

Image Analysis ll
Radovan Fusek

2

Object Detection (Analysis)
Haar, Integral Image, AdaBoost

What is Object Detection?

• It is clear that the images contain many objects of interest. The goal of the
object detection
systems is to find the location of these objects in the images (e.g. cars,
faces, pedestrians).

• For example, the vehicle detection systems are crucial for traffic analysis or
intelligent scheduling, the people detection systems can be useful for
automotive safety, and the face detection systems are a key part of face
recognition systems.

Radovan Fusek: Descriptors for Object Detection in Image Recognition, Philosophiæ Doctor Thesis, 2016

 Output?
 position of the objects
 scale of the objects

What is Object Detection?

Problems (Challenges)

 different views - different objects

Problems (Challenges)

 low quality images

http://vis-www.cs.umass.edu/fddb/

 illumination + low quality

Problems (Challenges)

http://vis-www.cs.umass.edu/fddb/

• The objects of interest can be described using various image
information (e.g. shape, texture, colour). In the area of feature based
detectors the image features are the carries of this information.

• Many methods for extracting the image features that are able to
describe the appearance of objects were presented, especially, the
detectors that are based on the histograms of oriented gradients
(HOG), Haar features, or local binary patterns (LBP) are dominant and
they are considered as the state-of-the-art methods.

Image Features

Object Detection/Recognition
 Haar

 HOG

 LBP

 SIFT, SURF KeyPoints

 CNNs

 Practical examples using OpenCV + Dlib (https://opencv.org/, http://dlib.net/)

Traditional Approaches

Deep Learning Approach

https://opencv.org/
http://dlib.net/

Sliding Window - Main Idea

Constantine Papageorgiou and Tomaso Poggio: A Trainable System for Object Detection.
Int. J. Comput. Vision 38, pp. 15-33. (2000)

Sliding Window - Main Idea

Constantine Papageorgiou and Tomaso Poggio: A Trainable System for Object Detection.
Int. J. Comput. Vision 38, pp. 15-33. (2000)

• In general, the sliding window technique represents the popular and
successful approach for object detection. The main idea of this
approach is that the input image is scanned by a rectangular window
at multiple scales. The result of the scanning process is a large
number of various sub-windows. A vector of features is extracted
from each sub-window. The vector is then used as an input for the
classifier (e.g. SVM classifer).

• During the classification process, some sub-windows are marked as
the objects. Using the sliding window approach, the multiple positive
detections may appear, especially around the objects of interest

Sliding Window - Main Idea

• These detections are merged to the final bounding box that
represents the resulting detection.

• The classifer that determines each sub-window is trained over the
training set that consists of positive and negative images.

• The key point is to find what values (features) should be used to
effectively encode the image inside the sliding window.

Sliding Window - Main Idea

Feature Vector

(gradient, HOG, LBP, …)

Detection Process

Constantine Papageorgiou and Tomaso Poggio: A Trainable System for Object Detection.
Int. J. Comput. Vision 38, pp. 15-33. (2000)

Feature Vector

(gradient, HOG, LBP, …)

Trainable Classifier

(SVM, ANNs, …)

Detection Process

Constantine Papageorgiou and Tomaso Poggio: A Trainable System for Object Detection.
Int. J. Comput. Vision 38, pp. 15-33. (2000)

• Typically, in the area of feature-based detectors, the detection
algorithms consist of two main parts. The extraction of image features
is the first part. The second part is created by the trainable
classifirs that handle a final classification (object/non-object).

• The extraction of relevant features has a significant influence on the
successfulness of detectors. The large number of features slows down
the training and detection phases; on the other hand a very small
number of features may not be able to describe the properties of
object of interest.

• The quality of training set is also equally important.

Detection Process

Generating Training Set

 negative set - without the object of interest
 positive set

 rotation
 noise
 Illumination
 scale

http://mrl.cs.vsb.cz/eyedataset

http://mrl.cs.vsb.cz/eyedataset

 Haar

 HOG

 LBP

 SIFT, SURF KeyPoints

 CNNs

Traditional Approaches

Deep Learning Approach

Related Works

Papageorgiou
(2000)

Viola, Jones
(2001,2004)
cit. > 6500

Dalal, Triggs
(2005)

cit. > 10000

2000

2005

Haar Wavelet-based Descriptors

• The main idea behind the Haar-like features is that the features can
encode the differences of mean intensities between the rectangular
areas. For instance, in the problem of face detection, the regions around
the eyes are lighter than the areas of the eyes; the regions bellow or on
top of eyes have different intensities that the eyes themselves.

• These specific characteristics can be simply encoded by one two-
rectangular feature, and the value of this feature can be calculated as the
difference between the sum of the intensities inside the rectangles.

Haar Wavelet-based Descriptors

• The paper of Viola and Jones contributed to the popularity of Haar-like
features. The authors proposed the object detection framework based
on the image representation called the integral image combined with the
rectangular features, and the AdaBoost algorithm.

• With the use of integral image, the rectangular features are computed
very quickly. The AdaBoost algorithm helps to select the most important
features.

• The features are used to train classifers and the cascade of classifers is
used for reducing
the computational time.

Haar Wavelet-based Descriptors
 faces have similar properties

 eye regions are darker than the upper-cheeks
 the nose bridge region is brighter than the eyes

https://docs.opencv.org/3.4.1/d7/d8b/tutorial_py_face_detection.html

Features

 Rectangular features

David Gerónimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009

Features

David Gerónimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009

Face Detection

 24x24 sub-window aprox. 160,000 rectangular
features

 How speed the computational speed?
 decrease memory accesses

David Gerónimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009

Integral Image

Original image (i) Integral image (ii)

Integral Image

David Gerónimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009

Integral Image

David Gerónimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009

Integral Image

David Gerónimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009

Integral Image

David Gerónimo: Haar-like Features and Integral Image Representation, Master in Computer Vision and Artificial Intelligence, 18th December 2009

Feature Selection

• weak classifier - each single rectangle feature
(features as weak classifiers)

• during each iteration, each example/image receives a
weight determining its importance

• AdaBoost (Adaptive Boost) is an iterative learning
algorithm to construct a “strong” classifier as a linear
combination of weighted simple “weak” classifiers

Feature Selection

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

 Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

 Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

 Increase the weights on the training
examples that were misclassified.

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

 Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

 Increase the weights on the training
examples that were misclassified.

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

 Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

 Increase the weights on the training
examples that were misclassified.

 (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

 Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

 Increase the weights on the training
examples that were misclassified.

 (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

 Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

 Increase the weights on the
training examples that were
misclassified.

 (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

 Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

 Increase the weights on the
training examples that were
misclassified.

 (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

 Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

 Increase the weights on the
training examples that were
misclassified.

 (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 AdaBoost starts with a uniform
distribution of “weights” over training
examples.

 Select the classifier with the lowest
weighted error (i.e. a “weak” classifier)

 Increase the weights on the
training examples that were
misclassified.

 (Repeat)

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 At the end, carefully make a linear
combination of the weak classifiers
obtained at all iterations.

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

 At the end, carefully make a linear
combination of the weak classifiers
obtained at all iterations.

Slide taken from a presentation by Qing Chen, Discover Lab, University of Ottawa

Feature Selection

Cascade of Classifier

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

The idea of cascade classifier is reject the non-face region as soon as possible

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

Cascade of Classifier

The idea of cascade
classifier is reject the
non-face region as soon
as possible

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

Cascade of Classifier

The idea of cascade
classifier is reject the
non-face region as soon
as possible

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

Cascade of Classifier

The idea of cascade
classifier is reject the
non-face region as soon
as possible

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

Cascade of Classifier

The idea of cascade
classifier is reject the
non-face region as soon
as possible

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

Cascade of Classifier

The idea of cascade
classifier is reject the
non-face region as soon
as possible

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

Cascade of Classifier

The idea of cascade
classifier is reject the
non-face region as soon
as possible

Stage 1 Stage 2 Stage 3 Stage 4

Rejected Windows

Cascade of Classifier

The idea of cascade
classifier is reject the
non-face region as soon
as possible

https://vimeo.com/12774628

Haar Features

Face Detection - Evaluation

http://vis-www.cs.umass.edu/fddb/

Face Detection - Evaluation

TP = number of true positives
FP = number of false positives
FN = number of false negatives
TN = number of true negatives

precision = TP/(TP+FP)
sensitivity = TP/(TP+FN)
F1 score (harmonic mean of precision and sensitivity) = 2 ×
precision × sensitivity/(precision + sensitivity)

http://vis-www.cs.umass.edu/fddb/

Face Detection - Evaluation

• Since Viola and Jones popularized the Haar-like features for face detection, the
Haarlike features and their modifcations were used in many detection tasks
(e.g. pedestrian, eye, vehicle).

• In the area of pedestrian detection, in [1], the authors presented the
component-based person detector that is able to detect the occluded people
in clustered scenes in static images. The detector uses the Haar-like features to
describe the components of people (heads, legs, arms) combined with the SVM
classifer. The Viola and Jones detection framework was successfully extended
for moving-human detection in [2]. In [3], the authors proposed the method
for estimating the walking direction of pedestrian.

Haar Features

• The 3D Haar-like features for pedestrian detection were presented
in [4]. The authors extend the classical Haar-like features using the volume
flters in 3D space (instead of using rectangle flters in 2D space) to capture
motion information. The 3D features are then combined with the SVM classifer.
To compute the 3D Haar-like features using the integral image like the classical
2D features, the authors introduced Integral Volume that extends 2D integral
image to the three dimensions.

Haar Features

[1] Mohan, A., Papageorgiou, C., Poggio, T.: Example-based object detection in images by
components. IEEE Trans. Pattern Anal. Mach. Intell. 23(4), 349–361 (Apr 2001),
http://dx.doi.org/10.1109/34.917571

[2] Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and
appearance. In: Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on.
pp. 734 –741 vol.2 (oct 2003)

[3] Shimizu, H., Poggio, T.: Direction estimation of pedestrian from multiple still images. In:
Intelligent Vehicles Symposium, 2004 IEEE. pp. 596–600 (2004)

[4] Cui, X., Liu, Y., Shan, S., Chen, X., Gao, W.: 3d haar-like features for pedestrian detection. In:
Multimedia and Expo, 2007 IEEE International Conference on. pp. 1263–1266 (July 2007)

Haar Features

Hoang, V.D., Vavilin, A., Jo, K.H.: Pedestrian detection approach

based on modified haar-like features and adaboost. In: Control,

Automation and Systems (ICCAS), 2012 12th International

Conference on. pp. 614-618 (Oct 2012)

Lienhart, R., Maydt, J.: An extended set of haar-like features for rapid

object detection. In: Image Processing. 2002. Proceedings. 2002

International Conference on. vol. 1, pp. I–900–I–903 vol.1 (2002)

The modified version of Haar-like features that more
properly reflect the shape of the pedestrians than the
classical Haar-like features.

Haar Features

The modified version of Haar-like features that more
properly reflect the shape of the pedestrians than the
classical Haar-like features.

Hoang, V.D., Vavilin, A., Jo, K.H.: Pedestrian detection approach based on modified haar-like features and adaboost. In:
Control, Automation and Systems (ICCAS), 2012 12th International Conference on. pp. 614-618 (Oct 2012)

Haar Features

S. Zhang, C. Bauckhage, and A. B. Cremers. Informed haar-like features improve pedestrian detection. In CVPR, 2014.

The modified version of Haar-like features that more
properly reflect the shape of the pedestrians than the
classical Haar-like features.

Haar Features

Zheng, W., Liang, L.: Fast car detection using image strip features. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on. pp. 2703–2710 (2009)

The modified version of Haar-like features that more
properly reflect the shape of the pedestrians than the
classical Haar-like features.

Haar Features

• Fusek, R., Mozdřeň, K., Šurkala, M., Sojka, E.: AdaBoost for Parking Lot Occupation
Detection. Advances in Intelligent Systems and Computing, vol. 226, pp. 681-690
(2013)

Parking Lot Occupation

http://mrl.cs.vsb.cz/

 Haar

 HOG

 LBP

 SIFT, SURF KeyPoints

 CNNs

Traditional Approaches

Deep Learning Approach

Related Works

Papageorgiou
(2000)

Viola, Jones
(2001,2004)

Dalal, Triggs
(2005)

cit. 10947

2000

2005

Pedestrian Detection - Challenges?

• In recent years, the object detectors that are based on edge analysis that
provides valuable information about the objects of interest were used in
many detection tasks. In this area, the histograms of oriented gradients
(HOG) [1] are considered as the state-of-theart method.

• In HOG, a sliding window is used for detection. The window is divided into
small connected cells in the process of obtaining HOG descriptors. The
histograms of gradient orientations are calculated in each cell. It is
desirable to normalize the histograms across a large block of image. As a
result, a vector of values is computed for each position of window. This
vector is then used for recognition, e.g. by the Support Vector Machine
classifier.

Histograms of Oriented Gradients (HOG)

Basic Steps:

• In HOG, a sliding window is used for

detection.

• The window is divided into small connected
cells.

• The histograms of gradient orientations are
calculated in each cell.

• Support Vector Machine (SVM) classifier.

http://host.robots.ox.ac.uk/pascal/VOC/voc2006/slides/dalal.ppt

Histograms of Oriented Gradients (HOG)

• For gradient computation, the image without Gaussian smoothing is
filtered with the [1, 0, -1] kernel to compute the horizontal and vertical
derivatives.

• Then the derivatives are used to compute the magnitude of the gradient
and orientation .

Histograms of Oriented Gradients (HOG)

• In the next step, the image is divided into the cells and the cell histograms
are constructed. The histogram bins are spread over 0 to 180 degrees or 0
to 360 degrees. The corresponding histogram bin is found for each pixel
inside the cell. Each pixel contributes a weighted vote for its corresponding
bin. The pixel contribution can be the gradient magnitude.

• Next step represents contrast normalization. For this purpose, the cells are
grouped into the large blocks (i.e. 2×2 cells are considered as blocks). The
histograms are normalized within the blocks (e.g. using L2-norm). In the
paper, the two main block geometries are presented; rectangular and
circular.

• The final HOG descriptor is represented by histogram vectors of all blocks
within the detection window

Histograms of Oriented Gradients (HOG)

• Dalal and Trigs experimented with the
size of detection window and they
suggested the rectangular window with
the size 64 × 128 pixels.

• They also tried to reduce the size of the
window to 48 × 112 pixels. Nevertheless,
they obtained the best detection result
with the size 64 × 128 pixels.

Histograms of Oriented Gradients (HOG)

Blocks, Cells:

• 8 x 8 cell

• 16 x 16 block – overlap

• normalization within the blocks

Final Vector: Collect HOG blocks into vector

Histograms of Oriented Gradients (HOG)

• The classical HOG descriptors suffer from the large number of features,
which causes that the training and detection phases can be time
consuming. The sufficient amount of training data is also needed to find
a separating hyperplane by the SVM classifier.

• Sometimes, it is desirable to use the methods for the dimensionality
reduction of feature vector. In addition the that, the classical HOG
descriptors are not rotation invariant.

• These shortcomings became the motivation for creating many variations
of HOG-based detectors. Many methods and applications based on HOG
were presented in recent years.

Histograms of Oriented Gradients (HOG)

In [1], the authors applied the principal component analysis (PCA) to the HOG
feature vector to obtain the PCA-HOG vector. This vector contains the subset
of HOG features and the vector is used as an input for the SVM classifier. Their
method was used for pedestrian detection with the satisfactory results.

Felzenszwalb et al. proposed the part-based detector that is based on HOG. In
this method, the objects are represented using the mixtures of deformable
HOG part models and these models are trained using a discriminative method
(see following image). This method obtained excellent performance for object
detection tasks [2, 3].

[1] Kobayashi, T., Hidaka, A., Kurita, T.: Neural information processing. chap. Selection of Histograms of Oriented Gradients
Features for Pedestrian Detection, pp. 598–607. Springer-Verlag, Berlin, Heidelberg (2008)
[2] Felzenszwalb, P.F., McAllester, D.A., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR
(2008)
[3] Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 32(9), 1627–1645 (2010)

Histograms of Oriented Gradients (HOG)

[1] Kobayashi, T., Hidaka, A., Kurita, T.: Neural information processing. chap. Selection of Histograms of Oriented Gradients
Features for Pedestrian Detection, pp. 598–607. Springer-Verlag, Berlin, Heidelberg (2008)
[2] Felzenszwalb, P.F., McAllester, D.A., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: CVPR
(2008)
[3] Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models.
Pattern Analysis and Machine Intelligence, IEEE Transactions on 32(9), 1627–1645 (2010)

An example of person detection using a part model. The model is defined by the coarse global template that covers the entire
object and higher resolution part templates. The templates represent the histogram of oriented gradient [2].

Histograms of Oriented Gradients (HOG)

Practical Example – Detection + Recognition
Consider the following problem: Find and recognize two following lego kits

OpenCV - http://opencv.org/

http://opencv.org/

Detection step

HOG+SVM (OpenCV)

https://docs.opencv.org/3.1.0/d1/d73/tutorial_introduction_to_svm.html

https://docs.opencv.org/3.1.0/d1/d73/tutorial_introduction_to_svm.html

Alien

Avenger

Negative Set

Sliding Window

(detectMultiScale)

https://github.com/opencv/opencv/blob/master/samples/cpp/train_HOG.cpp

https://github.com/opencv/opencv/blob/master/samples/cpp/train_HOG.cpp

 Haar

 HOG

 LBP

 SIFT, SURF KeyPoints

 CNNs

Traditional Approaches

Deep Learning Approach

Related Works

Ahonen at al.
(2006)

1300 cit. SCOPUS

Zhang at al.
(2007)

2006

2009

Xiaohua at al.
(2009)

LBP - Local Binary Patterns

• Were introduced by Ojala et al. for the texture analysis.

• The local binary patterns (LBP) were introduced by Ojala et al. [2, 3] for
the texture analysis. The main idea behind LBP is that the local image
structures (micro patterns such as lines, edges, spots, and flat areas)
can be effciently encoded by comparing every pixel with its neighboring
pixels. In the basic form, every pixel is compared with its neighbors in
the 3 × 3 region. The result of comparison is the 8-bit binary number
for each pixel; in the 8-bit binary number, the value 1 means that the
value of center pixel is greater than the neighbor and vice versa. The
histogram of these binary numbers (that are usually converted to
decimal) is then used to encode the appearance of region.

• The important properties of LBP are the resistance to the lighting changes
and a low computational complexity.

• Duo to their properties, LBP were used in many detection tasks, especially
in facial image analysis [1, 4].

LBP - Local Binary Patterns

https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html#local-binary-patterns-histograms

LBP - Local Binary Patterns

[1] Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: Application to face
recognition. Pattern Analysis and Machine Intelligence, IEEE Transactions on 28(12), 2037–2041 (2006)

[2] Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures with classifcation based
on featured distributions. Pattern Recognition 29(1), 51–59 (Jan 1996), http://dx.doi.org/10.1016/0031-
3203(95)00067-4

[3] Ojala, T., Pietikainen, M., Maenpaa, T.: A generalized local binary pattern operator for multiresolution gray
scale and rotation invariant texture classifcation. In: Proceedings of the Second International Conference on
Advances in Pattern Recognition. pp. 397–406. ICAPR ’01, Springer-Verlag, London, UK, UK (2001),
http://dl.acm.org/citation.cfm?id=646260.685274

[4] Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J.
(eds.) Computer Vision - ECCV 2004, Lecture Notes in Computer Science, vol. 3021, pp. 469–481. Springer
Berlin Heidelberg (2004)

• Robust to monotonic changes in illumination

LBP - Local Binary Patterns

https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html#local-binary-patterns-histograms

Ojala T, Pietikäinen M & Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with

Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):971-987

LBP - Local Binary Patterns

Ojala T, Pietikäinen M & Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with

Local Binary Patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7):971-987

LBP - Local Binary Patterns

LBP - Local Binary Patterns

LBP - Local Binary Patterns

https://docs.opencv.org/2.4/modules/contrib/doc/facerec/facerec_tutorial.html#local-binary-patterns-histograms

LBP - Local Binary Patterns

[1] Hadid, A., Pietikainen, M., Ahonen, T.: A discriminative feature space for detecting and recognizing faces. In: Computer Vision and Pattern Recognition,

2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. vol. 2, pp. II–797–II–804 Vol.2 (2004)

LBP - Local Binary Patterns

In [1], LBP were used for solving the face detection problem in low-resolution
images. In this approach, the 19 × 19 face images are divided into the 9
overlapping regions in which the LBP descriptors are computed. Additionally, the
LBP descriptors are extracted from the whole 19 × 19 image. The descriptors are
then used to create the feature vector, and the SVM classifer with a polynomial
kernel is used for the fnal classifcation.

LBP - Local Binary Patterns

[1] Hadid, A., Pietikainen, M., Ahonen, T.: A discriminative feature space for detecting and recognizing faces. In: Computer Vision and Pattern Recognition, 2004.
CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. vol. 2, pp. II–797–II–804 Vol.2 (2004)

[1] Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face detection based on multi-block lbp representation. In: Proceedings of the
2007 international conference on Advances in Biometrics. pp. 11–18. ICB’07, Springer-Verlag, Berlin, Heidelberg (2007)

[2] Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: ICB. pp.
828–837 (2007)

LBP - Local Binary Patterns

Multi-block local binary patterns (MB-LBP) for face detection and recognition
were proposed in [1, 2]. In this method, the authors encode the rectangular
regions by the local binary pattern operator and the Gentle AdaBoost is used for
feature selection. Their results showed that MBLBP are more distinctive than the
Haar-like features and the original LBP features.

LBP - Local Binary Patterns

[1] Zhang, L., Chu, R., Xiang, S., Liao, S., Li, S.Z.: Face detection based on multi-block lbp representation. In: Proceedings of the
2007 international conference on Advances in Biometrics. pp. 11–18. ICB’07, Springer-Verlag, Berlin, Heidelberg (2007)

[2] Liao, S., Zhu, X., Lei, Z., Zhang, L., Li, S.Z.: Learning multi-scale block local binary patterns for face recognition. In: ICB. pp.
828–837 (2007)

LBP - Local Binary Patterns

[1] Tan, X., Triggs, B.: Enhanced local texture feature sets for face recognition under diffcult lighting conditions. Image Processing, IEEE Transactions on 19(6), 1635–1650 (2010)
[2] Feng, X., Hadid, A., Pietikainen, M.: A coarse-to-fne classifcation scheme for facial expression recognition. In: Campilho, A., Kamel, M. (eds.) Image Analysis and Recognition. Lecture Notes
in Computer Science, vol. 3212, pp. 668–675. Springer Berlin Heidelberg (2004)
[3] Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: A comprehensive study. Image Vision Comput. 27(6), 803–816 (May 2009)
[4] Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: A survey. Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on 41(6), 765–781 (Nov 2011)

The paper of Tan and Triggs [2] proposed the face recognition method with
robust preprocessing based on the difference of Gaussian image filter combined
with LBP in which the binary LBP code is replaced by the ternary code to create
local ternary patterns (LTP).

LBP were also successfully used for the facial expression analysis. The coarse-
tofine classification scheme with LBP combined with the k-nearest neighbor
classifier that carries out the final classification was proposed in [1].

The comprehensive study of facial expression recognition using LBP was proposed
in [78], the survey of facial image analysis using LBP was presented in [38].

 Haar

 HOG

 LBP

 SIFT, SURF KeyPoints

 CNNs

Traditional Approaches

Deep Learning Approach

KeyPoints

The most of the previously mentioned methods for object description were
based on the fact that the descriptors were extracted over the whole image
(sliding window) that was usually divided into the overlap or non-overlap
regions. Inside these regions, the descriptors were calculated and combined to
the final feature vector that was used as an input for the classifier.

In this lecture, we present the state-of-the-art descriptors that are based on
the fact that the regions (within which the descriptors are extracted) are
selected using the keypoint detectors.

KeyPoints - SIFT

One of the most popular descriptors based on the interest points was
proposed by David Lowe [1, 2, 3]. The method is called scale invariant feature
transform (SIFT).

The idea of the SIFT descriptor is that the interesting points (keypoints) of the
objects can be extracted to provide the key information about the objects. The
gradient magnitude and orientation are computed around the keypoint
location; the histograms are then summarized over subregions (see following
image). The keypoints are extracted from the reference image (that contains
the object of interest) and also from the target image (that possibly contains
the object of interest). The extracted keypoints are matched to find similarity
between the images.

KeyPoints - SIFT

● Keypoints are invariant in the terms of:

– Scale

– Orientation

– Position

– Illumination

– Partially Occlusion

[1] Brown, M., Lowe, D.: Invariant features from interest point groups. In: In British Machine Vision Conference. pp. 656–665
(2002)

[2] Lowe, D.: Object recognition from local scale-invariant features. In: Computer Vision, 1999. The Proceedings of the
Seventh IEEE International Conference on. vol. 2, pp. 1150–1157 vol.2 (1999)

[3] Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (Nov 2004),
http://dx.doi.org/10.1023/B: VISI.0000029664.99615.94

An example of SIFT

keypoint descriptor in which

the gradient orientation

and gradient magnitude

around each interest point

are used [3].

KeyPoints - SIFT

The speeded up robust feature (SURF) descriptor by Bay et al. [1, 2] is also one
of the widely used keypoint descriptors. In this method, the Hessian matrix-
based measure is used to find the points of interest. The sum of the Haar-
wavelet responses within the neighborhood of interest point is calculated. The
authors also use the fast calculation via the integral image thanks to which
SURF is faster than SIFT.

[1] Bay, H., Tuytelaars, T., Gool, L.J.V.: Surf: Speeded up robust features. In: ECCV (1). pp. 404–417 (2006)

[2] Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–
359 (Jun 2008)

KeyPoints - SURF

A very fast method called binary robust independent elementary features
(BRIEF) was proposed by Calonder et al. [1]. The authors reported that the
method outperforms SURF in the term of speed, and the recognition rate in
many cases. In BRIEF, a binary string that contains the results of intensity
differences of pixels are used and the descriptor similarity is evaluated using
the Hamming distance. In [2], the authors proposed another binary descriptor
with rotation and noise invariant properties called oriented fast and rotated
BRIEF (ORB).
[1] Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. In: Proceedings of
the 11th European conference on Computer vision: Part IV. pp. 778–792. ECCV’10, Springer-Verlag, Berlin, Heidelberg
(2010)

[2] Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An effcient alternative to sift or surf. In: Computer Vision (ICCV),
2011 IEEE International Conference on. pp. 2564–2571 (2011)

KeyPoints – BRIEF/ORB

Leutenegger et al. [1] proposed binary robust invariant scalable keypoints
(BRISK). The method provides both scale and rotation invariance. BRISK is a
binary descriptor like BRIEF and ORB, it means that the binary string that
represents a region around the keypoint is composed. In BRISK, a concentric
circle pattern of points near to the keypoint is used (see following image). In
this pattern, the blue circles represent the sampling locations and Gaussian
blurring is computed to be less sensitive to noise; the radius of red circles
denotes a standard deviation of blurring kernel. The standard deviation of the
Gaussian kernel is increased with the increasing distance from the feature
center to avoid aliasing effects. The final descriptor is determined by the
comparison of sample points.

KeyPoints – BRISK

KeyPoints – BRISK

[1] Leutenegger, S., Chli, M., Siegwart, R.: Brisk: Binary robust invariant scalable keypoints. In: Computer Vision (ICCV), 2011
IEEE International Conference on. pp. 2548–2555 (2011)

BRISK sampling pattern [1]

KeyPoints – FREAK

[1] Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast Retina Keypoint. In: IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Conference on Computer Vision and Pattern Recognition, Ieee, New York (2012)

In [1], the authors proposed the fast retina keypoint (FREAK) descriptor that also
uses the binary strings. The method is biologically inspired by a human visual
system; more exactly by the retina. In this paper, the authors proposed a retinal
sampling pattern; The following image shows the topology of this pattern. The
pattern is divided into the areas (foveal, fovea, parafoveal, and perifoveal) similar
to the human retina. In this pattern, the pixels are overlapped and concentrated
near to the center. The binary strings is computed by comparing the point pairs of
image intensities within the pattern.

KeyPoints – FREAK

[1] Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast Retina Keypoint. In: IEEE Conference on Computer Vision and Pattern
Recognition. IEEE Conference on Computer Vision and Pattern Recognition, Ieee, New York (2012)

FREAK sampling pattern [1]

KeyPoints - Example
The goal is to find image KeyPoints that are invariant in the terms of scale,

orientation, position, illumination, partially occlusion.

template

https://docs.opencv.org/3.1.0/d5/d6f/tutorial_feature_flann_matcher.html

KeyPoints - Example

https://docs.opencv.org/3.1.0/d5/d6f/tutorial_feature_flann_matcher.html

 Haar

 HOG

 LBP

 SIFT, SURF KeyPoints

 CNNs

Traditional Approaches

Deep Learning Approach

Recognition

Alien vs. Avenger

? ?

CNNs – Main Steps (LeNet)

1. Convolution

2. Non Linearity (ReLU)

3. Pooling or Sub Sampling

4. Classification (Fully Connected Layer)

https://www.clarifai.com/technology

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

https://www.clarifai.com/technology

Input Image

Mask/Filter

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

+ ReLU + ReLU

1. Convolution

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

1. Convolution

Multiply the image

pixels by pixels of

the filter, then sum

the results
+ ReLU + ReLU

Mask/Filter

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

+ ReLU + ReLU

http://dimitroff.bg/image-filtering-your-own-instagram/

1. Convolution

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

+ ReLU + ReLU

1. Convolution

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

• Before training, we have many filters/kernels
• Filter values are randomized

• Depth of this conv. layer corresponds to the
number of filters we use for the convolution
operation

• The filters are learned during the training

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

+ ReLU + ReLU

1. Convolution

http://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

2. Non Linearity (ReLU)
• ReLU is used after every Convolution operation
• The goal of this step is to replace all negative pixels by zero in

the feature map

http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

+ ReLU + ReLU

http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

3. Pooling

(Subsampling or downsampling)

• The goal of this step is to reduce the dimensionality of

each feature map but preserve important informations

• Operations: e.g. Sum, Average, Max

+ ReLU + ReLU

3. Pooling

(Subsampling or downsampling)

• Common way is a pooling layer with filters of size 2x2
applied with a stride of 2

http://cs231n.github.io/convolutional-networks/

+ ReLU + ReLU

http://cs231n.github.io/convolutional-networks/

(Subsampling or downsampling)

• Common way is a pooling layer with filters of size 2x2
applied with a stride of 2

+ ReLU + ReLU

http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

3. Pooling

http://mlss.tuebingen.mpg.de/2015/slides/fergus/Fergus_1.pdf

Conv. + ReLU + POOL

• Convolution layers and Pooling layers can be repeated any number
of times in a single ConvNet.

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

4. Classification

• Multi Layer Perceptron
• The number of filters, filter sizes, architecture of the network etc.

are fixed and do not change during training process.
• Only the values of the filter matrix and connection weights get

updated.

http://cs231n.github.io/convolutional-networks/

+ ReLU + ReLU

http://cs231n.github.io/convolutional-networks/

CovNet Architectures

• LeNet (1990s)

• AlexNet (2012)

• ZF NET (2013)

• GoogLeNet (2014)

• VGGNet (2014)

• ResNets (2015)

• DenseNet (2016)

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Dlib

http://dlib.net

http://dlib.net/

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs

(Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

Recognition step CNNs

(Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

Recognition step CNNs

(Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

6 conv. filters
5x5 filter size

1x1 stride
+ReLU

Recognition step CNNs

(Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

MAX POOLING
2x2 window

2x2 stride

Recognition step CNNs

(Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

16 conv. filters
5x5 filter size

1x1 stride
+ReLU

Recognition step CNNs

(Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

MAX POOLING
2x2 window

2x2 stride

Recognition step CNNs

(Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Input Image
Convolution

+ ReLU
Pooling Convolution

+ ReLU
Pooling Fully Connected

Fully connected layer
120 neurons
84 neurons

10 outputs/classes
multiclass

classification

Recognition step CNNs

(Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs

(Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Recognition step CNNs

(Dlib)

http://dlib.net/dnn_introduction_ex.cpp.html

http://dlib.net/dnn_introduction_ex.cpp.html

Exercise

DETECTING FREE/OCCUPIED PLACES IN PARKING LOTS

Motivation:

The vehicle detection systems using images have been very useful in the recent years. Especially nowadays in the

cities, the increasing number of vehicles brings a major problem. The car detection systems can be important,

especially for drivers who are looking for vacant spaces in the parking lots, for traffic analysis, for intelligent

scheduling, for smart cities and so on.

Input Data:
The training data with a basic template (C++/OpenCV) can be found in the following link:

http://mrl.cs.vsb.cz/data/parking.zip

http://mrl.cs.vsb.cz/data/parking.zip

Exercise

description of template:

• training and testing data are in the “testImages” and “trainImages” folders

• each image is named as free_xx.png or full_xx.png (the name of the images represents the
state of parking space)

• functions for loading training/testing images are already implemented - train_parking(),
test_parking()

• the training and prediction steps are missing - You can use any available libraries to solve
this detection task. The use of the provided main.cpp template is not required.

Exercise

Output:

If you successfully run the template, you obtain this output. It means that the accuracy of the
detector is aprox. 32%. The accuracy is low because each parking space is labeled as occupied
- line 82 in main.cpp. The goal is to implement better prediction approach.

Exercise

Hints:

Since we want to label each parking space as free (0) or occupied (1), this recognition problem can be solved
using classical binary classifiers (SVM, neural networks). To train the classifiers, you can use the provided training
data in the “trainImages” folder. As the input for the classifiers, you can use the whole image or you can use
feature extraction approaches (e.g. histograms of oriented gradients, local binary patterns).
Alternatively, you can skip the training process and use simple color or gradient information for example. In that
case, you can use only the test_parking() function without the training.
The provided template is based on the OpenCV library https://opencv.org/
Installation in Linux: https://www.learnopencv.com/install-opencv3-on-ubuntu/
Installation in Windows: https://www.learnopencv.com/install-opencv3-on-windows/
Installation in MacOS: https://www.learnopencv.com/install-opencv3-on-macos/
Simple install for Windows without cmake using NuGet:

http://funvision.blogspot.com/2017/04/simple-install-opencv-visual-studio.html
https://www.nuget.org/packages/opencv.win.native/320.1.1-vs141

https://opencv.org/
https://www.learnopencv.com/install-opencv3-on-ubuntu/
https://www.learnopencv.com/install-opencv3-on-windows/
https://www.learnopencv.com/install-opencv3-on-macos/
http://funvision.blogspot.com/2017/04/simple-install-opencv-visual-studio.html
https://www.nuget.org/packages/opencv.win.native/320.1.1-vs141

Exercise

Hints:

Alternatively, you can install OpenCV from the Ubuntu or Debian repository:
sudo apt-get install libopencv-dev python3-opencv

You can find the several tutorials in the following link: https://docs.opencv.org/3.4.2/d9/df8/tutorial_root.html

Dlib library represents another option how to solve this detection problem
Installation in Windows https://www.learnopencv.com/install-dlib-on-windows/
Installation in Linux https://www.learnopencv.com/install-dlib-on-ubuntu/
Installation in MacOS: https://www.learnopencv.com/install-dlib-on-macos/
You can follow this tutorial: http://dlib.net/dnn_introduction_ex.cpp.html

You can also use Keras, Caffe, TensorFlow, etc.

https://docs.opencv.org/3.4.2/d9/df8/tutorial_root.html
https://www.learnopencv.com/install-dlib-on-windows/
https://www.learnopencv.com/install-dlib-on-ubuntu/
https://www.learnopencv.com/install-dlib-on-macos/
http://dlib.net/dnn_introduction_ex.cpp.html

