these photon
cones are directly proportional to the aperture/iris.

Fall 2024 Computer Graphics I 28

Source: Marrs, A., Shirley, P., Wald, I.
(ed.). Ray Tracing Gems II: Next
Generation Real-Time Rendering with
DXR, Vulkan, and OptiX.

Depth of Field

1. Define the radius 𝑓𝑟 of focal sphere
(focal plane is curved due to the
Petzval field curvature)

2. Get the WS coordinates of point 𝑃
which lies on the primary ray at the
distance 𝑓𝑟

3. In random manner, shift the origin
of the primary ray using the
aperture size

4. Set the direction vector of the
primary so that it goes through the
focal point 𝑃.

Fall 2024 Computer Graphics I 29

focal length 𝑓𝑟

curved focal plane

primary ray

primary ray with shifted
origin passing through 𝑃

aperture

𝑃

Depth of Field

Fall 2024 Computer Graphics I 30

𝑂 (origin, view from) is the point from which we look

𝑇 (target, view at) is the point we are looking at

𝑂′ is a random point lying in the sensor plane (given by the axes
𝒙𝑐 and 𝒚𝑐) at a distance less than aperture size (radius of the red
circle)

The green line represents the primary ray passing through the
(𝑥, 𝑦)-th pixel which is sampled randomly according to the
chosen super sampling method with the point 𝑃 lying on this ray
at a distance 𝑓𝑟 (distance/depth of maximum sharpness)

The orange line represents the slightly shifted primary ray which
has a displaced origin 𝑂′ and passes through the point 𝑃 as well

𝑃

(𝑥, 𝑦) 𝑇

𝑂
𝑂′

𝒙𝑐

𝒚𝑐

𝒛𝑐

Depth of Field

Fall 2024 Computer Graphics I 31

aperture size = 0 aperture size = 50

Depth of Field

Fall 2024 Computer Graphics I 32

