
Introduction to OpenCV Library

Figure 1: Color image of Lena, the most used image in digital image processing (left); grayscale
image of Lena (middle); grayscale image of Lena with modified pixel and drawn rectangle (right).

Welcome to the Digital Image Processing exercises1. In these exercises, we’ll implement image
processing algorithms that are discussed in lectures from the theoretical perspective.

Listing 7 shows the full source code of our exercise that is able to load a color image, convert
it to grayscale image, read pixel values, manipulate pixel values, and draw a rectangle. Let’s go
through the code in more detail.

OpenCV is a C++ library for manipulating images and contains a lot of image processing and
analysis algorithms. Most of the OpenCV’s functions reside in the cv namespace. Images are
stored in matrices using cv::Mat data type. To open an image, we use cv::imread function
that returns an image that we can store in a variable. Images can be color or grayscale. Most of
our algorithms will use grayscale images. The following code reads image in color and grayscale
variant and stores them in two different variables.

1 // load color image from file system to cv::Mat variable, this will be loaded using 8
bits (uchar) per channel

2 cv::Mat src_8uc3_img = cv::imread("images/lena.png", cv::IMREAD_COLOR);
3

4 // load color image from file system to cv::Mat variable, this will be loaded using 8
bits (uchar) per channel

5 cv::Mat src_8uc1_img = cv::imread("images/lena.png", cv::IMREAD_GRAYSCALE);

Code Listing 1: Reading an image.

As you can see, we now have the color version of Lena (Figure 1 (left)) and gray scale Lena
(Figure 1 (middle)) loaded into variables src_8uc3_img and src_8uc1_img.

However, we can also convert images between different color spaces. We can easily convert a
RGB image to grayscale one using cv::cvtColor function as shown in listing 2.

1 // convert input color image to grayscale one, CV_BGR2GRAY specifies direction of
conversion

2 cv::cvtColor(src_8uc3_img, gray_8uc1_img, cv::COLOR_BGR2GRAY);

Code Listing 2: Converting a color image to a grascale one.

We just converted color image src_8uc3_img to empty image gray_8uc1_img.
When we load an image from a file, each pixel is represented using 8 bits of information

(unsigned char in C++ that we can refer as uchar2). Pixel values are in range 0 - 255. In
grayscale image, we have one uchar per pixel. In color image, we have three uchars per pixel
forming traditional RGB pixels. However, for some image processing operations, it is better to

1http://mrl.cs.vsb.cz/people/gaura/dzo_course
2This is simplified, but OK for our needs

represent image using values in range 0.0 - 1.0. Such values have to stored in real value data
type. For our use, it’ll be completely sufficient to use float data type for such representation. To
convert a grayscale image from 8 bits (uchar) representation to 32 bits (float) representation
we use convertTo method of cv::Mat variable. The parameters of the method are: output
image, output data type, and conversion scale and the method usage is described below.

1 // convert grayscale image from 8 bits to 32 bits, resulting values will be in the
interval 0.0 - 1.0

2 gray_8uc1_img.convertTo(gray_32fc1_img, CV_32FC1, 1.0 / 255.0);

Code Listing 3: Converting an image represented using uchars to an image represented by
floats.

Since the main aim of this course is to implement image processing algorithms, we’ll need to
access pixels of an image. To do so, we’ll us at method of the cv::Mat data type. This method
is templated (it needs a type specifier in angle brackets before arguments. Method signature is as
follows.
at<image_type>(int y, int x)

1 // read grayscale value of a pixel, image represented using 8 bits
2 uchar p1 = gray_8uc1_img.at<uchar>(y, x);
3

4 // read grayscale value of a pixel, image represented using 32 bits
5 float p2 = gray_32fc1_img.at<float>(y, x);
6

7 // read color value of a pixel, image represented using 8 bits per color channel
8 cv::Vec3b p3 = src_8uc3_img.at<cv::Vec3b>(y, x);
9

10 // print values of pixels
11 printf("p1 = %d\n", p1);
12 printf("p2 = %f\n", p2);
13 printf("p3[0] = %d, p3[1] = %d, p3[2] = %d\n", p3[0], p3[1], p3[2]);

Code Listing 4: Accessing pixels.

We’re assigning a grayscale value (brightness) to the uchar variable p1. gray_8uc1_img
has brightness values represented using 8 bits. As you can see, type specifier of at method is
set to uchar. It’s followed by y, and x variables that specify, at which position to read pixel
value. The same procedure is done in the case of gray_32fc1_img image, which uses 32 bits
representation of brightness values. The only difference is that we use float instead of uchar
data type. To access color pixels in src_8uc3_img, we need to use cv::Vec3b. This type holds
three values (RGB) at once. To access each color value, we use [] notation as is used in the above
example.

Another important operation with image pixels is, of course, setting a new pixel brightness.
This is done again using atmethod. The only difference from the read operation is that we assign
a new value to the method. An example is shown in the listing below.

1 // set pixel value to 0 (black)
2 gray_8uc1_img.at<uchar>(y, x) = 0;

Code Listing 5: Assigning a new value to a pixel.

When implementing image processing algorithms, you’ll quite often need to go through all
image pixels and perform some operation with brightness values. To access all pixels, we usually
use two nested for loops to iterate over all rows and in each row to iterate over all columns. As
an example (6), we’ll create a gradient image. First, we crate a new image gradient_8uc1_img
with 50 rows and 256 columns and with CV_8UC1 type. This means that image will use 8 bits
as data representation (uchar) and one channel, so it’s essentially a grayscale image. Then we
iterate over all pixels and assign brightness value according to the column number.

1 // declare variable to hold gradient image with dimensions: width= 256 pixels, height=
50 pixels.

2 // Gray levels wil be represented using 8 bits (uchar)

3 cv::Mat gradient_8uc1_img(50, 256, CV_8UC1);
4

5 // For every pixel in image, assign a brightness value according to the x coordinate.
6 // This wil create a horizontal gradient.
7 for (int y = 0; y < gradient_8uc1_img.rows; y++) {
8 for (int x = 0; x < gradient_8uc1_img.cols; x++) {
9 gradient_8uc1_img.at<uchar>(y, x) = x;

10 }
11 }

Code Listing 6: Create an image of a horizontal gradient from the black color to the white using
grayscale.

Figure 2: A gradient image produced by our code.

You can find the full listing of the exercise’s code below.
1 #include <iostream>
2

3 #include <opencv2/opencv.hpp>
4

5 int main(int argc, char *argv[])
6 {
7 cv::Mat src_8uc3_img = cv::imread("images/lena.png", cv::IMREAD_COLOR); // load

color image from file system to Mat variable, this will be loaded using 8 bits (
uchar)

8 //cv::imshow("LENA", img);
9

10 // declare variable to hold grayscale version of img variable, gray levels wil be
represented using 8 bits (uchar)

11 cv::Mat gray_8uc1_img;
12 // declare variable to hold grayscale version of img variable, gray levels wil be

represented using 32 bits (float)
13 cv::Mat gray_32fc1_img;
14

15 cv::cvtColor(src_8uc3_img, gray_8uc1_img, cv::COLOR_BGR2GRAY); // convert input
color image to grayscale one, CV_BGR2GRAY specifies direction of conversion

16 gray_8uc1_img.convertTo(gray_32fc1_img, CV_32FC1, 1.0 / 255.0); // convert
grayscale image from 8 bits to 32 bits, resulting values will be in the interval 0.0
- 1.0

17

18 int x = 10, y = 15; // pixel coordinates
19

20 uchar p1 = gray_8uc1_img.at<uchar>(y, x); // read grayscale value of a pixel,
image represented using 8 bits

21 float p2 = gray_32fc1_img.at<float>(y, x); // read grayscale value of a pixel,
image represented using 32 bits

22 cv::Vec3b p3 = src_8uc3_img.at<cv::Vec3b>(y, x); // read color value of a pixel,
image represented using 8 bits per color channel

23

24 // print values of pixels
25 printf("p1 = %d\n", p1);
26 printf("p2 = %f\n", p2);
27 printf("p3[0] = %d, p3[1] = %d, p3[2] = %d\n", p3[0], p3[1], p3[2]);
28

29 gray_8uc1_img.at<uchar>(y, x) = 0; // set pixel value to 0 (black)
30

31 // draw a rectangle
32 cv::rectangle(gray_8uc1_img, cv::Point(65, 84), cv::Point(75, 94),
33 cv::Scalar(50), cv::FILLED);

34

35 // declare variable to hold gradient image with dimensions: width= 256 pixels,
height= 50 pixels.

36 // Gray levels wil be represented using 8 bits (uchar)
37 cv::Mat gradient_8uc1_img(50, 256, CV_8UC1);
38

39 // For every pixel in image, assign a brightness value according to the x coordinate
.

40 // This wil create a horizontal gradient.
41 for (int y = 0; y < gradient_8uc1_img.rows; y++) {
42 for (int x = 0; x < gradient_8uc1_img.cols; x++) {
43 gradient_8uc1_img.at<uchar>(y, x) = x;
44 }
45 }
46

47 // diplay images
48 cv::imshow("Gradient 8uc1", gradient_8uc1_img);
49 cv::imshow("Lena gray 8uc1", gray_8uc1_img);
50 cv::imshow("Lena gray 32fc1", gray_32fc1_img);
51

52 cv::waitKey(0); // wait until keypressed
53

54 return 0;
55 }

Code Listing 7: Full exercise code.

